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1. Introduction

For MIMO deployment in HSDPA, either the diversity P-CPICH or the S-CPICH can be configured from the second transmit antenna. When diversity C-PCICH is configured, power-balancing of the two PAs is achieved through the use of STTD on overhead channels. Given the loss in performance that accompanies STTD reception at the UE, configuring S-CPICH from the second transmit antenna is seen as a better option. 
When S-CPICH is configured from the second transmit antenna, the two PAs are no longer power-balanced, as all overhead channels will be transmitted from the first transmit antenna, along with the P-CPICH. In order to power-balance the PAs, work-arounds have been proposed (see [1]).
2. MIMO Workaround
As proposed in [1], Figure 1 shows the work-around that power-balances the two PAs at the Node-B for legacy non-MIMO transmissions and single and dual-stream MIMO transmissions. The pre-coding matrix S performs the power-balancing operation and is given by:
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Figure 1. MIMO work-around using Common Precoder “S”

Again, as shown in [1], this matrix requires code-book restriction for single-stream MIMO transmission from 4 to 2 pre-coding vectors. There is no such restriction for dual stream MIMO transmission.
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This loss in two pre-coding vectors for single-stream transmission leads to a loss in cell-edge throughput. However, if the UE is not aware of the use of common-precoder at the Node-B, then the loss could potentially be much higher. 

Assume that a UE sends a single-stream CQI corresponding to one of the two prohibited PCIs and the Node-B randomly re-quantizes these PCIs to the allowed ones. The CQI reported by the UE is optimistic for this re-quantized PCI. The scheduler will have to depend on slowly-varying outer-loop margin to correct for this error in CQI and the resultant performance for cell-edge UEs will suffer. In the case of multiple users per cell, this gives rise to a second-order effect. Proportional fair scheduler will increase the time-share of the cell-edge UEs and hurt the performance of high geometry UEs as well.
3. Simulation Assumptions and Results
Simulation Assumptions are similar to those from [2].
	Parameters
	Values and comments

	Cell Layout
	Hexagonal grid, 19 Node B, 3 sectors per Node B with wrap-around

	Inter-site distance
	1000 m

	Carrier Frequency
	2000 MHz

	Path Loss
	L=128.1 + 37.6log10(R), R in kilometers

	Log Normal Fading 
	Standard Deviation : 8dB

Inter-Node B Correlation: 0.5

Intra-Node B Correlation :1.0
Correlation Distance: 50m 

	Max BS Antenna Gain
	14 dBi 

	Antenna pattern
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                                                                              = 70 degrees,

                                                                       Am = 20 dB

	Channel Model
	PA3

Fading across carriers is completely uncorrelated 

Fading across all pairs of antennas is completely uncorrelated.

	Penetration loss
	10 dB

	CPICH Ec/Ior
	-10 dB for P-CPICH, -10 dB for S-CPICH

	HS-DSCH 
	Up to 15 SF 16 codes per carrier for HS-PDSCH

Power allocation for MIMO: 

- Total available power for  HS-PDSCH and HS-SCCH is 60% of Node B Tx power, with HS-SCCH transmit power being driven by 1% HS-SCCH BLER

	HS-DPCCH 
	9 slot CQI delay

CQI quantization is modeled

Error-free PCI, CQI and ACK decoding

	UE Antenna Gain
	0 dBi

	UE noise figure
	9 dB

	Thermal noise density
	-174 dBm/Hz

	UE capabilities
	15 SF 16 codes capable per carrier

	UE Receiver Type
	Type 3i 

	Maximum Cell 

Transmit Power
	43 dBm 

	Other Sector Transmit Power
	OCNS=1

	Traffic model and Scheduler
	Full buffer, Proportional Fair scheduler

	Number of UEs per  cell
	1, 10


Figure 2 shows the CDF of user throughput under various scenarios. The blue curve shows MIMO throughput when there is no codebook restriction of any sort. The red-curve shows user throughputs when UE is aware of the codebook restriction at the Node-B. As is clearly visible, the loss is small and is only visible at the cell-edge. The green curve shows the UE throughput when UE is unaware of code-book restriction at the Node-B, and the Node-B randomly re-quantizes the received PCI, if it belongs to the prohibited set. 
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Figure 2. User throughput CDF for 1 user/cell. UE’s lack of knowledge regarding code-book restriction at Node-B hurts throughputs significantly.

We generally expect loss for those UEs that see single-stream transmission. Hence, the loss falls as we get to the center of the cell. Figure 3 shows the loss in throughput as a function of user percentile. At cell-center, the loss is nearly zero.
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Figure 3. Percentile loss in user throughput. Lack of knowledge regarding codebook restriction at Node-B hurts UE throughput performance significantly.
Figure 4 shows (for a UE at -3 dB geometry) the difference in SNR on HS-PDSCH between the UE’s preferred single-stream and the Node-B’s quantized stream in the case when the UE is unaware of code-book restriction at Node-B. The distribution clearly has a heavy tail. The Node-B will end up picking a TBS that is very optimistic. This leads to higher outer-loop margins and a throughput loss.
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Figure 4. Difference in CQI: “best-of-4-streams” minus “re-quantized stream” (UE at -3 dB geometry). This difference shows the extent to which Node-B can pick an optimistic TBS for scheduling.

With multiple users/cell (see Figure 5), we see that even good geometry users see a loss.
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Figure 5. User throughput CDF for 10 users/cell. UE’s lack of knowledge regarding code-book restriction at Node-B hurts performance significantly. Even good geometry users see loss.
Figure 6 explains the loss in throughput for high geometry UEs. The mismatch between the CQI and PCI for cell-edge users leads to sub-optimal scheduling for these users. Proportional fair scheduler tries to offset this by increasing the time-share of cell-edge users in the system. This ends up reducing the time-share of good geometry users in the system, thereby hurting the throughput for good geometry users. 
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Figure 6. Second-order effect: Proportional Fair scheduler increases time-share of cell-edge UEs and hurts good geometry UEs.
Figure 7 explains this further through percentile-loss plots. For the case when the Node-B quantizes the reported CQI from the UE, cell-edge loss in throughput with 10 users/cell is 30% in Figure 7. The same point in Figure 3 for the 1 user/cell case shows the loss to be 35%. Proportional fair scheduler is increasing the time-share of cell-edge users, thereby reducing the loss for them. This inturn reduces the time-share for good geometry users and hurts their throughputs.
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Figure 7. Percentile loss for 10 users/cell. Cell-edge loss is lower (30%) with 10 users/cell than with 1 user/cell shown in Figure 3 (35%). Proportional fair is increasing time-share of cell-edge users. This hurts good geometry users.
4. Conclusions
We showed in this contribution that without knowledge of code-book restriction, a MIMO HSDPA UE can see significant throughput loss. This loss will be limited to cell-edge and mid-geometry UEs when we have a single user per cell. With multiple users per cell, proportional fair scheduler can spread some of this loss to the good geometry users.
Proposal: We propose that MIMO codebook restriction should be signaled to the UE.
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