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1 Introduction
It has been widely acknowledged that the more sophisticated MIMO techniques being considered for LTE-A require more advanced feedback mechanisms compared to LTE Rel-8. This is particularly true for single-cell MU-MIMO and CoMP schemes, where the introduction of some form of explicit signalling of the channel spatial structure would enable the eNB to make effective use of interference nulling techniques [1]-[4]. On the other hand, implicit signalling, of the kind adopted in LTE Rel-8, seems well suited for single-cell SU-MIMO, where the UE can accurately predict the interference under different hypotheses on the transceiver spatial processing.

In this contribution we make some general considerations on reporting the channel spatial structure for single-cell MU-MIMO and CoMP. We point out that the minimal channel information required at the eNBs for channel diagonalisation/interference nulling is the sub-space spanned by a set of relevant channel eigenvectors, rather than the exact eigenvectors. We show that signalling this sub-space information inherently requires significantly less overhead compared to signalling the exact eigenvectors, when more than one eigenvector is reported. This explicit spatial information is complementary to the implicit feedback of PMI/CQI/RI, based on hypothesis testing, which is the primary feedback mode for single-cell SU-MIMO.

Therefore, in an effort to develop a common framework for channel feedback responding to the different requirements of the various LTE-A MIMO schemes, we propose to evaluate sub-space feedback as a convenient way of signalling the channel spatial structure in MIMO modes where interference nulling/ channel diagonalisation is the precoding criterion of choice.

2 Explicit spatial feedback: dimensionality reduction

Explicit feedback mechanisms currently under investigation to support advanced MU-MIMO and CoMP techniques consist in performing some form of quantisation on a set of orthonormal vectors extrapolated from the channel matrix representation. These vectors may be derived, for example, as the eigenvectors of the channel correlation matrix or as singular vectors of the instantaneous channel matrix.

Let us assume that the UE has to report the channel corresponding to a single cell, typically the strongest (serving) cell. Extension to the case of channel reporting for a measurement set of multiple cell sites is discussed later in this document. The channel matrix is denoted by
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, representing the channel spatial structure that the UE wants to feedback to the cell eNB, and let 
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orthonormal matrix whose columns are the 
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eigenvectors. These vectors can be obtained, for example, from the eigen-value decomposition (EVD) of the average Gram matrix of the channel, 
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, or from the singular-value decomposition (SVD) of 
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Dimensionality reduction methods can be applied to reduce the degrees of freedom and therefore the number of coefficients needed in the representation of 
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. Note that we can assume, without loss of generality, that one element (e.g. the first) in each eigenvector 
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 is real-valued, by EVD or SVD construction. The 
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vectors are also unit-norm and orthogonal. If we decide to represent them separately, without considering their orthogonality, the condition on the norm imposes one constraint per vector. Therefore, the degrees of freedom for each vector, i.e. the number of (complex) coefficients required to represent each vector is 
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coefficients to represent the 
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 vectors. This representation is clearly redundant as we omitted to consider the orthogonality constraints between the vectors. In fact, for the first vector we have just one constraint on the norm, but for the second vector one constraint is imposed by the norm and one by the orthogonality to the first vector, for the third vector there are two orthogonality constraints and one norm constraint and so forth for the remaining vectors. Therefore, the overall degrees of freedom in the representation are reduced to
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However, we can further reduce the dimensionality of the channel feedback by observing that, for the purpose of interference nulling, the transmitters do not need to know the individual eigenvectors 
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, but rather the vector sub-space spanned by these vectors. In other words, a transmitter should be able to reconstruct any linear combination of the columns of 
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, i.e. a matrix 
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unitary matrix, unknown to the transmitter. Clearly, knowing 
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instead of 
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does not affect the nulling capability of the eNB for a precoding vector belongs to the null space of 
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only if it belongs to the null space of 
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. However, we note that, by reconstructing a matrix 
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 instead of 
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the eNB no longer knows exactly the direction of each individual eigenvector: this may not be a significant limitation for MU-MIMO and CoMP scheme because the priority in these MIMO modes is interference reduction and the eNB can still ensure a beamforming gain in a range between the strongest eigenvector and the 
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-th strongest eigenvector. The dimensionality of this sub-space representation can be obtained by subtracting from the degrees of freedom of 
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. Thus, the minimum number of degrees of freedom associated with the sub-space representation of the eigenvectors is given by
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 It is immediate to verify that 
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 for (2)
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< GOTOBUTTON ZEqnNum227301  \* MERGEFORMAT . Therefore, it is possible to derive a sub-space description of the vectors 
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coefficients per eigenvector. Let us call 
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matrix that results from this size reduction. We can then proceed with some form of scalar or vector quantisation of 
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, which is the vectorised form of 
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, as we would do for the original set of eigenvectors. If vector quantisation is adopted, then the codebook should be optimised for the typical distribution of 
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. Note that other transform coding stages can be performed on the feedback vector 
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before the quatisation stage to increase the source coding gain. In a companion paper [5] we show how the eigenvector description 
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 may be derived at a very modest cost in terms of additional complexity for both the UE and eNB.
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Table 1. Dimensionality reduction techniques when signalling 
[image: image52.wmf]p

channel eigenvectors. 
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is the number of transmit antennas at the receiving eNB. 

In Table 1 we summarise the reduction in number of coefficients achievable by separate, joint and sub-space representation of the channel eigenvectors, when signalling 
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eigenvectors.

For example, in a 
[image: image55.wmf]4,2

nm

==

 system, with codebook-based vector quantisation of the feedback vectors and where the UE needs to report 
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 eigenvectors, the separate eigenvector representation (first column in the Table 1) requires a size-3 codebook. The joint eigenvector representation (second column in the Table 1) needs two different codebooks, one of size 3 and one of size 2 (average size of 2.5 per eigenvector). The sub-space representation (third column in Table 1) requires a size-2 codebook, thereby achieving a dimensionality reduction of 33% with respect to the baseline.

2.1 Extension to CoMP measurement set

The dimensionality reduction technique based on sub-space representation can be naturally extended to the case when the UE needs to report the channel corresponding to a CoMP measurement set of 
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 the channel matrix representation for the measurement set, where 
[image: image59.wmf]k

H

represents the channel between the 
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receive antennas of the UE. In the case the cells in the measurement set have different numbers of active antennas, and the feedback has to be on 
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 transmit antennas, the individual channel matrices can be padded with zeros such that all 
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, one or more rows can be removed from some of the 
[image: image66.wmf]k

H

matrices. Then, the 
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strongest left-singular-vectors can be selected from the SVD on
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3 Conclusion
This contribution discusses some aspects of the explicit feedback mechanism for LTE-A single-cell MIMO and CoMP schemes.

Whilst feedback for single-cell SU-MIMO can be improved by extending the implicit LTE Rel-8 feedback mechanisms, explicit feedback requires signalling new quantities, namely the channel spatial structure, which is key to enable channel diagonalisation and interference nulling precoding.

The minimal channel information required at the eNBs for channel diagonalisation/interference nulling is the sub-space spanned by a set of relevant channel eigenvectors (typically the strongest), rather than the exact eigenvectors. We show that signalling this sub-space information inherently requires significantly less overhead compared to signalling the exact eigenvectors, when more than one eigenvector is reported.

We propose to consider dimensionality reduction techniques to reduce the number of coefficients in the representation of a set of channel eigenvectors (or singular vectors). In particular, sub-space representation is shown to achieve the largest possible size reduction: when representing 
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eigenvectors, each length-
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coefficients. After this size reduction, scalar of vector quantisation can be applied to the reduced-size vectors.
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