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1
Introduction
Coordinated Multi-Point transmission/reception (CoMP) [1-2] is well accepted as a promising technique to improve cell coverage and increase cell-edge user throughput (for both DL and UL). Although CoMP naturally increases system complexity, it has potentially significant capacity and coverage benefits, making it worth a more detailed consideration. To be specific, the coordinated multipoint transmission is mainly characterized into two classes: 
· Joint processing/transmission (CoMP-JP)

· The CoMP-JP scheme is incurring large system overhead: UE data distribution and joint processing across multiple transmission points (TPs); and channel state information (CSI) required for all the TP-UE pairs.

· This issue exists for either SU-CoMP-JP schemes [3-9] that only serve one UE at a time or MU-CoMP-JP schemes [10-14] that jointly serve multiple UEs at the same time.

· Coordinated scheduling and/or beam-forming (CoMP-CBF)

· With a “minimum” cooperation overhead, to improve the cell edge-user throughput via interference management through distributed beamforming at multiple TPs: No need for UE data sharing across multiple TPs; Each TP only needs CSI between itself and the involved UEs (no need for CSI between other TPs and UEs).

· Instead of proposing CoMP joint processing schemes to achieve virtual multiplexing gains, we propose an efficient distributed interference management scheme based on per-TP beamforming (in constraint to multi-TP joint beamforming).
In TDD system, due to channel reciprocity between downlink channel and uplink channel, the eNBs can obtain the CSI through SRS feedback mechanism. Considering common feedback mechanism which supports dynamic switch among different CoMP schemes, we proposed SRS feedback based MU-CoMP-JP scheme and SRS feedback based CoMP-CBF scheme. Moreover, we show some initial views on the SRS resources allocation scheme for CoMP UE between the serving cell and the cooperating cells.
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Fig. 1 SU-CoMP-JP scheme, MU-CoMP-JP scheme and CoMP-CBF scheme
2
SRS feedback based MU-CoMP-JP scheme
In the MU-CoMP-JP scheme, as shown in Fig.1, the joint preprocessing can be performed in a centralized manner within several transmission points (TP). These cooperative TPs serve a UE-group which consists of several UEs using the same frequency at the same time. In each MU-CoMP group, joint signal preprocessing should be implemented to mitigate inter-cell interference and subsequently improve system spectrum efficiency, especially the cell-edge user spectral efficiency.
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 receive antennas at each UE. In the downlink, the M cooperative transmission points and the N paired UEs can form a  
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 virtual MIMO system, depicted in the Fig. 2. 
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Fig.2 Downlink MU-CoMP-JP scheme
The channel matrix from the multiple TPs to the u-th user on the n-th subcarrier is denoted by 
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 dimension matrix representing the normalized complex channel gain and 
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where 
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 is the average received signal power at the u-th UE from the i-th transmit antenna.      

Therefore, the composite channel matrix of the cooperative 
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 virtual MIMO system on the n-th subcarrier is given by
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The data vector intended for the u-th UE on the n-th subcarrier is given by
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where lu denotes the number of layers for the u-th UE.

The joint precoding matrix for the u-th UE’s data vector is denoted as 
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, the transmit vector of the CoMP is given by
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where 
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The receive vector at the u-th UE can be written as
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where 
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There are several different algorithms to obtain the joint precoding matrix 
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 for each UE, such as ZF, BD, DPC etc. Block diagonalization (BD) algorithm is a suboptimal solution under the constraint that all inter-user interference is mitigated within the cooperative TPs while each receiver is equipped with multiple antennas. The principle of BD algorithm is to find the precoding matrix to fulfill the constraint 
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, which means all multi-user interference will be eliminated.  
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The zero inter-user interference constraint forces 
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where the superscript H indicates the Hermitian transpose. 
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With the BD precoding matrix 
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After obtaining 
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 is fulfilled. One way to improve the capacity is using MIMO eigen beamforming. Denote the SVD of the effective channel matrix 
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where 
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 consists of the singular vectors corresponding to non-zero singular values and can be used to maximize the received SINR for user i subject to the zero inter-user interference constraint.
The precoding matrix on the n-th subcarrier then can be defined as
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3
SRS feedback based CoMP-CBF scheme

The CoMP-CBF scheme is shown in Fig. 3, in which TPk servers UEk. We assume that there are 
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 receive antennas at each UE. As such, the channel between any TP-UE pair is represented as a 
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 MIMO channel matrix. When TPk transmits data packets to UEk, it causes interferences to the other UEs that are scheduled over the same carriers and time slots, which is the so-called inter-cell interference. 
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Fig. 3 MIMO downlink system model

Assume that all the TPs adopt the same transmit power and let 
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. Under the guideline of interference friendliness, the k-th TP maximizes the received signal power at the k-th UE, while regulating the total resulting damage to all other UEs. If each TP acts in such a rational and friendly way, we expect that the overall system performance will be dramatically enhanced, especially for interference-limited cell-edge users. To measure the total degrading effect caused by TPk to other users, we define a term called k-th outgoing interference temperature (OIT) in together with the common existing background noise/interference within the system: 
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where 
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 is the noise variance same for all UE’s, 
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 is the power of the common background interferences from surrounding cells that are not participating in this CoMP-CBF transmission, and the stacked channel matrix 
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We then define the Signal to OIT Ratio (SOITR) for the k-th TP-UE pair as 
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which is a measure of its interference-friendliness. 

The proposed CoMP-CBF scheme is built to let the k-th TP-UE pair maximize 
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Let 
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 is full rank, the above generalized eigenvalue problem can be solved via the standard eigenvalue decomposition of the following matrix:
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for which let us denote the eigenvector corresponding to the i-th largest eigenvalue (
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where 
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stands for the Frobenius norm of a matrix. Numerical results (given in the next Section) demonstrate the significant link-layer gain of the proposed approach using the above solution. In addition, it is in closed-form, which makes it extremely suitable for practical implementations. 
4
Performance evaluation
In this section, the performance of the SRS based MU-CoMP-JP scheme and CoMP-CBF scheme are evaluated by system level simulation. The TDD frame structure with 10 milliseconds radio frame length and 1 millisecond subframe length is applied. We assume that all the subcarriers are transmitted with equivalent power. The detailed simulation parameters are listed in Table I. 
TABLE I.   Simulation Parameters

	Parameters
	Values

	layout
	7 sites with 3 cells (sectors) each

	ISD
	500m

	Carrier frequency
	2.0GHz

	Bandwidth
	10MHz

	DL/UL ratio
	2DL/2UL (full buffer)

	Special sub frame
	[10:2:2] for DwPTS, GP and UpPTS

	Ave. Num of users per cell
	10

	Num of TX-antennas per RRU
	4 with 0.5
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 spaced

	Num of RX-antennas per UE
	2 with 0.5
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 spaced

	Num of layers per UE
	Rank adaptation

	Antenna pattern
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[image: image84.wmf]dB
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	Antenna Gain
	14dBi for sector-antenna

	Traffic
	Full Buffer

	UE speed
	3Km/h

	Penetration loss
	20dB

	Frequency reuse
	1

	Path loss
	128.1+37.6lg(d), d, in km, Minimum path loss 70 dB

	Scheduling method
	PF with each sector independent scheduling

	HARQ
	Synchronous with process number 7 and maximal retransmission times 3

	Channel
	3GPP Case 1

	Link to system model
	EESM

	Link Adaptation
	OLLA with BLER target 10%

	SRS and DM-RS channel estimation
	ideal

	CQI feedback period / delay
	5ms / 5ms

	Sounding period / delay
	5ms /5ms

	CoMP cooperation mode
	 Fixed 3 sector cooperation


The downlink throughput and spectrum efficiency results with different schemes are shown in Fig.4.
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Fig. 4 Downlink throughput and spectrum efficiency simulation results
Compared with Rel.8 non-cooperation scheme (codebook based precoding), the proposed CoMP-CBF scheme and MU-CoMP-JP scheme can obtain 9% gain and 38% gain in average cell spectral efficiency respectively and 48% gain and 68% gain in cell-edge user spectral efficiency respectively. 
5
SRS resources allocation scheme for CoMP UE
In the performance evaluation above, it is assumed that the SRS channel estimation is ideal, that is, the cooperating TPs can obtain the channel to CoMP UEs ideally. However, in Rel-8 SRS resources allocation scheme, the SRS resources allocation for each UE is solely determined by its serving cell. Due to the cell-specific design of sequence groups, different SRS root sequences may be used by UEs in adjacent cells. The SRS channel estimation performance for the CoMP UE to its cooperating cells may be degraded dramatically, since the SRS sequences may have high cross-correlation, different sequence lengths, or overlap partially in frequency. In the study item, we recommend that
· The Rel-8 SRS resources allocation scheme should be evaluated carefully to verify whether it is sufficient for CoMP UE. Multi-user joint channel estimation method may be used.
· Enhanced SRS resources allocation scheme through cell coordination can be investigated if necessary. Coordinated SRS resource allocation is able to reduce SRS inter-cell interference by means of time division, frequency division, or code division for different CoMP UEs in the coordinated cells.
6
Conclusions
In this work, we investigate SRS feedback mechanism based CoMP schemes and SRS resources allocation scheme for CoMP UE in TDD system.

· With large system overhead, the MU-CoMP-JP scheme can improve the average cell spectral efficiency and cell-edge user spectral efficiency significantly.

· With a “minimum” cooperation overhead, the CoMP-CBF scheme can improve the cell-edge user spectral efficiency via interference management through distributed beamforming at multiple TPs.

· Considering common feedback mechanism which supports dynamic switch among different CoMP schemes, SRS feedback based MU-CoMP-JP scheme and SRS feedback based CoMP-CBF scheme are the baseline in TDD system. MU-CoMP-JP scheme and CoMP-CBF scheme have different implementation scenarios.
· It is recommended that the Rel-8 SRS resources allocation scheme should be evaluated carefully to verify whether it is sufficient for CoMP UE. Multi-user joint channel estimation method may be used.
· Enhanced SRS resources allocation scheme through cell coordination can be investigated if necessary.
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