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1 Introduction
In LTE-advanced, coherent joint processing (JP) in CoMP is envisaged to achieve high spectral efficiency by reducing transmit power for high data rate transmission. In coherent JP, it is important to synchronize all participating eNBs. This can be easily achieved for eNBs that are connected through sophisticated wired backhaul or optical fibers. However, such an assumption may not hold for cases in which sophisticated wired backhaul among eNBs or relay nodes (RNs) is not available. In such cases, over-the-air inter-node carrier phase synchronization becomes a useful technique to support coherent JP from those wireless nodes.

This contribution presents over-the-air inter-node carrier synchronization technology for LTE-Advanced. We demonstrate that the proposed technology is feasible from viewpoints of both synchronization accuracy and amount of signalling. While this contribution focuses on the technical aspects on phase synchronization technique itself, more in-depth discussion on the frame structure design can be found in [1].

2 Necessity of Inter-node Carrier Phase Synchronization for JP-COMP
In coherent JP, the same signal is transmitted from multiple transmit nodes (eNBs or RNs) to one destination UE. To ensure that all transmitted signals combine coherently at the UE, source nodes can properly design the transmit weights according to the PMI reported from the UE, regardless of TDD or FDD systems. Moreover, TDD systems can exploit channel reciprocity to attain downlink (DL) channel knowledge. Coherent JP is envisaged to achieve high spectral efficiency.

In coherent JP, it is important for all participating transmit nodes to keep coherency or to keep carrier phase synchronization with constant carrier phase offset. This synchronization requirement could be satisfied if the transmit nodes are connected through sophisticated wired backhaul or optical fibers. However, for applications such as RNs or some eNBs without sophisticated wired backhaul, it is more desirable to synchronize transmit nodes over the air. In the next section, we will propose a scheme for over-the-air inter-node carrier phase synchronization. 
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Figure 1: Transmission model between nodes A and B.
3 Proposed Inter-node Carrier Phase Synchronization
In this section, we will explain the technical principle of the proposed inter-node carrier phase synchronization. For presentational clarity, we concentrate on synchronizing the carrier phase of two nodes referred to as node A and node B (node B is likely eNB in LTE-advanced). The discussion can be straightforwardly extended to synchronizing multiple nodes.
A.  System Model
Fig. 1 shows the signal transmission model between node A and node B, where node A and node B have carrier signals 
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 are the carrier frequency, initial phase and  phase noise of node B, respectively. 

The carrier frequency is equivalent to converted frequency in analog and digital fields. The 

local oscillator’s frequency is very slowly time-varying depending on temperature.Therefore, we can safely assume constant carrier frequency within a small control duration (e.g. <1 second). In contrast, phase noise
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In the proposed synchronization scheme, node A updates its carrier frequency and carrier phase at time instance 
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Using conventional time and frequency synchronizations which synchronizes with received signal, node A can easily maintain the frequency synchronization error, i.e. 
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, within several tens Hz which is comparable to the average Doppler frequency. Furthermore, since 
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 is much less than the coherent bandwidth of the multipath fading channels under consideration, channel reciprocity holds over the bi-directional channels. The proposed inter-node carrier phase synchronization uses received signals at output of FFT starting from the state of the conventional time and frequency synchronization. 
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Figure 2: Timing of pilot signal transmission in the proposed synchronization.
B.  Principle of Proposed Inter-node Carrier Phase Synchronization
Fig. 2 shows the timing of pilot signal transmission in the proposed synchronization. In the proposed scheme, node A modulates unit-energy pilot signal 
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Similarly, node B transmits unit-energy pilot signal 
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,  (Please refer to Appendix A for details). Second, power-boosted pilot signals can be employed to further enhance channel estimation accuracy even when data signal has low SNR. Finally, since synchronizing one carrier frequency is sufficient for the whole system bandwidth, the proposed scheme does not incur much radio resources as shown later in this contribution.

C.  Control Procedure of Proposed Synchronization

In OFDMA, it is better to measure bi-directional channels on 
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 distributed subcarriers. This is because channel measurement at only one subcarrier may not be accurate, particularly for frequency-selective fading channels.  Furthermore, it is important to adjust carrier frequency to minimize inter-node carrier frequency. The overall control procedure of the proposed synchronization is given as follows:
[Inter-node Carrier Phase Synchronization Procedure]
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Steps 2) and 3) are performed in a short duration in which fading channel variation is negligible. An example of updating 
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     Table 1: Simulation parameters.
	System
	20 MHz, downlink, TS 36.211

	Channel 
	Independent Rayleigh channel in L distributed subcarriers

	Doppler spread
	20Hz

	Initial inter-node frequency offset
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	Number of subcarriers for pilots
	L=5

	Period of inter-node carrier phase synchronization
	T=10ms (1 frequency and phase update / frame)

	Total control duration 
	1 second (N=100)

	Feedback of 
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Figure 3 : Synchronization pilot signals in the proposed synchronization.
4 Performance Evaluation
In this section, the proposed inter-node carrier frequency synchronization is evaluated by simulations.

A.  Simulation Parameters
Table 1 lists the simulation parameters. Fig. 3 shows the arrangement of pilot signals for inter-node synchronization in the OFDMA system under consideration. The pilot signals are arranged in L=5 distributed subcarriers with frequency interval W=4 MHz in the last OFDM symbol of link AB and in the first OFDM symbol of link BA. In the time domain, pilot signals are arranged with 
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s) for the proposed synchronization, i.e. one bi-directional pilot transmission per frame. The only exception is in the initial frame where two additional sets of pilot signals are allocated in the 3rd and 6th subframes. The additional pilots are employed to remove ambiguity in node A’s carrier frequency control. If boosted pilots are employed, we consider a pilot symbol with power 
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B.  Average inter-node carrier frequency offset
The average inter-node carrier frequency offset 
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Fig. 4 shows the average inter-node carrier frequency offset 
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 dB. Therefore, we can conclude from this figure that the proposed scheme achieves very accurate inter-node carrier frequency even in the presence of slow Rayleigh fading with Doppler spread of 20Hz. This is because the proposed scheme enables node A to observe only inter-node carrier phase shift, regardless of multipath channel phase shift.
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Figure 4: Average inter-node carrier frequency offset at 
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C.  Cycle Slip Rate  
Denote by 
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 (details are shown in Appendix B). A cycle slip occurs if 
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Figure 5: Cycle slip rate versus 
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D.  Carrier Phase Alignment Error
When there is no cycle slip in the control period of 1s, the inter-node carrier phase alignment error before and after the node A’s update are evaluated as
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Fig. 6 shows the inter-node carrier phase alignment errors 
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Although not shown here, we have also evaluated the performance of the proposed scheme with 
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Figure 6: Inter-node carrier phase alignment errors 
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E.  Amount of Control Signalling 
From the numerical results, accurate inter-node carrier phase offset can be maintained within 
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dB with control period 10ms. Table 2 summarizes the amount of required control signalling to achieve this requirement. Note that a power-boosted pilot symbol of SNR=15dB is counted as 10 normal symbols equivalently, assuming that normal data symbol has SNR=5dB. From Table 2, the proposed synchronization is estimated to require total 50k symbols / second, which corresponds to about 0.06% (=50k/(12*14*500k)) of total radio resources assuming 100 MHz system bandwidth in LTE-Advanced. 

In addition, node-B (e.g., eNB) needs to stop DL transmission to receive pilot signal from the other node [1][2]. Since one OFDM symbol/frame corresponds to about 0.7% of total radio resources, the proposed synchronization mainly consumes radio resources for this transmission gap. With this transmission gap, many node As (e.g., RNs [2]) possibly maintains inter-node carrier phase synchronization [2]. Thus, amount of required radio resources also depends on frame structure and number of nodes for synchronization.

At expense of the above radio resources, the system benefits from coherent transmission in all system bandwidth. In LTE-advanced, it is important to discuss frame structure for inter-node carrier phase synchronization considering benefits and required radio resources.
Table 2: Amount of control signalling (L=5, 
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	Feedback bits / channel parameter 
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 (Overestimated)
	20 bits 

	
	Average feedback rate
	20*L*(1000/10)=2L kbps

	
	Feedback symbol rate 
(assuming coding rate=1/8, overestimated)
	8L ksps

	Pilot symbols
	Pilot symbols for bi-directional channel measurements

(assuming SNR=5dB for normal data symbols)
	20 L symbols /10ms=2L ksps

	Total
	Total number of required symbols
	(2L+8L) ksps=50 ksps
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5 Conclusion
This contribution has proposed over-the-air inter-node carrier phase synchronization to maintain constant inter-node carrier phase offsets among transmit nodes participating coherent joint-processing CoMP over slow Rayleigh channels. Simulation results have shown that the proposed synchronization scheme is effective in supporting coherent transmission from multiple nodes without sophisticated backhauls or optical fibres, such as relay nodes [2] or some eNBs. We believe that the proposed synchronization scheme is suitable for LTE-advanced, considering its high synchronization accuracy and feasible amount of overhead. 
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A.  Principle of Proposed Inter-node Carrier Phase Synchronization
In Fig. 1, the node A (node B) has the analog gain 
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B.  Formula for Updating Carrier Frequency and Carrier Phase in Step 4)
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In practical scenarios, a wireless node may use the following approximated weight, rather than (A.8):
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