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1. Introduction

In [1], a new CoMP scheme called multi-layered rate control (MLRC) is introduced for downlink case. This contribution provides the uplink version of MLRC.
______________________________________________________________________
2. MLRC Operation in Uplink Channel
This section describes the operation of uplink MLRC in Nr x Nt MIMO antenna configuration, where Nt and Nr are the number of transmit antenna and receive antenna, respectively. For the simplicity of explanation, we assume that two cells are involved in the collaboration and there are one eNB and one UE in each cell as illustrated in Figure 1. 
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Figure 1. Two neighboring cells.

In Figure 1, the received signal of eNB1 and eNB2 is written as follows.
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 are the Nr x 1 received signal vector at eNB
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is the L1 x 1 data vector UE1 transmitting, where 
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is the L2 x 1  data vector UE2 transmitting, where 
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 denote the channel matrix from UE
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 and the transmit beamforming matrix at UE1 whose column vector 
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First, eNB1 decodes 
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 and then re-encodes it in order to subtract it from the received signal  
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 to 1. As a result, SINR of the common data 
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eNB2 also decodes the common data first and then decodes the private data without interference from the common data. SINR of the common data 
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The rate of the 
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 common data 
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 is determined by the minimum SINR as shown below so that it can be decodable at both eNBs.
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where  
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 is a function that returns an achievable rate without decoding error for arbitrary SINR.
For 
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, various methods to multiplex the common and private data over multiple transmit antennas are provided in [1].
Figure 2 illustrates the overall operation of MLRC.
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Figure 2. Illustration of MLRC operation.
MLRC can be modified to exploit the macro diversity gain if it is allowed to share the received signal among collaborative eNBs. In case of MLRC coupled with the macro diversity, one of eNBs or RNC combines the signal received at the collaborating eNBs to reinforce the reliability of the common data, instead of decoding the common data at each eNB separately. Owing to the marco diversity gain, the rate of common data 
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 can be enhanced much.
______________________________________________________________________
3. Signal Flow and Requirements of MLRC
In this section, we describe the signal flow of MLRC and summarize its requirements. Figure 3 depicts the signals exchanged among the collaborating cells. We note that 
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 in Figure 3 denotes the power ratio between sum power of the private data and that of the common data as follows.
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Figure 3. Signal flow of MLRC.
First, scheduling information indicating which RBs are allocated and which UEs are scheduled is shared between eNB1 and eNB2. Then, eNB1 estimates the channels from UE1 and UE2 and shares the common-data-related information with eNB2. After calculating the data rates of the common data and private data at eNB2, scheduling message for each UE is transmitted. Finally, both UEs transmit their data to the eBNs according to the scheduling messages.
Based on this description, we can summarize the requirements of MLRC as follows:

· Scheduling information needs to be shared among eNBs to indicate the location of RBs over which MLRC is applied.

· It is required for eNB1 to be able to determine the power fraction and SINR of the common data (i.e., 
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 and 
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). Note that SINR of the common data can be interpreted as the interference-to-signal-plus-noise ratio (ISNR) in view of eNB1 because the common information is actually UE2’s data, i.e., a part of inter-cell interference.

· The information about the common data is determined by eNB1 and should be delivered to eNB2 via backhaul. Besides, eNB1 should have the information such as MCS and transmit power fraction that are required to decode the common information from UE2. The required information may be obtained from eNB2.
· Each of eNB1 and eNB2 is required to be equipped with an advanced receiver such as ML and SIC.

______________________________________________________________________
4. Simulations
We have conducted some preliminary simulations to evaluate the performance of MLRC. The simulation environment is described in Table 1 [2]. We assumed that there are two transmit antennas in each UE and four receive antennas in each eNB. The common and private data are multiplexed according to the option described in Figure 4 in [1]. Independent Rayleigh fading was assumed for each antenna channel, MMSE-SIC receiver is employed. Figure 4 depicts the location of the UEs involved in the collaboration. Here, we varied 
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 that denote the distance between eNB1 and UE1, and the distance between eNB2 and UE2, respectively. The common data is decoded separately at each eNB and macro diversity is not considered.
	Parameter
	Value

	Cell radius
	1 km

	Number of cells
	19 cells (2 tier)

	Transmission power
	23 dBm @ 10 MHz

	Noise power @ eNB
	-103.8 dBm @ 10 MHz

	Noise figure @ eNB
	5 dB

	Path loss @ d km
	128.1+37.6*log10(d)


Table 1. Parameters for simulation.
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Figure 4. Location of the UEs involved in the collaboration.

Figures 5 depicts the achievable rate region with 
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= 0.8 km, and Figure 6 shows the region with 
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= 0.6 km. The performance of MLRC is compared with that of the simple power control in which a UE reduces its transmit power to mitigate ICI. Each rate region is depicted by varying 
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, the fraction of the removed ICI. In the power control case, UE2 turns off the fraction 
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 of its transmission power to reduce ICI to eNB1. In MLRC, the fraction 
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 of UE2’s transmission power is allocated to the common data. Note that the two collaboration methods with the same 
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 results in the same 
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, the rate of UE1. This is because the fraction 
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 of UE2’s transmission power is not seen by eNB1 as ICI in both methods.
We observe in the two figures that MLRC outperforms power control scheme. This is because MLRC can utilize the transmission power that is turned off in the power control scheme without causing additional inter-cell interference. 
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Figure 5. Achievable rate region for 
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=0.6 km and 
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=0.8 km in homogeneous cell environment.
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Figure 6. Achievable rate region for 
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=0.8 km and 
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D

=0.6 km in homogeneous cell environment.
We only consider homogeneous cell environment so far, but MLRC is also available in heterogeneous cell environment where a micro cell is located within the coverage or in the vicinity of a macro cell as depicted in Figure 7. In this heterogeneous case, it is possible for the macro cell UE to split its data into the common data and private data for the neighboring micro cell, and vice versa. MLRC is expected to achieve higher performance gain in this heterogeneous cell environment because the short distance between the two cells renders high channel gain from the neighboring cell which contributes to increasing the transmission rate of the common information. Figure 8 depicts the achievable region in heterogeneous environment. In this simulation, we assume that UE1 is 0.6 km away from both of the micro and macro eNBs, the distance between UE2 and micro eNB is 0.1km, and the distance between the two eNBs is 0.6km. The path loss model of the micro cell is given by 
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 [3], and the number of receive antennas is set to two at the micro eNB. The rest of parameters for simulation are the same as that of homogeneous case. We can observe that MLRC renders a higher gain in heterogeneous cell environment.
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Figure 7. Heterogeneous cell environment
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Figure 8. Achievable rate region for 
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=0.1 km in heterogeneous cell environment.
______________________________________________________________________
5. Conclusion
In this contribution, we presented how to apply MLRC to uplink channel case. It is concluded that MLRC can be an effective uplink CoMP scheme.
______________________________________________________________________
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