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1 Introduction

Channel state information (CSI) is required to fully exploit the MIMO technologies envisaged for LTE-Advanced systems [1]. In particular, it has been demonstrated in [2, 3] that eNBs endowed with accurate CSI can substantially improve the throughput performance in downlink (DL) transmission. In time-division duplex (TDD) systems, eNBs can efficiently derive accurate CSI from uplink (UL) channel sounding signals by exploiting channel reciprocity [4]. Unfortunately, the DL and UL bandwidth separation in frequency-division duplex (FDD) systems makes the channel reciprocity assumption invalid in FDD  systems. To equip eNBs in FDD systems with some CSI, the conventional approach employs limited feedback to return quantized CSI such as precoding matrix indicator (PMI) to eNBs, which becomes ineffective for high-performance MU-MIMO and coordinated multi-point (CoMP) DL transmission. However, if more accurate CSI feedback is achieved by returning the complex channel matrix to eNBs, feedback overhead grows with the number of transmit and receive antennas and may become prohibitively excessive for the antenna configurations currently considered in LTE-A. 
In addition to CSI, information on DL interference that the UEs receive from neighboring cells is also essential for eNBs to optimize their DL transmission. In particular, interference is commonly modeled as spatially colored impairment. As a result, DL transmission designed for additive white Gaussian noise (AWGN) channels will suffer from performance degradation in the presence of colored interference. However, due to the asymmetric interference structure in UL and DL [4], such interference information has to be fed back to eNBs via UL. To avoid excessive feedback overhead, an interference-aware channel sounding scheme has been proposed in [4] for TDD systems by embedding the interference information into the channel sounding signals. 
In this contribution, an extension of [4] is proposed for FDD MIMO LTE-A systems by exploiting the two-way channel sounding concept developed in [5]. The proposed interference-aware channel sounding scheme enables eNBs in FDD MIMO systems to accurately estimate CSI with implicit interference information and yet without excessive feedback overhead. 
2 Interference-Aware Channel Sounding

For presentational simplicity, we first concentrate on a FDD MIMO system comprised of one eNB and one UE as shown in Figure 1. The eNB and UE are equipped with N and M antennas, respectively, where
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. The UE is impaired by both colored interference and additive white Gaussian noise (AWGN). We model the sum of interference and noise as 
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 and assume that the UE has access to the knowledge of 
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Fig. 1 Illustration of the system under consideration.
2.1 Uplink Channel Estimation
Denote by 
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 UL MIMO channel matrix. As shown in Appendix A, the eNB can estimate
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by employing the conventional channel sounding scheme with 
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pilots transmitted from the UE. It should be emphasized that the estimate of 
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is indispensable for uplink coherent data detection.

2.2 Downlink Channel Estimation
Next, we proceed to propose a new channel sounding scheme to derive downlink CSI at the eNB. Similar to [5], the proposed scheme consists of two steps. In the first step, unit-energy pilots 
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of length N are transmitted from the eNB to the UE, where 
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with 
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. For notational convenience, we focus on one pilot symbol and omit the temporal index in the sequel. Thus, the signal received by the UE is given by
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where 
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 is the 
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 DL MIMO channel matrix.

Upon receiving 
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, the UE whitens the received signal by pre-multiplying it with 
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.  It should be emphasized that 
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 stands for the covariance matrix of the sum of interference and noise. As a result, it is very unlikely that 
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 will be singular in the presence of non-negligible AWGN.  Thus, the resulting signal takes the following form.
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where 
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 is a real-valued scalar to regulate the total power of 
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 is the whitened interference-plus-noise term modeled as 
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In the second step, the UE echoes 
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 back to the eNB via UL. The received signal at eNB can be expressed as
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where 
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 is the complex Gaussian additive noise at the eNB. 
Finally, substitution of (2) into (3) results in
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Assuming that 
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 has been obtained at the eNB as shown in Sec. 2.1, the eNB can estimate the composite downlink channel, 
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, from (4) as shown in Appendix B.

It is noteworthing that the interference structure has been implicitly incorporated into the composite downlink channel without incurring any extra overhead. For a special case where 
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, i.e. the interference is either absent or white, the proposed channel sounding scheme degenerates to [5]. Figure 2 summarizes the procedures of the proposed two-way channel sounding.
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Fig. 2 Illustration of the proposed two-way channel sounding.
2.3 Example Application: Interference-Aware Precoding Design

In this section, we illustrate one example application to exploit the composite downlink channel, 
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. We consider single-stream DL transmission. Upon obtaining 
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, the eNB can determine the optimal precoding vector 
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of length N, i.e. the principal eigenvector of 
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. Thus, the signal received by the UE is given as
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where 
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is the data symbol before precoding.

The UE then pre-multiplies the received signal with  
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 as follows:
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where we have exploited the fact that 
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 is the principal eigenvector of 
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 follows the standard complex Gaussian distribution, i.e. 
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Finally pre-multiplying the signal above with 
[image: image47.wmf]H

w

and recalling
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, we have
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Two interesting remarks about (7) merit further discussions. First, since 
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, the pre-multiplication of  
[image: image51.wmf]H

w

does not lead to any noise amplification, i.e. 
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. Second, 
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stands for the optimal eigen-beamforming for the given composite downlink channel 
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, despite the fact that the eNB has no explicit information about the interference structure  
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. Figure 3 depicts the block diagram of the equivalent baseband signal model for the system exploiting the composite downlink channel.
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Fig. 3 Block diagram of the equivalent baseband signal model.

2.4 Generalization 
Throughout the discussions above, only single-UE systems have been taken into consideration. However, the proposed channel sounding scheme can be straightforwardly generalized to MU-MIMO. More specifically, eNBs in such systems exploit the composite downlink channel of each UE, rather than the actual physical MIMO channel 
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. Furthermore, if 
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 is ill-conditioned, the regularization techniques developed in [6] can be incorporated to invert 
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3 Conclusion
Interference-aware channel sounding is proposed for FDD MIMO LTE-A systems in this contribution. Unlike the conventional two-way channel sounding [5] that is incapable of feeding back the interference information to the eNB, the proposed channel sounding scheme incorporates the interference-plus-noise structure into the uplink pilot design without incurring extra feedback overhead. As a result, eNB can obtain full CSI with implicit interference structure. An example application has been demonstrated to perform optimal precoding design using the proposed channel sounding scheme. 

Appendix A

In this appendix, we outline the procedures to estimate
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 by exploiting UL pilots 
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as shown in [5]. The signal received by the eNB can be written as
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Let 
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Subsequently, it is straightforward to show that (8) can be rewritten as
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where 
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 denoting the vec, Kronecker product and matrix transpose operators, respectively.
Recall 
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is designed to be full row-rank. As a result, 
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can be straightforwardly estimated from (9). For instance, the least-squared (LS) estimate of 
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where  
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 is the Moore-Penrose pseudo-inverse.  
Appendix B
This appendix briefly highlights the key steps in estimating 
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 from (4). Following the same procedures discussed in Appendix A, we can obtain an estimate of 
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, we can subsequently derive, for instance, the LS estimate of 
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[image: image86.wmf]u

H

scaled by 
[image: image87.wmf]a
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[image: image88.wmf]a

is known to the eNB.
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