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1 Introduction
For efficiently supporting SU-MIMO transmission on the DL of LTE, the standard adopted the approach of Closed-Loop (CL) precoding based on predefined codebooks (CBs) of precoding matrices. Such CBs were specified for the cases of 2Tx and 4Tx antennas (cf. Section 6.3.4.2 of [1]). To enable rank adaptation (RA), which dynamically adjusts to the channel conditions not only the precoding matrix elements but also the number of spatially-multiplexed streams, the CB for a given number of Tx antennas NT is in fact split into NT Sub-CBs (SCBs), one for each rank r = 1, 2, …, NT.  (In the 2Tx case there are four 2×1 and two
 2×2 precoding matrices in the rank 1 and 2 SCBs, respectively, whereas in the 4Tx case there are sixteen 4×r matrices in each SCB for ranks r = 1 to 4.)  The (sub-)CBs and their elements – often referred to as codewords in the current context – satisfy several desirable properties:

(1) Unitarity,

(2) Nesting,

(3) Constant Modulus (CM),

(4) Constrained alphabet.

They are described in detail in Appendix A, in which we also recall some of the reasoning behind them.

In LTE-A DL, support also for 8Tx antennas is considered, which leads to the problem of specifying an appropriate precoding CB for this dimension. It is only natural to state guidelines for its design in the spirit of those adhered to already in the LTE case. This is the essence of the Way Forward proposed in [2], and below we take few more steps along this reasonable proposal.  In the sequel we describe several attempts to follow it, identifying the more fruitful ones, and point out an approach for constructing an 8Tx CB, which – in addition to satisfying the desirable properties  above – has the further advantage of reusing the 2Tx and 4Tx CBs, thus reducing UE complexity.
2 Possible generalizations of LTE codebooks to 8Tx
2.1 Householder construction for 8Tx


The LTE 4Tx full-rank SCB
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 was constructed using Householder reflections (cf. [1] and e.g. [3]):

Equation 1
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The related construction of unitary NT×NT matrices 
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 from unit vectors 
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 can be immediately generalized to NT = 8. Unfortunately, however, the CM property (3) does not hold anymore:
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In fact, analyzing the elements 
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  along and off the diagonal t = s, it can be shown that no CM matrices H can be produced for NT = 8, even if the unit vector 
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 is not CM. 
Abandoning the CM property in the full-rank SCB has the painful penalty of loosing the Constant-Power-Per-Tx property in the lower-rank SCBs once generated from the full-rank one via the nesting property. Instead, this seems to indicate that we should rather abandon the Householder construction in 8Tx. 
2.2 DFT-based CB for 8Tx

Having failed to satisfactorily generalize the Householder construction to 8Tx, we turn to a “competing” approach that was considered as a viable candidate for 
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, namely the DFT-based construction (see e.g. [4]). Within this approach, one attempts to construct the full-rank SCB 
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 from the NT×NT  DFT matrix, whose elements are 
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, and possibly its rotated versions, labelled by g = 1,2, …, G–1, with elements 
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. Unfortunately, when NT = 8 only the case G = 1 yields 8PSK-constrained matrices – in fact a matrix (D(8)), which leaves us with a full-rank SCB 
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 of size 1 if we would still like to satisfy the associated property (4) of Appendix A. Otherwise, if we stick to the DFT approach and yet would like to design a richer rank-8 SCB, we have to relax this constraint, which would result in a painful increase in the computation requirements. 
2.3 Brute-force search for the 8Tx CB

 It may seem now, that in order to construct an 8Tx CB which satisfies all the desirable properties, we are bound to take the painstaking approach of some brute-force search. In particular, for the full-rank SCB one may attempt to first search within the set of all 8PSK-constrained 8×8 matrices (whose size is 648 = 248) for unitary ones, and select a subset of those based on some principles.

In the next section we propose a somewhat simpler and more tractable approach. 
2.4 Direct-product of LTE CBs
2.4.1 Constructing the full-rank SCB 

We suggest reusing the LTE full-rank 2Tx and 4Tx SCBs 
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, respectively, to first of all generate the full-rank SCB 
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 as follows:

Equation 2 
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Explicitly, this direct-product
 construction of the codewords implies for their matrix elements that 
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It can readily be verified that with this construction 
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satisfies all the desirable properties (1,3,4), provided they are satisfied by 
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 – which is indeed the case in LTE.
However, care should be taken so that the resulting SCB does not contain codewords which are seemingly different but nevertheless effectively equivalent, in the sense that they just permute the spatial streams and possibly rotate the constellations of the modulated symbols carried by them prior to their mapping onto the physical antennas. The criterion for avoiding such a redundant duplication of codewords is to keep a single representative from each encountered equivalence class of matrices, with respect to the following equivalence relation:

Precoding equivalence relation:  Two precoding matrices 
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, if-and-only-if their columns are identical up to some permutation and overall (possibly column-dependent) multiplicative phase factors. 

[As an example in 2Tx rank-2 precoding, we note the equivalence
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which is demonstrated by (first) swapping the two columns of the matrix on the left and then multiplying its second column by –j.]

With this criterion, the “maximal” SCB 
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 of size 2·2·16 = 64 in Equation 2 shrinks to a “maximal-inequivalent” SCB 
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 of size 18. If desired, it may be enlarged, either by extending its rank-2 and rank-4 components 
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Equation 3
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to 
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, and/or adding more 4×4 8PSK-constrained Householder reflections to 
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), or by augmenting it directly with certain 8×8 matrices (e.g. the properly normalized 8-dimensional DFT matrix) that are not necessarily decomposable into a direct product of lower-dimensional matrices. Still, this can and should be done while preserving the properties (1,3,4). In the specific example of Equation 2 combined with Equation 3, we reach a maximal-inequivalent SCB 
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 containing 36 codewords; the actual SCB 
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may be selected as a subset of 
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by some pruning operation (cf. 2.4.3 below).       
2.4.2 Generating the lower-rank SCBs

Next, lower-rank SCBs 
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should be constructed so as to satisfy the nesting property (2) in its less or more restrictive forms (cf. footnote 4), which we will denote by (2a) and (2b), respectively. To implement this procedure, we define (candidate) codewords in 
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 (with r < 8) by taking either 

(2a) a codeword in 
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, deleting (8–r) of its eight columns and multiplying the resulting sub-matrix by
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(2b) a codeword in 
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, deleting one of its (r+1) columns and multiplying the resulting sub-matrix by
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Again, as in the full-rank case, one must employ the inequivalence criterion to avoid redundant inclusion of equivalent precoding options in any of the SCBs.  

2.4.3 Pruning the SCBs

A final step of pruning the maximal-inequivalent SCBs should be performed (in particular to integer-bit sizes) in order to reach an acceptable tradeoff between feedback overhead, complexity, and performance. We list below a few of the relevant considerations involved:
2.4.3.1 Number of Rx Antennas
 Ultimately, simulations should be performed in an attempt to determine the inclusion of which codewords in the SCBs contribute more or less to the performance. The conclusions may depend on the evaluation scenarios, e.g. on the number of Tx and Rx antennas, their configurations and assumed correlations, the type of channel, etc. The importance associated with the performance in different scenarios may affect the decisions on the content of the final 
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. For instance, when generating the low-rank (r < 4) SCBs, we may want to give more weight to the performance in 8x2 and 8x4 MIMO configurations relative to 8x8 (as was mentioned in [5]).
2.4.3.2 Beamforming and Cross-Polarized Pairs
(a) At rank-1, one may prefer keeping in the SCB the eight vectors suitable for LOS beamforming in the case of a linear array of 8 Tx antennas, namely proportional to the columns of the 8-dimensional DFT matrix. We note that these column vectors are present – although not together in a single full-rank matrix – in the direct-product construction Equation 2. 

(b) Still at rank-1, one may prefer keeping in the SCB vectors which are supposedly beneficial for LOS beamforming in the case of a linear array of 4 cross-polarized Tx antenna-pairs, namely proportional to the columns of 8×8 matrices which are constructed as direct products of 2×2 (real) rotation matrices and the 4-dimensional DFT matrix. Again, such column vectors can be found in the direct-product construction Equation 2 (combined with Equation 3).
2.4.3.3 Complexity

 One may prefer eliminating from the SCBs codewords that lead to more complex processing, e.g. those containing “genuine” 8-PSK elements (proportional to 
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) and leaving in more codewords built of the simpler QPSK alphabet.
3 Conclusions 
We analyzed certain options for the design of an 8Tx precoding CB for supporting SU-MIMO in the LTE-A DL. In particular, we presented a direct-product construction procedure, which is based on the LTE 2Tx and 4Tx CBs. In addition to preserving various desirable properties of the LTE CBs ([2] and Appendix A), this procedure has the advantage of adding very few new ingredients on top of those already present in 2Tx and 4Tx CBs, thus reducing the UE complexity.
Apart from its mathematical merits and simplicity, another motivation behind the direct-product construction is that it yields precoding matrices of a form that is likely to be beneficial in certain cross-polarized antenna array configurations. In the particular case of 8Tx antennas arranged in a linear array of four cross-polarized pairs, the 2×2 matrix in the direct product may be associated with “rotations” in the two-dimensional polarization space, whereas its companion 4×4 matrix is associated with the preferred precoding in any given fixed polarization.
In [6] we present some preliminary evaluation results at link-level, indicating that the performance of the direct-product 8Tx CBs discussed above competes very well with that of “reference” CBs that do not satisfy some of the constraints associated with the desirable CB properties. This leads us to conclude that the direct-product construction is a viable one and should be considered further for use in LTE-A.
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Appendix A

Below are specified in detail four desirable properties of a precoding codebook 
[image: image43.wmf])

(

T

N

CB

 for the case of NT-Tx antennas. We will henceforth denote by 
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 the rank-r SCB of the full NT-Tx CB, so that 
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(1)  Unitarity: The codewords in the full-rank SCB 
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 are unitary (NT×NT) matrices (up to some overall factor), i.e. 
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where (here and below) IN denotes the N×N identity matrix, and (·)H denotes the conjugate-transpose operation on a complex matrix. This property ensures that the precoding respects an equal power split over all spatial streams, as well as on all physical Tx antennas in this full-rank case. The overall factor enforces the constraint of fixed total Tx power for all ranks, with the following normalization:
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(2)  Nesting: The codebook has the so-called nested property, facilitating fall-back by rank adaptation to lower ranks. This means that for any r < NT, the columns of every matrix in 
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are proportional (up-to a possibly column-dependent overall factor) to r columns of a certain matrix in the full-rank SCB 
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 In particular, in addition to simplifying the search for the optimal precoding at the Rx side, it follows immediately from this property that – with the proper Tx-power normalization –
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which implies an equal power per spatial stream for any rank, not only for r = NT.
(3)  Constant Modulus: The codebook satisfies the constant modulus (CM) property, namely all the matrix elements of any codeword are of equal absolute value. In particular,
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from which  it can be deduced that
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which implies an equal power per Tx antenna for any rank, not only for r = NT. 

(4)  Constrained alphabet: Moreover, all elements of the codewords are restricted to belong to a finite simple alphabet, called the 8-PSK alphabet. This is a more stringent condition than the CM property, stating that
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As a consequence, computations of matrix products involving the codewords are significantly simplified, reducing the complexity requirements at the receiver. This complexity reduction may be enhanced if the alphabet is further restricted to the so-called QPSK alphabet 
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 (up to overall normalization), which is a subset of the 8-PSK alphabet. 

� The 3rd matrix in the rank-2 2Tx SCB, the one proportional to the identity, is not used in CL-MIMO mode.

� We henceforth use the notation introduced in Appendix A.

� a.k.a. Kronecker product

� A stronger version of the nested property requires that for any r < NT, the columns of every matrix in � EMBED Equation.3  ���are in fact proportional (up-to a possibly column-dependent overall factor) to r columns of a certain matrix in the SCB � EMBED Equation.3  ���. 
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