
TSG-RAN WG1 #54
R1-083066
Jeju, South Korea, August 18-22, 2008
Source:
Ericsson

Title:
Transmission of ACK/NAK on PUSCH for LTE TDD
Agenda Item:
6.3
Document for:
Discussion and Decision

1 Introduction

At the last RAN1 meeting, offline discussions resulted in a proposed but not agreed way forward for ACK/NAK transmission for TDD ‎[1]. According to the way forward, there would be two different ACK/NAK feedback modes for LTE TDD,
· ACK/NAK bundling, and

· ACK/NAK multiplexing.

Furthermore, according to the agreed way forward for ACK/NAK bundling in ‎[2], handling of missed assignments for the case when the bundled ACK/NAK is transmitted on PUSCH is for further studies, see also the discussion in ‎[3].
In the present contribution, a solution for ACK/NAK transmission for both bundling and multiplexing is proposed. The solution is enjoys a high degree of similarity with the current PUCCH solution for bundling and the proposed code selection solution for multiplexing on PUCCH in ‎[4].
2 Background

2.1 TDD ACK/NAK bundling

For bundling, a 2 bit DAI is present in the DL assignments to enable the UE to detect missed assignments. More specifically, the DAI can be counter of the number of previously assigned DL subframes within the bundling window. The UE will compare the number of received DL assignments with DAI in order to detect whether it has missed any previous assignments. The UE will then use the PUCCH resource associated with the last received DL assignment for transmission of the bundled ACK/NAK. This code (resource) selection conveys information back to the eNodeB on which was the last received DL subframes and this makes it possible for the eNodeB to detect missed assignments at the end of the bundling window.

· The UE selects the PUCCH resource based on the last received DL subframe within the bundling window

A problem currently is that when the ACK/NAK is transmitted on PUSCH, then the eNodeB can not determine which was the last received DL subframe and hence it does know if the UE missed DL assignments at the end of the bundling window. This means that the eNodeB does not know how many DL subframes are combined in the bundled ACK/NAK.
2.2 TDD ACK/NAK multiplexing

There are currently two candidates based on PUCCH format 2 or on PUCCH format 1b with code selection under discussion, see also ‎[1]

 REF _Ref185082584 \r \h
‎[4]. Our preference is currently to base it on format 1b ‎[5]. Such a solution will select one of the PUCCH resources associated with the received DL assignments and also the 1 or 2 bits transmitted on this resource. The combination of resource and encoded bits can then be used to convey the information to the eNodeB. With four Format 1b resources (2bits), there are 16 messages in total which can be used to convey 4 bits. With three resources, one out of 12 different messages can be transmitted. Each such message can represent a combination of ACK/NAK/DTX (no assignment received) for three different DL subframes

· The UE can convey information by selecting one of several PUCCH resources associated with the received DL subframes and by selecting the information transmitted on this resource.
2.3 ACK/NAK feedback on PUSCH

Currently one, or for the case with MIMO, two bits can be transmitted in a time multiplexed fashion on the data channel PUSCH. More specifically, if the UE has detected a DL assignment in the (set of associated) corresponding DL subframe(s) it will overwrite part of the resource elements carrying data with “coded” ACK/NAK bits. For a single ACK/NAK bit, this is simply a repetition code. For the MIMO case with two ACK/NAK bits, a (3, 2) simplex code is used to encode the ACK/NAK bits, and the three bits are then repeated. The amount of repetition or length of the sequence of encoded ACK/NAK bits is determined from a configurable offset and the modulation and coding scheme of the data channel.

For FDD, if the UE misses an assignment, or when there is no assignment, data will be transmitted in the resources elements in which the ACK/NAK could be transmitted. The eNodeB may thus expect an ACK/NAK in certain positions where data is transmitted. For this purpose, the eNodeB performs DTX detection, in order to distinguish between random data and ACK or NAK and to reach the required performance in terms of DTX to ACK error probability, the encoded ACK/NAK sequences needs to be sufficiently long.

· The eNodeB detects DTX by distinguishing between encoded ACK/NAKs and random data sequence.
3 Proposed solution

3.1 ACK/NAK bundling on PUSCH

For the case with a ACK/NAK bundling, to be able handle missed DL assignments when the DAI contains only the number of previously assigned subframe, we propose to

· Scramble the encoded ACK/NAK bits with a code that depends on which is the last received DL subframe within the bundling window.
Hence associated with each DL subframe, there is a scrambling code, and the bundled ACK/NAK bits are scrambled with this code.
To detect DTX, the eNodeB may correlate the received signal with the ACK(/NAK) code words and compares to a threshold see whether an ACK is likely. When there is DTX, random data is transmitted, and since this has low(er) correlation with an ACK sequence (with high probability), the output of the correlator falls below the threshold and DTX is estimated. As mentioned above, the encoded sequence needs to be sufficiently long.

Now, note that if the scrambling codes have low cross correlation or are even orthogonal, then the output from the correlator at the eNodeB is expected to be low whenever there is a mismatch between the scrambling codes used in the eNodeB and the UE. The eNodeB knows which the last received DL subframe is and there will hence be a mismatch in scrambling codes if the UE misses the assignment in this last subframe.

· Scrambling codes with low cross correlation are chosen, and the length of the encoded ACK/NAK sequences can be configured to be long enough.

To handle all UL:DL configurations except configuration 5, it is sufficient to define four scrambling codes.
3.2 ACK/NAK multiplexing on PUSCH

Note that in addition to the one or two ACK/NAK bits that can be transmitted, scrambling code selection can be used to encode additional information, similar to the multiple ACK/NAK feedback approach based on code selection in ‎[4]. With four scrambling codes, up to in total four bits ACK/NAK information can be transmitted, and hence the above mentioned code selection can be used to convey also multiple ACK/NAK feedback given that long enough sequences are given
· Encode up to four bits of ACK/NAK information from multiple DL subframes by using 1 or 2 bit ACK/NAK feedback together with scrambling code selection

4 Conclusion

For ACK/NAK transmission on PUSCH for LTE TDD, we propose to

· For ACK/NAK bundling

· Scramble the encoded ACK/NAK bits with a code that depends on which is the last received DL subframe within the bundling window.

· For ACK/NAK multiplexing

· Encode up to four bits of ACK/NAK information from multiple DL subframes by using 1 or 2 bit ACK/NAK feedback together with scrambling code selection.
In the Appendix, a sketch of the proposal in more detail is given, with some abuse of notation. We propose to agree on the principles such as
· The scrambling is done of the encoded ACK/NAK bits before the scrambling and modulation in 36.211
· There are at least four codes.

Appendix: Proposal in more detail
To understand the actual proposal in more detail, we sketch below how to update section 5.2.2.6 of 36.212. One way is to define additional cases with 3 bits and 4 bits of HARQ-ACK information. For the case with ACK/NAK bundling, it is assumed that the meaning of the one, two, three or four bits have been defined as in Table 1.
Table 1 Meaning of the bits for ACK/NAK bundling (sketch)
	HARQ-ACK information
	ACK/NAK bundling

	
[image: image1.wmf]ACK

o

0

	
[image: image2.wmf]ACK

o

0

1bit ACK/NAK (no bundling, one associated subframe)

	
[image: image3.wmf]ACK

ACK

o

o

1

0

	
[image: image4.wmf]ACK

ACK

o

o

1

0

2bits ACK/NAK (MIMO, no bundling, one associated subframe)

	
[image: image5.wmf]ACK

ACK

ACK

o

o

o

2

1

0

	
[image: image6.wmf]ACK

o

0

bundled 1bit ACK/NAK,

[image: image7.wmf]ACK

ACK

o

o

2

1

modulo 4 of last received DL subframe number

	
[image: image8.wmf]ACK

ACK

ACK

ACK

o

o

o

o

3

2

1

0

	
[image: image9.wmf]ACK

ACK

o

o

1

0

bundled 2bits ACK/NAK for MIMO

[image: image10.wmf]ACK

ACK

o

o

3

2

modulo 4 of last received DL subframe number

For the case with ACK/NAK multiplexing, a not necessarily trivial mapping from the ACK/NAKs of the one, two, three or four DL subframes to the one to four bits may be defined. The mapping is harmonized with the mapping for multiple ACK/NAK on PUCCH.
With these definitions, the following modifications could be used to capture the proposal. Note the definitions of the ACK/NAK bits need to be defined as well and some abuse of notation has been used in the appendix.
From 36.212 v8.3.0, 5.2.2.6

For HARQ-ACK information

· If HARQ-ACK consists of 1-bit of information, i.e.,
[image: image11.wmf]]

[

0

ACK

o

, it is first encoded according to Table 5.2.2-1.

· If HARQ-ACK consists of 2-bits of information, i.e.,
[image: image12.wmf]]

[

1

0

ACK

ACK

o

o

, it is first encoded according to Table 5.2.2-2 where
[image: image13.wmf])

(

1

0

2

ACK

ACK

ACK

o

o

o

Å

=

 and where ‘
[image: image14.wmf]Å

’ represents XOR operation.

· If HARQ-ACK consists of 3-bits of information, i.e. .,
[image: image15.wmf][

]

ACK

ACK

ACK

o

o

o

2

1

0

,
[image: image16.wmf]]

[

0

ACK

o

, is first encoded according to Table 5.2.2-1. A sequence
[image: image17.wmf][

]

ACK

ACK

ACK

ACK

w

w

w

w

3

2

1

0

 is selected according to Table 5.2.2-3.
· If HARQ-ACK consists of 4-bits of information, i.e.,
[image: image18.wmf][

]

ACK

ACK

ACK

ACK

o

o

o

o

3

2

1

0

,
[image: image19.wmf]]

[

1

0

ACK

ACK

o

o

, it is first encoded according to Table 5.2.2-2 where
[image: image20.wmf])

(

1

0

2

ACK

ACK

ACK

o

o

o

Å

=

 and where ‘
[image: image21.wmf]Å

’ represents XOR operation. A sequence
[image: image22.wmf][

]

ACK

ACK

ACK

ACK

w

w

w

w

3

2

1

0

 is selected according to Table 5.2.2-4.

Table 5.2.2-1: Encoding of 1-bit HARQ-ACK

	Qm
	Encoded HARQ-ACK

	2
	
[image: image23.wmf] x]

[

0

ACK

o

	4
	
[image: image24.wmf] x x x]

[

0

ACK

o

	6
	
[image: image25.wmf]]

 x x x x x

[

0

ACK

o

Table 5.2.2-2: Encoding of 2-bit HARQ-ACK

	Qm
	Encoded HARQ-ACK

	2
	
[image: image26.wmf]]

[

2

1

0

2

1

0

ACK

ACK

ACK

ACK

ACK

ACK

o

o

o

o

o

o

	4
	
[image: image27.wmf] x x]

 x x

 x x

[

2

1

0

2

1

0

ACK

ACK

ACK

ACK

ACK

ACK

o

o

o

o

o

o

	6
	
[image: image28.wmf] x x x x]

 x x x x

 x x x x

[

2

1

0

2

1

0

ACK

ACK

ACK

ACK

ACK

ACK

o

o

o

o

o

o

Table 5.2.2-3: Sequence selection for 3-bit HARQ-ACK
	
[image: image29.wmf][

]

ACK

ACK

o

o

2

1

	
[image: image30.wmf][

]

ACK

ACK

ACK

ACK

w

w

w

w

3

2

1

0

	[0 0]
	[1 1 1 1]

	[0 1]
	[1 0 1 0]

	[1 0]
	[1 1 0 0]

	[1 1]
	[1 0 0 1]

Table 5.2.2-4: Sequence selection for 4-bit HARQ-ACK

	
[image: image31.wmf][

]

ACK

ACK

o

o

3

2

	
[image: image32.wmf][

]

ACK

ACK

ACK

ACK

w

w

w

w

3

2

1

0

	[0 0]
	[1 1 1 1]

	[0 1]
	[1 0 1 0]

	[1 0]
	[1 1 0 0]

	[1 1]
	[1 0 0 1]

The “x” in Table 5.2.2-1 and 5.2.2-2 are placeholders for [2] to scramble the HARQ-ACK bits in a way that maximizes the Euclidean distance of the modulation symbols carrying HARQ-ACK information.

The bit sequence
[image: image33.wmf]ACK

Q

ACK

ACK

ACK

ACK

q

q

q

q

1

2

1

0

,...,

,

,

-

 is obtained by concatenation of multiple encoded HARQ-ACK blocks where
[image: image34.wmf]ACK

Q

 is the total number of coded bit for all the encoded HARQ-ACK blocks. The last concatenation of the encoded HARQ-ACK block may be partial so that the total bit sequence length is equal to
[image: image35.wmf]ACK

Q

. The vector sequence output of the channel coding for HARQ-ACK information is denoted by
[image: image36.wmf]ACK

Q

ACK

ACK

ACK

q

q

q

1

1

0

,...,

,

-

¢

, where
[image: image37.wmf]m

ACK

ACK

Q

Q

Q

/

=

¢

, and is obtained as follows:

Set i ,k to 0

while
[image: image38.wmf]ACK

Q

i

<

[image: image39.wmf]T

ACK

Q

i

ACK

i

ACK

k

m

q

q

q

]

...

[

1

-

+

=

[image: image40.wmf]m

Q

i

i

+

=

[image: image41.wmf]1

+

=

k

k

end while

For the case with 3-bit HARQ-ACK information, the bit sequence is then scrambled as follows
Set i ,k to 0

while
[image: image42.wmf]ACK

Q

i

<

if
[image: image43.wmf]x

q

ACK

i

=

!

// not a place-holder bit

[image: image44.wmf]ACK

k

ACK

i

ACK

i

w

q

q

+

=

[image: image45.wmf]4

mod

)

1

(

+

=

k

k

end

[image: image46.wmf]1

+

=

i

i

end
For the case with 4-bit HARQ-ACK information the bit sequence is then scrambled as follows

Set i ,k to 0

while
[image: image47.wmf]ACK

Q

i

<

if
[image: image48.wmf]x

q

ACK

i

=

!

// not a place-holder bit

[image: image49.wmf]ë

û

ACK

k

ACK

i

ACK

i

w

q

q

3

/

+

=

[image: image50.wmf]12

mod

)

1

(

+

=

k

k

end

[image: image51.wmf]1

+

=

i

i

end

References

[1] R1-082752 “Way forward on multiple ACK/NAKs for LTE TDD,” CATT, CMCC, Ericsson, Huawei, LGE, Motorola, Nokia, Nokia Siemens Networks, Qualcomm, Samsung, Texas Instruments, ZTE

[2] R1-082168 “ACK/NACK bundling for TDD: way forward,” Motorola, CATT, CMCC, Ericsson, Huawei, LGE, Qualcomm, Samsung, Texas Instruments

[3] R1-082462, “Remaining issues for TDD ACK/NAK bundling and PUSCH,” Ericsson

[4] R1-082067, “Aspects of multiple ACK/NAK transmission in TDD,” Texas Instruments
[5] R1-083065, “On multiple ACK/NAK multiplexing on PUCCH for TDD,” Ericsson

_1271798157.unknown

_1280073684.unknown

_1280073900.unknown

_1280075810.unknown

_1280076057.unknown

_1280076338.unknown

_1280076346.unknown

_1280076093.unknown

_1280076018.unknown

_1280075168.unknown

_1280075592.unknown

_1280075177.unknown

_1280075510.unknown

_1280074144.unknown

_1280073829.unknown

_1280073887.unknown

_1280073757.unknown

_1271841133.unknown

_1274619785.unknown

_1279925118.unknown

_1271841143.unknown

_1271832958.unknown

_1271833090.unknown

_1265528472.unknown

_1265653663.unknown

_1271797988.unknown

_1265528972.unknown

_1265528990.unknown

_1265649857.unknown

_1265528959.unknown

_1265528298.unknown

_1265528351.unknown

_1265527445.unknown

_1265528297.unknown

_1256502046.unknown

_1265527371.unknown

