3GPP TSG RAN WG1 #52bis
 R1-081271
Shenzhen, March 31 – April 4, 2008

Source:
 Marvell
Title:
 Variable-length Block Code for CQI Report on PUSCH
Agenda Item:

6.2
Document for:
Decision
1. Background
The agreed [1] CQI error protection scheme on the PUSCH is as follows:
· Convolutional coding + rate matching as specified for other downlink LTE control channels for “large” CQI reports (above 11 bits)

· The control-channel (PUCCH) block code for small CQI reports (less than or equal to 11 bits)
It was also agreed [2] that the code rate for the CQI error protection will be linked to the modulation and coding scheme of the data:

· The coding rate to use for the control signalling is given by the PUSCH MCS. The relation is expressed in a table.
We note that PUCCH link simulations (e.g., [3]) show that the agreed PUCCH code block is borderline in supporting 1% BLER for 5-10 bits CQI, and we further note that because of the Zadoff-Chu sequence despreading there an additional repetition gain of 12 on the PUCCH compared to the PUSCH. Therefore, to support the same CQI payload on the PUSCH at similar link conditions as on the PUCCH, a further code-rate reduction is necessary.

Additionally, it may be generally concluded from the above 3rd RAN1 decision that a variable coding-rate is required not only for the convolutional code of the large CQI report but also for the block code of the small CQI report. However, so far only a single block-code has been discussed for the small CQI report.
We also note that the recently agreed CQI formats on PUSCH clearly include cases where the CQI reports carry payloads of 4 to 11 bits at system bandwidths from 10 to 6 RB’s, and that indeed the convolutional code is inefficient for these small payloads. Therefore there is a definite need for the block code on PUSCH.
In this contribution we propose a multi-length block code design, out of which any desired coding-rate can be obtained.
2. Multiple-length Block Code
2.1. Design based on PUCCH block code

Multiple codes were generated from the PUCCH block code of length 20, retaining the first 11 columns of the generation matrix, corresponding to 11 information bits. Better codes were selected out of a variety of possibilities by minimizing the Union Bound of the error probability. This bound has been verified to accurately represent the actual performance in AWGN channel at the relevant BLER’s of less than 1%.
Codes of lengths 40 and 60 are generated by cyclically-shifting rows, and concatenation. I.e., denoting the PUCCH code generation matrix by G20(11,20), then, G40(11,40) and G60(11,60) are obtained by the following transformation (in Matlab syntax):

G40 = [G20 G20([3:end 1:2],:)]

G60 = [G40 G20([8:end 1:7],:)]
The cyclic shifts of 3 and 8 were chosen by exhaustive search over all possible cyclic shifts.
A code of intermediate length between 20 and 40 is selected by exhaustive search on all puncturing patterns of the last 20 columns of G40.
A code of length shorter than 20 is selected by exhaustive search on all puncturing patterns of G20.

Both puncturing patterns are given in the appendix.

2.2. Design based on PUCCH block code and TFCI code of length 32
Another option is to use also the block code of length 32 proposed in [4], retaining the first 11 columns. This (11,32) code is an extension by one column of the TFCI (10,32) code, and where the rows of the TFCI code are permuted so that the first 20 rows are identical to the (11,20) PUCCH code.

With this design #2, codes of length less than 20 are similar to design #1.

For codes longer than 32, we note that for the largest payload the (11,32) code is of roughly rate 1/3. It is well known that the extra capacity that could be obtained from the design of a more optimal code over a simple repetition code is small at coding rates below 1/3. Therefore, for longer codes we use cyclic repetition of the M(11,32) code.

For codes of intermediate lengths between 20 and 32 we use the same procedure as for codes between 40 and 20 in design #1.

3. Performance
We choose a set of 5 code-lengths which yield variable performace in approximately 2 dB steps. Performance with design #1 and design #2 gave very similar results at similar code-lengths, so we prefer design #1 which is simpler because it is based on the PUCCH code only. The performance with payloads of 4 and 11 bits is shown in figure 1. We note that the Union Bound performance, which was used as the selection criterion, is very faithful to the simulated performance.
[image: image1.emf]-6 -5 -4 -3 -2 -1 0 1 2 3

10

-3

10

-2

10

-1

SNR

BLER

payload=4 Simulation (thick) and Union-Bound (thin)

G16

G20

G28

G40

G60

[image: image2.emf]-2 -1 0 1 2 3 4 5 6 7

10

-3

10

-2

10

-1

SNR

BLER

payload=11 Simulation (thick) and Union-Bound (thin)

G16

G20

G28

G40

G60

Figure 3: BLER for the 5 codes, with payloads of 4 and 11 bits. Thin: Union Bound. Thick: Simulation.
References
[1] R1-081158, 36.213, CR0002 ver 8.1.0, Sorrento, Feb 2008.

[2] 3GPP Draft report RAN1 #50, Shanghai, oct 2007.

[3] R1-074333, Shanghai, oct 2007.
[5] R1-081098, Coding for CQI moved from PUCCH to PUSCH, Sorrento, Feb 2008.

4. Appendix
A “dePuncturing” pattern for obtaining any code-length between G20 and G40:

K20_40 = {33 20 29 28 25 27 38 21 30 32 24 22 26 23 31 36 35 37 34 39}
(A1)

I.e., a code of length L = 20+M is obtained by padding M columns of G40 to G20, where the columns to be padded are ordered according to K20_40. E.g., to obtain a code of length L=28, the columns

K20_28 = {33 20 29 28 25 27 38 21}

(A2)

of G40 are padded to G20. Row indexes are defined to start from 0.
Clearly, one way to implement this dePuncturing is to redefine the code G40 by a column-permuted version, G40P, where the last 20 columns are permuted according to K20_40. Then G28 is obtained by the top 28 columns of G40P. G40P is given in table A1 for convenience.
	i
	Mi,0
	Mi,1
	Mi,2
	Mi,3
	Mi,4
	Mi,5
	Mi,6
	Mi,7
	Mi,8
	Mi,9
	Mi,10

	0
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	1

	1
	1
	1
	1
	0
	0
	0
	0
	0
	0
	1
	1

	2
	1
	0
	0
	1
	0
	0
	1
	0
	1
	1
	1

	3
	1
	0
	1
	1
	0
	0
	0
	0
	1
	0
	1

	4
	1
	1
	1
	1
	0
	0
	0
	1
	0
	0
	1

	5
	1
	1
	0
	0
	1
	0
	1
	1
	1
	0
	1

	6
	1
	0
	1
	0
	1
	0
	1
	0
	1
	1
	1

	7
	1
	0
	0
	1
	1
	0
	0
	1
	1
	0
	1

	8
	1
	1
	0
	1
	1
	0
	0
	1
	0
	1
	1

	9
	1
	0
	1
	1
	1
	0
	1
	0
	0
	1
	1

	10
	1
	0
	1
	0
	0
	1
	1
	1
	0
	1
	1

	11
	1
	1
	1
	0
	0
	1
	1
	0
	1
	0
	1

	12
	1
	0
	0
	1
	0
	1
	0
	1
	1
	1
	1

	13
	1
	1
	0
	1
	0
	1
	0
	1
	0
	1
	1

	14
	1
	0
	0
	0
	1
	1
	0
	1
	0
	0
	1

	15
	1
	1
	0
	0
	1
	1
	1
	1
	0
	1
	1

	16
	1
	1
	1
	0
	1
	1
	1
	0
	0
	1
	0

	17
	1
	0
	0
	1
	1
	1
	0
	0
	1
	0
	0

	18
	1
	1
	0
	1
	1
	1
	1
	1
	0
	0
	0

	19
	1
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0

	20
	0
	1
	0
	1
	0
	1
	0
	1
	1
	1
	1

	21
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1

	22
	1
	1
	1
	0
	1
	0
	0
	1
	1
	1
	0

	23
	0
	1
	1
	0
	0
	1
	0
	1
	1
	1
	1

	24
	0
	0
	1
	0
	1
	1
	1
	0
	1
	1
	1

	25
	0
	1
	1
	0
	0
	1
	1
	0
	1
	1
	0

	26
	0
	1
	1
	1
	1
	1
	0
	0
	0
	1
	1

	27
	1
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1

	28
	1
	0
	0
	1
	1
	1
	0
	1
	1
	1
	0

	29
	0
	1
	0
	1
	0
	1
	1
	1
	1
	1
	0

	30
	1
	1
	0
	0
	0
	1
	0
	0
	1
	1
	1

	31
	0
	1
	0
	0
	1
	0
	1
	1
	1
	1
	0

	32
	1
	0
	1
	0
	1
	0
	1
	1
	1
	1
	0

	33
	1
	1
	0
	0
	0
	0
	1
	0
	1
	1
	0

	34
	1
	0
	0
	1
	1
	0
	1
	0
	1
	1
	1

	35
	1
	0
	1
	1
	1
	0
	0
	1
	0
	1
	1

	36
	0
	0
	1
	1
	1
	1
	0
	1
	1
	1
	1

	37
	0
	1
	1
	1
	0
	0
	1
	0
	0
	1
	0

	38
	0
	0
	1
	1
	0
	1
	0
	0
	1
	1
	0

	39
	0
	0
	0
	1
	1
	0
	0
	0
	0
	1
	0

Table A1: G40P: Generating matrix for codelength 40
Given G40P, G60 is similary redefined as follows:

G60P = [G40P G20([8:end 1:7],:)]

(A3)
To obtain the generation matrix of the 16-long code, G16, from G20, puncture the following 4 columns:

K20_16 = { 0 10 12 3 }

(A4)

If desired here too the first 20 columns of G60P (or G40P) can be repermuted so that G16 can be easily derived from G60P by retaining the first 16 columns.
- 6/6 -

