

3GPP TSG RAN1 #52bis
R1-081492
March 31st-April 4th, 2008
Shenzhen, China
Agenda item:
6.1.7
Source:
Qualcomm Europe
Title:
Issues with current scrambling sequence generation
Document for:

Discussion and Decision
1
Introduction
At the past RAN1 meetings, a number of randomization formulas were defined for various hopping and scrambling applications [1]. These were based on a Gold sequence based scrambling generator, and included, for example, the following:

· PDSCH scrambling

· PDCCH scrambling

· PCFICH scrambling

· PHICH scrambling

· PUSCH scrambling

· DL RS randomization

· UL DM RS sequence group hopping

· UL DM RS sequence index shift hopping

· UL DM RS cyclic shift hopping

In many of these cases, the produced Gold sequence is actually very short and we rely on different initialization parameters for sufficient parameter decorrelation. The randomization formula currently defined; however, doesn’t achieve this goal.

In this contribution, we describe the observable problem and make simple proposals to eliminate its impact. We don’t give full text proposals for all cases. If any of the proposed solutions is accepted in principle, the adoption of them in the Standards text would be straightforward.
2 Discussion
2.1 Insufficient decorrelation
We can highlight the observable problem with a sample case. Let’s take a look at the PCFICH scrambling, which is defined as follows [1]:

6.7
Physical control format indicator channel

[…]
6.7.1
Scrambling

The block of bits
[image: image1.wmf])

31

(

),...,

0

(

b

b

 transmitted in one subframe shall be scrambled with a cell-specific sequence prior to modulation, resulting in a block of scrambled bits
[image: image2.wmf])

31

(

~

),...,

0

(

~

b

b

according to

[image: image3.wmf](

)

2

mod

)

(

)

(

)

(

~

i

c

i

b

i

b

+

=

where the scrambling sequence
[image: image4.wmf])

(

i

c

 is given by Section 7.2. The scrambling sequence generator shall be initialised with
[image: image5.wmf]ë

û

cell

ID

9

s

init

2

2

N

n

c

+

×

=

 at the start of each subframe.

[…]
7.2
Pseudo-random sequence generation

Pseudo-random sequences are defined by a length-31 Gold sequence. The output sequence
[image: image6.wmf])

(

n

c

 of length
[image: image7.wmf]PN

M

, where
[image: image8.wmf]1

,...,

1

,

0

PN

-

=

M

n

, is defined by

[image: image9.wmf](

)

(

)

(

)

2

mod

)

(

)

1

(

)

2

(

)

3

(

)

31

(

2

mod

)

(

)

3

(

)

31

(

2

mod

)

(

)

(

)

(

2

2

2

2

2

1

1

1

2

1

n

x

n

x

n

x

n

x

n

x

n

x

n

x

n

x

n

x

n

x

n

c

+

+

+

+

+

+

=

+

+

+

=

+

+

=

where the first m-sequence shall be initialised with
[image: image10.wmf]30

,...,

2

,

1

,

0

)

(

,

1

)

0

(

1

1

=

=

=

n

n

x

x

. The initialisation of the second m-sequence is denoted by
[image: image11.wmf]å

=

×

=

30

0

2

init

2

)

(

i

i

i

x

c

 with the value depending on the application of the sequence.

As we can see from 6.7.1 [1] above, in the case of the PCFICH scrambling, the sequence generator is re-intialized in every subframe, and after the re-intialization, only 32 sequence elements are extracted from the shift registers. By looking at 7.2 [1] above, we can see that the first 31 out of the 32 sequence elements obtained such a way are basically just the initialization sequence elements. We can simply observe the following:

[image: image12.wmf]î

í

ì

=

=

=

30

...

1

)

(

0

)

(

)

(

2

2

i

i

x

i

i

x

i

c

where
[image: image13.wmf])

(

2

i

x

 is obtained as the bits in the binary representation of
[image: image14.wmf]ë

û

cell

ID

9

s

init

2

2

N

n

c

+

×

=

.
Therefore, we can state the following:

· The 32-bit PCFICH scrambling sequence between an even numbered subframe and the following odd numbered subframe will differ in at most 2 bits out of the 32 total bits.
· The 32-bit PCFICH scrambling sequence between two cells will differ in at most
[image: image15.wmf]1

+

m

 bits if their identifier
[image: image16.wmf]cell

ID

N

 differs in
[image: image17.wmf]m

 bits. Furthermore, if two cells have similar
[image: image18.wmf]cell

ID

N

 then their scrambling sequence will be close to identical in every subframe.

Clearly, the above points to a certain deficiency in the current scrambling definition. In the following, we propose solutions to this problem.
2.2 Solutions for insufficient decorrelation

2.2.1 Sequence time shift
In this case, we simply fast forward the Gold sequence generator to a future state where the output bits are more sufficiently decorrelated from the initialization sequence. In the case of the PCFICH, this can be implemented as follows:

[…]
6.7.1
Scrambling

The block of bits
[image: image19.wmf])

31

(

),...,

0

(

b

b

 transmitted in one subframe shall be scrambled with a cell-specific sequence prior to modulation, resulting in a block of scrambled bits
[image: image20.wmf])

31

(

~

),...,

0

(

~

b

b

according to

[image: image22.wmf](

)

2

mod

)

(

)

(

)

(

~

L

i

c

i

b

i

b

+

+

=

where L=[64] the scrambling sequence
[image: image23.wmf])

(

i

c

 is given by Section 7.2. The scrambling sequence generator shall be initialised with
[image: image24.wmf]ë

û

cell

ID

9

s

init

2

2

N

n

c

+

×

=

 at the start of each subframe.

[…]

Note that a common L can be specified for all Gold sequence generation cases.
2.2.2 Shift register masking

In this case, we add (mod 2) certain shift register cell outputs to obtain the scrambling sequence output. This is very similar to the initial sequence generator proposal made in [2]. For best decorrelation results, about 16 shift register cell outputs of the second m-sequence
[image: image25.wmf])

(

2

i

x

 should be added (mod 2). The advantage of this method is that fewer clock cycles are required for generating the scrambling sequence when compared to the time advance method in 2.2.1. The disadvantage of this method is that the already accepted scrambling generator structure would have to be modified.
2.3 Unequal hashing probabilities

We can describe this problem by way of an example. We will look at the cell specific cyclic shift hopping pattern
[image: image26.wmf])

,

(

cell

cs

l

n

n

s

defined as follows:

[image: image27.wmf]å

=

×

+

+

×

=

3

0

s

UL

symb

s

cell

cs

2

)

4

4

(

)

,

(

i

i

i

l

n

N

c

l

n

n

where
[image: image28.wmf]l

 is the symbol number and
[image: image29.wmf]s

n

 is the slot number and
[image: image30.wmf])

(

i

c

 is the pseudo-random sequence generator. The pseudo-random sequence generator is initialized with
[image: image31.wmf](

)

cell

ID

init

N

f

c

=

 at the beginning of each radio frame.

We can see that
[image: image32.wmf])

,

(

cell

cs

l

n

n

s

 will be uniformly distributed in the range 0,1,…,15. When the cell-specific cyclic shift is applied; however, then the effective shift will be
[image: image33.wmf]RB

sc

s

shift

N

l

n

n

n

mod

)

,

(

cell

cs

=

, which we would like to be uniformly distributed in the range 0,1,…,12, i.e. the desired distribution is

[image: image34.wmf]î

í

ì

<

£

=

=

otherwise

0

12

0

12

/

1

)

(

i

i

n

p

shift

But instead of the above, with the current randomization, we have

[image: image35.wmf]ï

î

ï

í

ì

<

£

<

£

=

=

otherwise

0

12

i

4

16

/

1

4

0

8

/

1

)

(

i

i

n

p

shift

As we can see, some cyclic shift values are twice more likely than others. This is clearly an undesirable property.
2.4 Solution for unequal hashing probabilities

The simplest solution is to increase the number random bits included in the hash. For example, we could change the cell-specific cyclic shift formula as:
The cell specific cyclic shift hopping pattern is defined as follows:

[image: image37.wmf]å

=

×

+

+

×

=

7

0

s

UL

symb

s

cell

cs

2

)

8

8

(

)

,

(

i

i

i

l

n

N

c

l

n

n

where
[image: image38.wmf]l

 is the symbol number and
[image: image39.wmf]s

n

 is the slot number and
[image: image40.wmf])

(

i

c

 is the pseudo-random sequence generator. The pseudo-random sequence generator is initialized with
[image: image41.wmf](

)

cell

ID

init

N

f

c

=

 at the beginning of each radio frame.

In this case, the probabilities for
[image: image42.wmf]RB

sc

s

shift

N

l

n

n

n

mod

)

,

(

cell

cs

=

 will be

[image: image43.wmf]ï

î

ï

í

ì

<

£

<

£

=

=

otherwise

0

12

i

4

256

/

21

4

0

256

/

22

)

(

i

i

n

p

shift

which is a lot more evenly distributed probability than that with the current scheme given in 2.3.
3
Conclusions

Few problems were observed related to the currently assumed LTE randomization schemes. The problems can be categorized as:

· Insufficient decorrelation of randomization sequences

· Unequal probability distribution for hashing functions

We proposed solutions for both of the above problems.
References
[1]

TS36.211
[2]

R1-080487, “Completing the scrambling details in the specifications”, Qualcomm Europe
1/5

_1264769288.unknown

_1267998709.unknown

_1268000231.unknown

_1268007544.unknown

_1268008032.unknown

_1268008077.unknown

_1268008251.unknown

_1268007553.unknown

_1268007067.unknown

_1267999135.unknown

_1267999671.unknown

_1267999093.unknown

_1267999021.unknown

_1267998931.unknown

_1264769908.unknown

_1265537215.unknown

_1267998616.unknown

_1264945001.unknown

_1265023199.unknown

_1265023037.unknown

_1265023087.unknown

_1264933477.unknown

_1264935191.unknown

_1264769437.unknown

_1264769447.unknown

_1264769411.unknown

_1256555709.unknown

_1256559750.unknown

_1256559768.unknown

_1256559692.unknown

_1240752192.unknown

