
3GPP TSG RAN WG1 Meeting #52bis
R1-081212
Shenzhen, China, March 31- April 4, 2008

Agenda Item:
6.1.3
Source: 
Samsung

Title: 
UE-specific search space
Document for:
Discussion and Decision
1. Introduction
In LTE systems, various DCI formats and CCE aggregation levels are defined for PDCCH channelization. A UE can recognize whether a particular PDCCH is sent to the UE and which DCI format and CCE aggregation level are used just after successful decoding of the PDCCH. Without a certain level of restriction on UE’s monitoring PDCCH candidates, therefore, a UE should be capable of carrying out such a lot of blind decoding attempts of PDCCH. Considering the complexity due to the blind decodes of PDCCH, RAN1 has agreed that the maximum number of blind decodes for LTE_ACTIVE users should be around 40 in total during RAN1 #51bis meeting. Furthermore, more details on the PDCCH search spaces have been discussed and followings have been agreed during RAN1 #52 meeting [1]:
· Search space
· Set of aggregated CCEs [with a certain aggregation level]
· UE performs blind decoding of all PDCCH payloads possible for the given aggregation level and search space
· Common and UE-specific search spaces defined.
· Common search space monitored by all UEs in the cell is static between subframes and given by the specification.
· Starting point of UE-specific search space to monitor is given by hashing function.

· For small number of CCEs, the UE may be able to blindly decode everything.
In this document, we will first discuss the requirements of the hash function and then slightly modify the function to fulfill the requirements.
Another remaining issue is how to define the multiple PDCCH candidates of a search space with the outcome of the hash function. The hash function is to indicate the CCE of the first PDCCH candidate. A certain rule should be defined to get the other PDCCH candidates from the outcome of the hash function. Two alternatives were discussed: One is to select contiguous PDCCH candidates and the other is to select PDCCH candidates spaced with a fixed gap. These two alternatives are compared in this document.

2. Review of current agreements on PDCCH search spaces
In order to reduce the number of blind decoding attempts, a certain level of restriction on PDCCH search spaces needs to be imposed. Following are the summary of PDCCH search spaces:

· A search space is the set of aggregated CCEs each of which corresponds to a PDCCH candidate. Search spaces are defined per aggregation level.

· Search spaces are classified into common ones and UE-specific ones. Common search spaces may overlap with UE-specific search space to avoid undesired CCE holes.

· All the UEs in the cell will monitor the PDCCH candidates belonging to common search spaces to receive DCI transmitted to multiple UEs.

· Common search spaces are defined for 4-CCE and 8-CCE aggregation.
· 2 candidates in the common search space for 8-CCE aggregation.

· 4 candidates in the common search space for 4-CCE aggregation.

· Common search spaces are limited to DCI formats 0, 1A, 3, and 3A.

· The number of blind decodes spent on common search spaces is about 10.

· Common search spaces are given by specification and not configurable.

· A UE will monitor the PDCCH candidates belonging to its own UE-specific search spaces to receive dedicated DCI.

· UE-specific search spaces are defined for all the aggregation levels.

· 6 candidates in UE-specific search space for 1-CCE aggregation.
· 6 candidates in UE-specific search space for 2-CCE aggregation.

· 2 candidates in UE-specific search space for 4-CCE aggregation.
· 2 candidates in UE-specific search space for 4-CCE aggregation.
· The DCI formats for dedicated control signaling are used for the PDCCH on UE-specific search spaces. In order not to increase the number of blind decoding attempts, semi-static configuration is introduced between following two modes.
· Blind decoding between DCI formats 0/1A and 1 for non-SM(spatial multiplexing) mode

· Blind decoding between DCI formats 0/1A and 2 for SM mode

· The number of blind decodes spent on UE-specific search space is about 30.

· UE-specific search spaces are defined by the following hash function.



[image: image1.wmf]()mod

YkXlm

=+


(1)

· Y indicates the starting point of a UE-specific search space.

· The parameter m denotes the number of PDCCH candidates on the search space and is given by 
[image: image2.wmf]/

CCECCE

mNL

=

êú

ëû

 where 
[image: image3.wmf]CCE

N

 and 
[image: image4.wmf]CCE

L

 are the number of CCEs in the subframe and the aggregation level of the search space.
· The input, X, is given by UEID, 
[image: image5.wmf]UE

i

, and the subframe index, 
[image: image6.wmf]SUBFRAME

i

, as



[image: image7.wmf]4

2

UESUBFRAME

Xii

=´+


(2)
3. Discussion on hash function
3.1 Requirements of hash function

Once a UE occupies a PDCCH on the search space, the other UEs sharing the same search space cannot utilize the PDCCH. Since all the PDCCH candidates on the search space are occupied, a UE to use the same search space may not be scheduled due to lack of PDCCH candidates available. The probability of this blocking event should be minimized. A hash function is to evenly distribute search spaces over CCEs between different UEs.
Even though a hash function successfully achieves even distribution of UEs’ search spaces, blocking itself cannot be avoided. A UE may not be scheduled for several consecutive subframes in case where all the PDCCH candidates given in the UE’s search space are occupied by other users. In order to avoid this consecutive blocking event, UE-specific search spaces should be reconfigured subframe by subframe. This is why the subframe number is used as the input value of hash function.
Here, we captured the following requirements of hash function: 
· Hash function should evenly distribute UE-specific search spaces determined by UEID, 
[image: image8.wmf]UE

i

.

· Hash function should reconfigure UE-specific search spaces depending on the subframe number, 
[image: image9.wmf]SUBFRAME

i

.

In sum, Y in (1) should be determined by both 
[image: image10.wmf]UE

i

 and 
[image: image11.wmf]SUBFRAME

i

 for any m, i.e. Y should not be dominated by either 
[image: image12.wmf]UE

i

 or 
[image: image13.wmf]SUBFRAME

i

.
3.2 Analysis of the currently agreed hash function

Let’s investigate the behavior of the currently agreed hash function given in (1). By applying modulo-m to k, l, and X, we get


[image: image14.wmf]0

0

0

mod

mod

mod

kkm

llm

XXm

=

=

=


(3)

Then (1) can lead to


[image: image15.wmf]000

()mod

YkXlm

=+

.
(4)
Note that 
[image: image16.wmf]0

k

 and 
[image: image17.wmf]0

l

 are independent of 
[image: image18.wmf]UE

i

 and 
[image: image19.wmf]SUBFRAME

i

. This means the UEs who share the same 
[image: image20.wmf]0

X

 for a given 
[image: image21.wmf]SUBFRAME

i

 will be assigned the same UE-specific search space.
Let’s consider the case of 
[image: image22.wmf]16

m

=

. Y is determined by not 
[image: image23.wmf]UE

i

 but 
[image: image24.wmf]SUBFRAME

i

 because of 
[image: image25.wmf]0

SUBFRAME

Xi

=

. Since the search space is defined regardless of UEID, all the UEs will share the same UE-specific search space. This definitely violates the first requirement discussed in the previous subsection. The problem comes from the definition of X in (2). Even though X is defined to reflect both UEID and the subframe index, partial information of X contributes to the hash function due to the property of modular arithmetic.
If we modify the definition of X to 
[image: image26.wmf]16

2

SUBFRAMEUE

Xii

=´+

, this does not solve the problem yet. With this definition, the search space will be determined only by partial bits of UEID. The second requirement of hash function is not fulfilled by this modification.
3.3 New definition of X
In this subsection, we suggest new definition of X to solve the problem identified in the previous subsection. This modification is a minor change from the current agreement in the sense that it won’t change the formula of the hash function in (1). Suggestion is to define X as a cyclic shifted version of 
[image: image27.wmf]UE

i

:


[image: image28.wmf]circshift(,)

UESUBFRAME

Xiqi

=´


(5)
where q denotes a constant and 
[image: image29.wmf]circshift(,)

ab

 circularly shifts the bits of  by the shift value .
UEID, 
[image: image30.wmf]UE

i

, is represented by a 16-bit sequence 
[image: image31.wmf]1510

{,,,}

aaa

L

 and randomly chosen for a user. Since the UEID bit sequence itself is a uniformly distributed random variable, defining 
[image: image32.wmf]UE

Xi

=

 guarantees the first requirement that UE-specific search spaces determined by UEID are evenly distributed. Note that (5) defines 
[image: image33.wmf]UE

Xi

=

 for the first subframe (
[image: image34.wmf]0

SUBFRAME

i

=

).

The cyclic shift operation in (5) generates a permutated bit-sequence of 
[image: image35.wmf]UE

i

 depending on 
[image: image36.wmf]SUBFRAME

i

. It is guaranteed that 
[image: image37.wmf]0

mod

XXm

=

 is dependent on not only 
[image: image38.wmf]UE

i

 but also 
[image: image39.wmf]SUBFRAME

i

. Hence, the new definition of X in (5) fulfills the second requirement that UE-specific search spaces are reconfigured subframe by subframe.
Probability of consecutive search space collision between UEs relies on the parameter of q in (5). For example, let’s assume 
[image: image40.wmf]16

m

=

. 
[image: image41.wmf]0

X

 will be determined by the last 4 least significant bits 
[image: image42.wmf]3210

{,,,}

aaaa

 of 
[image: image43.wmf]UE

i

 in the first subframe. If we select 
[image: image44.wmf]1

q

=

, then 
[image: image45.wmf]0

X

 will be determined by 
[image: image46.wmf]4321

{,,,}

aaaa

 in the second subframe. The UEs whose UEID has the same bits 
[image: image47.wmf]3210

{,,,}

aaaa

 share the same search space in the first subframe. Among them, the UEs whose UEID has the same bits 
[image: image48.wmf]4321

{,,,}

aaaa

 share the same search space in the second subframe. If a UE’s 
[image: image49.wmf]4

a

 is different from other UE’s 
[image: image50.wmf]4

a

, then they will define different search spaces in the second subframe, i.e. consecutive collision in the search space is avoided in the second subframe between these UEs. The conditional probability of search space collision in subframe 
[image: image51.wmf](1)

n

+

 given that search space collision in subframe 
[image: image52.wmf]n

 occurs will be 1/2. On the other hand, if we select 
[image: image53.wmf]5

q

=

, then 
[image: image54.wmf]0

X

 will be determined by 
[image: image55.wmf]8765

{,,,}

aaaa

 in the second subframe and the UEs whose UEID has the same bits 
[image: image56.wmf]87653210

{,,,,,,,}

aaaaaaaa

 share the same search spaces during the first and second subframes. With 
[image: image57.wmf]5

q

=

, the conditional probability of search space collision in subframe 
[image: image58.wmf](1)

n

+

 given that search space collision in subframe 
[image: image59.wmf]n

 occurs is reduced to 1/16.
Appropriate values of q should meet the following conditions:

· 
[image: image60.wmf]16

q

<


· Since 
[image: image61.wmf]UE

i

 consists of 16 bits, 
[image: image62.wmf]0

mod1616

qq

=<

 leads to the same result as 
[image: image63.wmf]16

q

³

 does. We can limit the meaningful region of q to the natural numbers smaller than 16.
· 
[image: image64.wmf]2

log()

qm

³

êú

ëû


· If the UEID bits contributing to 
[image: image65.wmf]0

X

are totally changed from the previous subframe, then probability of consecutive search space collision is minimized. This condition is meaningful especially when m is a power of 2.
· 
[image: image66.wmf]q

 is an odd number.
· If q is a power of 2, then the UEID bits contributing to 
[image: image67.wmf]0

X

can be repeated every (16/q)-th subframe. If q is a even number, then the contribution bits can also be repeated. Hence, an odd 
[image: image68.wmf]q

 is recommended to ensure no repetition of UEID bits contributing to 
[image: image69.wmf]0

X

.
Table 1 lists the suggested values for q, which are determined considering the conditions above.

Table 1. Suggested q values

	m≤4
	q = 3

	4<m≤16
	q = 5

	16<m≤64
	q = 7

	64<m≤128
	q = 9


3.4 Other parameters of hash function

Parameters 
[image: image70.wmf]k

 and 
[image: image71.wmf]l

 in (1) should be specified. Since these parameters are neither UE-specific nor subframe-specific, they do not change the property of hash function. Following conditions should be taken into account in selecting the parameters:
· 
[image: image72.wmf]lm

<


· Because 
[image: image73.wmf]l

 is just an offset, an arbitrary integer of 
[image: image74.wmf]l

 does not hurt the requirements of hash function. According to (4), we can limit the meaningful region of 
[image: image75.wmf]l

 to the natural numbers smaller than 
[image: image76.wmf]m

 since any 
[image: image77.wmf]l

 congruent to 
[image: image78.wmf]0

l

 modulo 
[image: image79.wmf]m

 provides the same result.
· 
[image: image80.wmf]km

<

 and if 
[image: image81.wmf]1

k

>

 then it should be co-prime to 
[image: image82.wmf]m

.

· Similarly 
[image: image83.wmf]km

<

 is meaningful. Moreover, if both 
[image: image84.wmf]k

 and 
[image: image85.wmf]m

are divisible by an integer number larger than 1, the outcome space of 
[image: image86.wmf]Y

 will be limited. However, 
[image: image87.wmf]1

k

=

 does not hurt the requirements of hash function.
Taking into account the above and considering low computational complexity of hash function, we suggest 
[image: image88.wmf]1

k

=

 and 
[image: image89.wmf]0

l

=

. Then the final equation of the hash function is given by


[image: image90.wmf]modcircshift(,)mod

UESUBFRAME

YXmiqim

==´

. 
(6)
4. Derivation of PDCCH candidates from the outcome of hash function
The outcome of hash function just indicates the first PDCCH candidate. Assume that a UE obtain 
[image: image91.wmf]Y

 from the hash function for LCCE-CCE aggregation in a particular subframe. Then its first PDCCH candidate on the corresponding UE-specific search space is composed of the 
[image: image92.wmf]CCE

L

 consecutive CCEs indexed from 
[image: image93.wmf]()

CCE

YL

´

 to 
[image: image94.wmf]((1)1)

CCE

YL

+´-

. We have to specify how to define the other PDCCH candidates on the search space. Following two alternatives were discussed:

· Alternative 1: The CCEs aggregated for PDCCH candidate n are the 
[image: image95.wmf]CCE

L

 circularly consecutive ones indexed from 
[image: image96.wmf]((()mod))

CCE

YnmL

+´

 to 
[image: image97.wmf](((1)mod)1)

CCE

YnmL

++´-


· Alternative 2: The CCEs aggregated for PDCCH candidate n are the 
[image: image98.wmf]CCE

L

 circularly consecutive ones indexed from 
[image: image99.wmf]((()mod))

CCE

YnmL

+D´´

 to 
[image: image100.wmf](((1)mod)1)

CCE

YnmL

+D´+´-


Note that Alternative 1 can be explained as a special case of Alternative 2 with 
[image: image101.wmf]1

D=

.

[image: image102.emf]0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

0 1 2 3

L

CCE

= 1

1

L

CCE

= 2

L

CCE

= 4

L

CCE

= 8

0

m=17

m=8

m=4

m=2

Occupied by other UE

Blocked candidates

PDCCH candidates of a UE

16

Y=0

Y=2

Y=2

Y=1


Figure 1. An example of blocking with Alternative 1

[image: image103.emf]0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

0 1 2 3

L

CCE

= 1

1

L

CCE

= 2

L

CCE

= 4

L

CCE

= 8

0

m=17

m=8

m=4

m=2

Occupied by other UE

Blocked candidates

PDCCH candidates of a UE

Y=0, D=1

16

Y=2, D=2

Y=2, D=1

Y=1, D=2


Figure 2. An example of blocking with Alternative 2

Figure 1 illustrates an example case of blocking if Alternative 1 is adopted. Since there are 17 CCEs available, we have 17, 8, 4, and 2 PDCCH candidates on UE-specific search spaces of aggregation levels 1, 2, 4, and 8, respectively. The outcomes of hash function that a UE obtains in this particular subframe are Y=1, 2, 2, 0 for aggregation levels 1, 2, 4, and 8, respectively. Alternative 1 specifies consecutive PDCCH candidates so that the UE’s PDCCH candidates are the ones colored by yellow in Figure 1. Let’s assume another UE already occupied the PDCCH candidate 0 on the search space of 8-CCE aggregation. Then the PDCCH candidates consisting of the CCEs belonging to the occupied PDCCH candidate are all blocked off due to the tree structure of CCE aggregation. According to the example in Figure 1, the UE had 6 PDCCH candidates on the search space of 1-CCE aggregation but it lost all of them due to the occupancy of PDCCH candidate 0 of 8-CCE aggregation.
Figure 2 illustrates an example case of blocking if Alternative 2 is adopted. Since
[image: image104.wmf]2

D=

 is applied to aggregation levels 2 and 4, the UE uses different PDCCH candidates on the search space of those aggregation levels even with the same outcomes of hash function.

The reason why 
[image: image105.wmf]1

D=

 is still used for the other aggregation levels is that some PDCCH candidates may overlap even within a search space due to small m compared to the number of candidates. In order to distribute PDCCH candidates as much as possible without overlap, we assume



[image: image106.wmf]m

N

êú

D=

êú

ëû

. 
(7)

where N denotes the number of PDCCH candidates on the search space. From (7), we can derive 
[image: image107.wmf]17/62

D==

êú

ëû

, 
[image: image108.wmf]8/61

D==

êú

ëû

, 
[image: image109.wmf]4/22

D==

êú

ëû

, and 
[image: image110.wmf]2/21

D==

êú

ëû

 for aggregation levels 1, 2, 4, and 8, respectively.

Even though another UE already occupied the PDCCH candidate 0 on the search space of 8-CCE aggregation, the UE still have 2 PDCCH candidates on the search space of 1-CCE aggregation according to Figure 2. Alternative 2 solves the problem that Alternative 1 may result in the blocking of all the PDCCH candidates on a search space. We suggest Alternative 2 along with (7) for determination of 
[image: image111.wmf]D

.
5. Conclusion
In this document, we analyzed the currently agreed hash function and found a critical problem. We propose to modify the definition of X to solve the problem. Suggested hash function is
	
[image: image112.wmf]mod

YXm

=

, where 
[image: image113.wmf]circshift(,)

UESUBFRAME

Xiqi

=´

 


Note that 
· m is the number of PDCCH candidates on UE-specific search space of aggregation level LCCE and given by 
[image: image114.wmf]/

CCECCE

mNL

=

êú

ëû

 where 
[image: image115.wmf]CCE

N

 denotes the number of CCEs in the subframe.
· iUE and iSUBFRAME are the 16-bit UEID and the subframe number, respectively.
· q is an odd number dependent on m and suggested values are given in Table 1.
The suggested hash function guarantees evenly distributed UE-specific search spaces and reduces the probability of consecutive search space collisions between UEs.
From the outcome of hash function, Y, PDCCH candidates on a UE-specific search space are derived. In this document we compared two alternatives and conclude to suggest Alternative 2 which is as follows:
	The CCEs aggregated for PDCCH candidate n are the 
[image: image116.wmf]CCE

L

 circularly consecutive CCEs indexed from 
[image: image117.wmf]((()mod))

CCE

YnmL

+D´´




where 
[image: image118.wmf]D

 is given by 
[image: image119.wmf]/

mN

D=

êú

ëû

 where N denotes the number of PDCCH candidates to be defined on the search space of each aggregation level.
References
[1] R1-081101, “PDCCH blind decoding - Outcome of offline discussions,” Ericsson, Sorrento, Feb. 2008.







_1268030411.unknown

_1268041282.unknown

_1268043765.unknown

_1268046372.unknown

_1268053763.unknown

_1268054766.unknown

_1268055403.unknown

_1268055423.unknown

_1268055286.unknown

_1268053931.unknown

_1268048272.unknown

_1268048330.unknown

_1268048770.unknown

_1268049187.unknown

_1268050775.unknown

_1268048361.unknown

_1268048312.unknown

_1268047905.unknown

_1268048118.unknown

_1268047720.unknown

_1268044362.unknown

_1268044469.unknown

_1268044474.unknown

_1268044414.unknown

_1268043773.unknown

_1268042487.unknown

_1268042724.unknown

_1268043174.unknown

_1268042503.unknown

_1268042207.unknown

_1268033194.unknown

_1268040836.unknown

_1268041209.unknown

_1268041272.unknown

_1268041010.unknown

_1268036664.unknown

_1268036684.unknown

_1268033200.unknown

_1268032701.unknown

_1268032837.unknown

_1268033114.unknown

_1268032756.unknown

_1268030919.unknown

_1268032309.unknown

_1268032332.unknown

_1268030944.unknown

_1268030725.unknown

_1268028696.unknown

_1268030053.unknown

_1268030240.unknown

_1268030297.unknown

_1268030168.unknown

_1268030085.unknown

_1268028737.unknown

_1268028750.unknown

_1268028726.unknown

_1267984255.unknown

_1268025398.unknown

_1268026836.unknown

_1268027110.unknown

_1268026828.unknown

_1267984867.unknown

_1267973057.unknown

_1267973066.unknown

_1267982750.unknown

_1267983093.unknown

_1267983128.unknown

_1267982939.unknown

_1267982715.unknown

_1267980633.unknown

_1267980651.unknown

_1267972838.unknown

