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1 Introduction

In previous meetings, cyclic shift (CS) hopping per symbol for PUCCH was discussed. One of the remaining issues is whether pattern of CS hopping per symbol is cell-specific or resource-specific. In this contribution, one structure of resource-specific CS hopping pattern for UL ACK/NACK channels is presented and the ACK/NACK performances with presented resource-specific CS hopping and cell-specific CS hopping are evaluated.
2 Discussion
One benefit of resource-specific CS hopping is that the intra-cell interference from CS can be randomized. As a result, it increases the tolerance against UL power control and synchronization errors [1] [2]. However, the main concern is that resource-specific CS hopping (per symbol) usually distorts the orthogonality of block-wise orthogonal cover (OC) [3]. In this contribution, it is observed that the orthogonality distortion is NOT the necessary result of resource-specific CS hopping (per symbol). For each OC code sets agreed for UL ACK/NACK data in RAN1#50bis meeting [4] [5], by defining the resource-specific CS hopping patterns according to the properties of OC codes, the orthogonality of block-wise OC can be maintained. 
It was agreed in RAN1#50 meeting that OC codes for ACK/NACK data use length-4 Hadamard sequences and the detailed OC code sets was defined in RAN1#50bis meeting [4] [5]. For each code set illustrated in [4], i.e. 
  c1 = [1 1 1 1],  c2 = [1 -1 1 -1],  c3 = [1 -1 -1 1], or 
  c1 = [1 1 -1 -1],  c2 = [1 -1 -1 1],  c3 = [1 -1 1 -1], or 
  c1 = [1 -1 -1 1],  c2 = [1 1 -1 -1],  c3 = [1 1 1 1], or 
  c1 = [1 -1 1 -1],  c2 = [1 1 1 1],  c3 = [1 1 -1 -1],
it could be easily seen that for c1 and c3, c1 and c2,  the two code pairs perform orthogonality both on the first two symbols and on the last two symbols. It is beneficial to keep good orthogonality for high speed scenarios. Furthermore, we have observed that c1 (or c3) performs orthogonality with c2 on the 1st and the 4th symbol, as well as on the 2nd and the 3rd symbol. According to these properties, a structure of resource-specific CS hopping pattern is presented: 
· In one slot, by defining Resoure1 as all ACK/NACK channels assigned OC code c1 or c3, and defining Resoure2 as all ACK/NACK channels assigned OC code c2, the resource-specific CS hopping pattern for the ACK/NACK data part in one slot, noted as Cintra, can be set as below:
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is the resource-specific CS hopping pattern in the 
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 symbol for the ACK/NACK data in one slot.

To achieve inter-cell interference randomization, a cell-specific CS hopping pattern, noted as Cinter, can be applied on the top of the intra-cell randomization:
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 is the cell-specific CS hopping pattern in the 
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 symbol for the ACK/NACK data in one slot, 
[image: image11.wmf]12

=

ZC

N

 is the number of cyclic shifts [1].
With this structure, for ACK/NACK channels from the same resource, because their CS difference keeps constant in all 4 symbols, the orthogonality of their OCs in one slot maintains (it is also the reason why cell-specific CS hopping can maintain the orthogonality of OC). For ACK/NACK channels from different resources, because their CS difference keeps constant in the 1st and the 4th symbol, the orthogonality of their OCs on these two symbols maintains; similarly, the orthogonality of their OCs on the 2nd and the 3rd symbol maintains. In summarization, for ACK/NACK channels from different resources, the orthogonality of their OCs in one slot maintains. 
For ACK/NACK code allocation showed in Figure 1 which was agreed as an example in RAN1#50bis [4][5], Figure 2 shows an example of proposed resource-specific CS hopping applied on this code allocation. In this example, N=6 and Cinter = 0, 3, 6, 9 for the 1st, the 2nd, the 3rd, the 4th symbol for the ACK/NACK data part respectively and the OC code set is code set #3 from [4], i.e. c1 = [1 -1 -1 1],  c2 = [1 1 -1 -1],  c3 = [1 1 1 1]. 
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Figure 1:  Structure for ACK/NACK code allocation 
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Figure 2:
An Example of proposed OC maintained resource-specific CS hopping
As shown in Figure2, for any two ACK/NACK channels with different OC sequences, e.g. CH1 and CH13, CH1 and CH14, CH1 and CH7, the orthogonality of OC maintains in one slot. To keep the orthogonality of OC, with proposed OC maintained resource-specific CS hopping, the intra-cell interference randomization between ACK/NACK channels is slightly deduced compare to random UE-specific CS hopping.
3 Simulations

In this section, we evaluated the performances of UL ACK/NACK for the cell-specific and proposed resource-specific CS hopping at high adjacent CS interference. The code allocation is the one showed in the Figure 1 and the cell-specific CS hopping pattern is assumed to be C = 0, 3, 6, 9 for the 1st, the 2nd, the 3rd, the 4th symbol for the ACK/NACK data, respectively. The resource-specific CS hopping pattern is the one showed in Figure 2. The CS hopping pattern for RS is not focused in this contribution and ideal channel estimation is adopted. As it is beneficial to intra-cell interference randomization, slot based CS and OC re-mapping is adopted [4] [6]. Simulation results comparison between the cell-specific and proposed resource-specific CS hopping without slot based CS hopping was shown in [7]. For the slot based CS and OC re-mapping is still FFS, we simulated the performances with two re-mapping patterns. Pattern 1 is a simple interleaving for CS index and a swap for OC index: c1-> c3, c2->c2, c3-> c1. The OC code set is code set #3 from [4], i.e. c1 = [1 -1 -1 1],  c2 = [1 1 -1 -1],  c3 = [1 1 1 1]. Pattern 2 is deduced using Prime-Modulo method proposed in [6], the OC code set is code set #1 from [4], i.e. c1 = [1 1 1 1],  c2 = [1 -1 1 -1],  c3 = [1 -1 -1 1]. The two patterns are shown in Figure 3 and Figure 4. 
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Figure 3:
slot level CS and OC remapping pattern 1
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Figure 4:
slot level CS and OC remapping pattern 2: using Prime-Modulo method proposed in [6]
In the simulations, 18 UEs are assumed in the system. The Rx power of the interferential UE is set 6dB higher than other UEs and the performances of all UEs are investigated. 

For the slot level re-mapping pattern 1, the simulation assumptions are listed in Table 1. 
Table 1:  Link level simulation assumptions
	Parameter
	Assumption

	Carrier frequency
	2.0GHz

	System Bandwidth
	5MHz

	Channel model
	TU, 6 path

	Number of TX antennas
	1

	Number of RX antennas
	2 (uncorrelated), MRC

	Frequency hopping
	Intra TTI slot based hopping

	Number of UEs
	18

	UE speeds
	360km/h or 3km/h 

	UE configuration
	CH7: interferential UE, with larger Rx power (6 dB) than other UEs.
Other CHs: evaluated UEs, with the same Rx power.

	Number of bits per UE
	2bits (QPSK)


Figure 5 shows the simulation results for cell-specific CS hopping and proposed resource CS hopping when each UE travelling at 360km/h. As it shows, with cell-specific CS hopping, the performance of the most affected UE, UE14, shows a floor higher than 2×10-3, which cannot meet the requirement for ACK/NACK. With proposed resource-specific CS hopping, the performance of UE14 shows a remarkable improvement thanks to the intra-cell interference randomization. With proposed resource-specific CS hopping, the most infected UE is UE17, the performance of which also shows better than that of UE14 with cell-specific CS hopping. Meanwhile, the average performance of all 17 evaluated UEs with resource-specific CS hopping is very close to that with cell-specific CS hopping. 
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Figure 5:
2bit ACK/NACK performance, 360km/h, with slot level CS/OC remapping pattern 1, Ideal CE
Figure 6 shows the simulation results when each UE travelling at 3km/h. As it shows, due to the orthogonality of OC is well maintained, the average performance of all 17 evaluated UEs with proposed resource-specific CS hopping is almost equal to that with cell-specific CS hopping. Similar result occurs on the worst UE, UE13.
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Figure 6:
2bit ACK/NACK performance, 3km/h, with slot level CS/OC remapping pattern 1, Ideal CE
For the slot based CS and OC remapping patterns 2, i.e. using Prime-Modulo method proposed in [6], the Rx power of the interferential UE, UE13, travelling at 360km/h, is set 6dB higher than other UEs. Other UEs travel at 3km/h. The simulation result is shown in Figure 7:
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Figure 7:
2bit ACK/NACK performance, with slot level CS/OC remapping pattern 2, Ideal CE 
As shown in Figure 7, with cell-specific CS hopping and slot level re-mapping using Prime-Modulo method [6], the performance of the most affected UE, UE7, appears floor effect near 10-2. With proposed resource-specific CS hopping, the floor effect appears near to 2×10-3 and the average performance of all 18 UEs is also improved.
4 Summary
In this contribution, the cyclic shifts hopping for the ACK/NACK signals transmitted on PUCCH is discussed. A structure of resource-specific CS hopping pattern for ACK/NACK data part is presented. Based on the presented discussions, we propose to use resource specific cyclic shift hopping on ACK/NACK signals:

1. According the OC code set used, all ACK/NACK channels in one cell could be divided into two resources per slot: one consists of the channels assigned to c1 or c3 and the other consists of the channels assigned to c2.

2. In one slot, each resource has its own CS hopping pattern for the ACK/NACK data.

3. The resource-specific CS hopping pattern for these two resources are the same in the 1st and the 4th symbol and only with a constant CS offset in the 2nd and the 3rd symbol.  

Simulation results show, with proposed resource-specific CS hopping, the strong interferences between adjacent CS caused by power and synchronization errors could be depressed effectively while the average performance does not degrade. It allows for simple intra- and inter-cell randomization and the orthogonality of the block-wise OC is still maintained. It increases the PUCCH tolerance against UL power control and synchronization errors. Further more, the proposed CS hopping is compatible with CS hopping and OC remapping between slots.  
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6 Appendix:
CS hopping patterns in simulation
Table 1 and Table 2 show the simulated per-symbol and per-slot CS hopping patterns for ACK/NACK data for slot level hopping pattern 1. Table 3 and Table 4 show the simulated per-symbol and per-slot CS hopping patterns for ACK/NACK data for slot level hopping pattern 2. The CS hopping pattern for RS is not focused in this contribution and ideal channel estimation is adopted. 

 Table 1:  Cell-specific CS hopping patterns with slot based CS re-mapping pattern 1
	
	Slot1
	Slot2

	
	Sym#1
	Sym#2
	Sym#3~ #5
	Sym#6
	Sym#7
	Sym#1
	Sym#2
	Sym#3~ #5
	Sym#6
	Sym#7

	CS#1
	0
	3
	
	6
	9
	0
	3
	
	6
	9

	CS#2
	1
	4
	
	7
	10
	3
	6
	
	9
	0

	CS#3
	2
	5
	
	8
	11
	6
	9
	
	0
	3

	CS#4
	3
	6
	
	9
	0
	9
	0
	
	3
	6

	CS#5
	4
	7
	
	10
	1
	2
	5
	
	8
	11

	CS#6
	5
	8
	
	11
	2
	7
	10
	
	1
	4

	CS#7
	6
	9
	
	0
	3
	10
	1
	
	4
	7

	CS#8
	7
	10
	
	1
	4
	1
	4
	
	7
	10

	CS#9
	8
	11
	
	2
	5
	4
	7
	
	10
	1

	CS#10
	9
	0
	
	3
	6
	11
	2
	
	5
	8

	CS#11
	10
	1
	
	4
	7
	8
	11
	
	2
	5

	CS#12
	11
	2
	
	5
	8
	5
	8
	
	11
	2


Table 2:  Resource-specific CS hopping patterns with slot based CS re-mapping pattern 1
	
	Slot1
	Slot2

	
	Sym#1
	Sym#2
	Sym#3~ #5
	Sym#6
	Sym#7
	Sym#1
	Sym#2
	Sym#3~ #5
	Sym#6
	Sym#7

	CS#1
	0
	3
	
	6
	9
	0
	3
	
	6
	9

	CS#2
	1
	10
	
	1
	10
	3
	0
	
	3
	0

	CS#3
	2
	5
	
	8
	11
	6
	9
	
	0
	3

	CS#4
	3
	0
	
	3
	0
	9
	6
	
	9
	6

	CS#5
	4
	7
	
	10
	1
	2
	5
	
	8
	11

	CS#6
	5
	2
	
	5
	2
	7
	4
	
	7
	4

	CS#7
	6
	9
	
	0
	3
	10
	1
	
	4
	7

	CS#8
	7
	4
	
	7
	4
	1
	10
	
	1
	10

	CS#9
	8
	11
	
	2
	5
	4
	7
	
	10
	1

	CS#10
	9
	6
	
	9
	6
	11
	8
	
	11
	8

	CS#11
	10
	1
	
	4
	7
	8
	11
	
	2
	5

	CS#12
	11
	8
	
	11
	8
	5
	2
	
	5
	2


Table 3:  Cell-specific CS hopping patterns with slot based CS re-mapping pattern 2
	
	Slot1
	Slot2

	
	Sym#1
	Sym#2
	Sym#3~ #5
	Sym#6
	Sym#7
	Sym#1
	Sym#2
	Sym#3~ #5
	Sym#6
	Sym#7

	UE#1
	0
	3
	
	6
	9
	2
	5
	
	8
	11

	UE#2
	2
	5
	
	8
	11
	6
	9
	
	0
	3

	UE#3
	4
	7
	
	10
	1
	10
	1
	
	4
	7

	UE#4
	6
	9
	
	0
	3
	3
	6
	
	9
	0

	UE#5
	8
	11
	
	2
	5
	7
	10
	
	1
	4

	UE#6
	10
	1
	
	4
	7
	11
	2
	
	5
	8

	UE#7
	1
	4
	
	7
	10
	2
	5
	
	8
	11

	UE#8
	3
	6
	
	9
	0
	6
	9
	
	0
	3

	UE#9
	5
	8
	
	11
	2
	10
	1
	
	4
	7

	UE#10
	7
	10
	
	1
	4
	0
	3
	
	6
	9

	UE#11
	9
	0
	
	3
	6
	4
	7
	
	10
	1

	UE#12
	11
	2
	
	5
	8
	8
	11
	
	2
	5

	UE#13
	0
	3
	
	6
	9
	1
	4
	
	7
	10

	UE#14
	2
	5
	
	8
	11
	5
	8
	
	11
	2

	UE#15
	4
	7
	
	10
	1
	9
	0
	
	3
	6

	UE#16
	6
	9
	
	0
	3
	0
	3
	
	6
	9

	UE#17
	8
	11
	
	2
	5
	4
	7
	
	10
	1

	UE#18
	10
	1
	
	4
	7
	8
	11
	
	2
	5


Table 4:  Resource-specific CS hopping patterns with slot based CS re-mapping pattern 2
	
	Slot1
	Slot2

	
	Sym#1
	Sym#2
	Sym#3~ #5
	Sym#6
	Sym#7
	Sym#1
	Sym#2
	Sym#3~ #5
	Sym#6
	Sym#7

	UE#1
	0
	3
	
	6
	9
	2
	5
	
	8
	11

	UE#2
	2
	5
	
	8
	11
	6
	9
	
	0
	3

	UE#3
	4
	7
	
	10
	1
	10
	1
	
	4
	7

	UE#4
	6
	9
	
	0
	3
	3
	0
	
	3
	0

	UE#5
	8
	11
	
	2
	5
	7
	4
	
	7
	4

	UE#6
	10
	1
	
	4
	7
	11
	8
	
	11
	8

	UE#7
	1
	10
	
	1
	10
	2
	5
	
	8
	11

	UE#8
	3
	0
	
	3
	0
	6
	9
	
	0
	3

	UE#9
	5
	2
	
	5
	2
	10
	1
	
	4
	7

	UE#10
	7
	4
	
	7
	4
	0
	3
	
	6
	9

	UE#11
	9
	6
	
	9
	6
	4
	7
	
	10
	1

	UE#12
	11
	8
	
	11
	8
	8
	11
	
	2
	5

	UE#13
	0
	3
	
	6
	9
	1
	10
	
	1
	10

	UE#14
	2
	5
	
	8
	11
	5
	2
	
	5
	2

	UE#15
	4
	7
	
	10
	1
	9
	6
	
	9
	6

	UE#16
	6
	9
	
	0
	3
	0
	3
	
	6
	9

	UE#17
	8
	11
	
	2
	5
	4
	7
	
	10
	1

	UE#18
	10
	1
	
	4
	7
	8
	11
	
	2
	5
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