Page 1

3GPP TSG-RAN WG1 Meeting #51
R1-074619
Jeju, Korea, November 05 – 09, 2007

Agenda Item:

6.2.4
Source:

Huawei
Title:
Orthogonal Cover Maintained Resource-specific Cyclic Shift Hopping for UL ACK/NACK Channels
Document for:

Discussion & Decision

1 Introduction

In previous meetings, cyclic shift (CS) hopping per symbol for PUCCH was discussed. One of the remaining issues is whether pattern of CS hopping per symbol is cell-specific or resource-specific. In this contribution, one structure of resource-specific CS hopping pattern for UL ACK/NACK channels is presented and the ACK/NACK performances with presented resource-specific CS hopping and cell-specific CS hopping are evaluated.
2 Discussion
One benefit of resource-specific CS hopping is that the intra-cell interference from CS can be randomized. As a result, it increases the tolerance against UL power control and synchronization errors [1] [2]. However, the main concern is that resource-specific CS hopping (per symbol) usually distorts the orthogonality of block-wise orthogonal cover (OC) [3]. In this contribution, it is observed that the orthogonality distortion is NOT the necessary result of resource-specific CS hopping (per symbol). For each OC code sets agreed for UL ACK/NACK data in RAN1#50bis meeting [4] [5], by defining the resource-specific CS hopping patterns according to the properties of OC codes, the orthogonality of block-wise OC can be maintained.
It was agreed in RAN1#50 meeting that OC codes for ACK/NACK data use length-4 Hadamard sequences and the detailed OC code sets was defined in RAN1#50bis meeting [4] [5]. For each code set illustrated in [4], i.e.
 c1 = [1 1 1 1], c2 = [1 -1 1 -1], c3 = [1 -1 -1 1], or
 c1 = [1 1 -1 -1], c2 = [1 -1 -1 1], c3 = [1 -1 1 -1], or
 c1 = [1 -1 -1 1], c2 = [1 1 -1 -1], c3 = [1 1 1 1], or
 c1 = [1 -1 1 -1], c2 = [1 1 1 1], c3 = [1 1 -1 -1],
it could be easily seen that for c1 and c3, c1 and c2, the two code pairs perform orthogonality both on the first two symbols and on the last two symbols. It is beneficial to keep good orthogonality for high speed scenarios. Furthermore, we have observed that c1 (or c3) performs orthogonality with c2 on the 1st and the 4th symbol, as well as on the 2nd and the 3rd symbol. According to these properties, a structure of resource-specific CS hopping pattern is presented:
· In one slot, by defining Resoure1 as all ACK/NACK channels assigned OC code c1 or c3, and defining Resoure2 as all ACK/NACK channels assigned OC code c2, the resource-specific CS hopping pattern for the ACK/NACK data part in one slot, noted as Cintra, can be set as below:

[image: image1.wmf]0

)

,

(

int

=

id

symbol

ra

resource

k

C

, for
[image: image2.wmf]4

,

3

,

2

,

1

,

1

=

=

symbol

id

k

resource

 and
[image: image3.wmf]4

,

1

,

2

=

=

symbol

id

k

resource

[image: image4.wmf])

12

0

(

,

)

,

(

int

<

<

=

N

N

resource

k

C

id

symbol

ra

, for
[image: image5.wmf]3

,

2

,

2

=

=

symbol

id

k

resource

where
[image: image6.wmf])

,

(

int

id

symbol

ra

resource

k

C

is the resource-specific CS hopping pattern in the
[image: image7.wmf]th

k

 symbol for the ACK/NACK data in one slot.

To achieve inter-cell interference randomization, a cell-specific CS hopping pattern, noted as Cinter, can be applied on the top of the intra-cell randomization:

[image: image8.wmf](

)

ZC

id

symbol

ra

id

symbol

er

N

resource

k

C

cell

k

C

CS

mod

)

,

(

)

,

(

int

int

+

=

,
where
[image: image9.wmf])

,

(

int

id

symbol

er

cell

k

C

 is the cell-specific CS hopping pattern in the
[image: image10.wmf]th

k

 symbol for the ACK/NACK data in one slot,
[image: image11.wmf]12

=

ZC

N

 is the number of cyclic shifts [1].
With this structure, for ACK/NACK channels from the same resource, because their CS difference keeps constant in all 4 symbols, the orthogonality of their OCs in one slot maintains (it is also the reason why cell-specific CS hopping can maintain the orthogonality of OC). For ACK/NACK channels from different resources, because their CS difference keeps constant in the 1st and the 4th symbol, the orthogonality of their OCs on these two symbols maintains; similarly, the orthogonality of their OCs on the 2nd and the 3rd symbol maintains. In summarization, for ACK/NACK channels from different resources, the orthogonality of their OCs in one slot maintains.
For ACK/NACK code allocation showed in Figure 1 which was agreed as an example in RAN1#50bis [4][5], Figure 2 shows an example of proposed resource-specific CS hopping applied on this code allocation. In this example, N=6 and Cinter = 0, 3, 6, 9 for the 1st, the 2nd, the 3rd, the 4th symbol for the ACK/NACK data part respectively and the OC code set is code set #3 from [4], i.e. c1 = [1 -1 -1 1], c2 = [1 1 -1 -1], c3 = [1 1 1 1].

[image: image12.emf]Cyclic shift

within block

c1

1

2

3

4

5

6

7

8

9

10

11

CH1

CH2

CH3

CH4

CH5

CH6

c2

CH7

CH8

CH9

CH10

CH11

c3

CH13

CH14

CH15

CH16

CH17

CH18

Block-wise OC

12 CH12

c4

Figure 1: Structure for ACK/NACK code allocation

[image: image13.emf]Cyclic shift

within block

c1 (1)

1

2

3

4

5

6

7

8

9

10

11

CH1

CH2

CH3

CH4

CH5

CH6

c2 (1)

CH7

CH8

CH9

CH10

CH11

c3 (1)

CH13

CH14

CH15

CH16

CH17

CH18

Block-wise OC

12 CH12

Cyclic shift

within block

c1 (-1)

1

2

3

4

5

6

7

8

9

10

11

c2 (-1) c3 (1)

Block-wise OC

12

Cyclic shift

within block

c1 (1)

1

2

3

4

5

6

7

8

9

10

11

c2 (-1) c3 (1)

Block-wise OC

12

the1st symbol for the ACK/NACK data the 2nd symbol for the ACK/NACK data

the 3rd symbol for the ACK/NACK data the 4th symbol for the ACK/NACK data

Cyclic shift

within block

c1 (-1)

1

2

3

4

5

6

7

8

9

10

11

c2 (1) c3 (1)

Block-wise OC

12

CH4

CH5

CH6

CH7

CH8

CH16

CH17

CH18

CH9

CH1

CH2

CH3

CH10

CH11

CH12

CH13

CH14

CH15

CH3

CH4

CH5

CH8

CH9

CH10

CH15

CH16

CH17

CH1

CH2

CH6

CH7

CH11

CH13

CH14

CH18

CH12

CH1

CH2

CH3

CH4

CH5

CH10

CH11

CH12

CH7

CH13

CH14

CH15

CH16

CH17

CH6

CH8

CH18

CH9

Figure 2:
An Example of proposed OC maintained resource-specific CS hopping
As shown in Figure2, for any two ACK/NACK channels with different OC sequences, e.g. CH1 and CH13, CH1 and CH14, CH1 and CH7, the orthogonality of OC maintains in one slot. To keep the orthogonality of OC, with proposed OC maintained resource-specific CS hopping, the intra-cell interference randomization between ACK/NACK channels is slightly deduced compare to random UE-specific CS hopping.
3 Simulations

In this section, we evaluated the performances of UL ACK/NACK for the cell-specific and proposed resource-specific CS hopping at high adjacent CS interference. The code allocation is the one showed in the Figure 1 and the cell-specific CS hopping pattern is assumed to be C = 0, 3, 6, 9 for the 1st, the 2nd, the 3rd, the 4th symbol for the ACK/NACK data, respectively. The resource-specific CS hopping pattern is the one showed in Figure 2. The CS hopping pattern for RS is not focused in this contribution and ideal channel estimation is adopted. As it is beneficial to intra-cell interference randomization, slot based CS and OC re-mapping is adopted [4] [6]. Simulation results comparison between the cell-specific and proposed resource-specific CS hopping without slot based CS hopping was shown in [7]. For the slot based CS and OC re-mapping is still FFS, we simulated the performances with two re-mapping patterns. Pattern 1 is a simple interleaving for CS index and a swap for OC index: c1-> c3, c2->c2, c3-> c1. The OC code set is code set #3 from [4], i.e. c1 = [1 -1 -1 1], c2 = [1 1 -1 -1], c3 = [1 1 1 1]. Pattern 2 is deduced using Prime-Modulo method proposed in [6], the OC code set is code set #1 from [4], i.e. c1 = [1 1 1 1], c2 = [1 -1 1 -1], c3 = [1 -1 -1 1]. The two patterns are shown in Figure 3 and Figure 4.

[image: image14.emf]The 1st symbol in the 1st slot

The 1st symbol in the 2nd slot

Cyclic shift

within block

c1

1

2

3

4

5

6

7

8

9

10

11

CH1

CH2

CH3

CH4

CH5

CH6

c2

CH7

CH8

CH9

CH10

CH11

c3

CH13

CH14

CH15

CH16

CH17

CH18

Block-wise OC

12 CH12

c4

Cyclic shift

within block

c1

1

2

3

4

5

6

7

8

9

10

11

CH13

CH15

CH17

CH14

CH18

CH16

c2

CH10

CH7

CH12

CH9

CH8

c3

CH1

CH3

CH5

CH2

CH6

CH4

Block-wise OC

12 CH11

c4

Figure 3:
slot level CS and OC remapping pattern 1

[image: image15.emf]Cyclic shift

within block

c1

1

2

3

4

5

6

7

8

9

10

11

CH1

CH2

CH3

CH4

CH5

CH6

c2

CH7

CH8

CH9

CH10

CH11

c3

CH13

CH14

CH15

CH16

CH17

CH18

Block-wise OC

12 CH12

c4

Cyclic shift

within block

c1

1

2

3

4

5

6

7

8

9

10

11

CH10

CH1

CH11

CH2

CH12

CH3

c2

CH13

CH4

CH14

CH5

CH15

c3

CH16

CH7

CH17

CH8

CH18

CH9

Block-wise OC

12 CH6

c4

The 1st symbol in the 1st slot

The 1st symbol in the 2nd slot

Figure 4:
slot level CS and OC remapping pattern 2: using Prime-Modulo method proposed in [6]
In the simulations, 18 UEs are assumed in the system. The Rx power of the interferential UE is set 6dB higher than other UEs and the performances of all UEs are investigated.

For the slot level re-mapping pattern 1, the simulation assumptions are listed in Table 1.
Table 1: Link level simulation assumptions
	Parameter
	Assumption

	Carrier frequency
	2.0GHz

	System Bandwidth
	5MHz

	Channel model
	TU, 6 path

	Number of TX antennas
	1

	Number of RX antennas
	2 (uncorrelated), MRC

	Frequency hopping
	Intra TTI slot based hopping

	Number of UEs
	18

	UE speeds
	360km/h or 3km/h

	UE configuration
	CH7: interferential UE, with larger Rx power (6 dB) than other UEs.
Other CHs: evaluated UEs, with the same Rx power.

	Number of bits per UE
	2bits (QPSK)

Figure 5 shows the simulation results for cell-specific CS hopping and proposed resource CS hopping when each UE travelling at 360km/h. As it shows, with cell-specific CS hopping, the performance of the most affected UE, UE14, shows a floor higher than 2×10-3, which cannot meet the requirement for ACK/NACK. With proposed resource-specific CS hopping, the performance of UE14 shows a remarkable improvement thanks to the intra-cell interference randomization. With proposed resource-specific CS hopping, the most infected UE is UE17, the performance of which also shows better than that of UE14 with cell-specific CS hopping. Meanwhile, the average performance of all 17 evaluated UEs with resource-specific CS hopping is very close to that with cell-specific CS hopping.
[image: image16.emf]1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

-20 -18 -16 -14 -12 -10 -8

SNR (dB)

BER

UE14, cell-specific hopping

UE14, resource-specific hopping

UE17, resource-specific hopping

average, cell-specific hopping

average, resource-specific hopping

Figure 5:
2bit ACK/NACK performance, 360km/h, with slot level CS/OC remapping pattern 1, Ideal CE
Figure 6 shows the simulation results when each UE travelling at 3km/h. As it shows, due to the orthogonality of OC is well maintained, the average performance of all 17 evaluated UEs with proposed resource-specific CS hopping is almost equal to that with cell-specific CS hopping. Similar result occurs on the worst UE, UE13.
[image: image17.emf]1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

-20 -18 -16 -14 -12 -10 -8

SNR (dB)

BER

UE13, cell-specific hopping

UE13, resource-specific hopping

average, cell-specific hopping

average, resource-specific hopping

Figure 6:
2bit ACK/NACK performance, 3km/h, with slot level CS/OC remapping pattern 1, Ideal CE
For the slot based CS and OC remapping patterns 2, i.e. using Prime-Modulo method proposed in [6], the Rx power of the interferential UE, UE13, travelling at 360km/h, is set 6dB higher than other UEs. Other UEs travel at 3km/h. The simulation result is shown in Figure 7:
[image: image18.emf]1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

-20 -18 -16 -14 -12 -10 -8

SNR (dB)

BER

UE7, cell-specific hopping

UE7, resource-specific hopping

average, cell-specific hopping

average, resource-specific hopping

Figure 7:
2bit ACK/NACK performance, with slot level CS/OC remapping pattern 2, Ideal CE
As shown in Figure 7, with cell-specific CS hopping and slot level re-mapping using Prime-Modulo method [6], the performance of the most affected UE, UE7, appears floor effect near 10-2. With proposed resource-specific CS hopping, the floor effect appears near to 2×10-3 and the average performance of all 18 UEs is also improved.
4 Summary
In this contribution, the cyclic shifts hopping for the ACK/NACK signals transmitted on PUCCH is discussed. A structure of resource-specific CS hopping pattern for ACK/NACK data part is presented. Based on the presented discussions, we propose to use resource specific cyclic shift hopping on ACK/NACK signals:

1. According the OC code set used, all ACK/NACK channels in one cell could be divided into two resources per slot: one consists of the channels assigned to c1 or c3 and the other consists of the channels assigned to c2.

2. In one slot, each resource has its own CS hopping pattern for the ACK/NACK data.

3. The resource-specific CS hopping pattern for these two resources are the same in the 1st and the 4th symbol and only with a constant CS offset in the 2nd and the 3rd symbol.

Simulation results show, with proposed resource-specific CS hopping, the strong interferences between adjacent CS caused by power and synchronization errors could be depressed effectively while the average performance does not degrade. It allows for simple intra- and inter-cell randomization and the orthogonality of the block-wise OC is still maintained. It increases the PUCCH tolerance against UL power control and synchronization errors. Further more, the proposed CS hopping is compatible with CS hopping and OC remapping between slots.
5 References

[1] R1-073643, “Symbol based cyclic shift hopping”, Nokia Siemens Networks, Nokia
[2] R1-073412, "Randomization of intra-cell interference in PUCCH", ETRI
[3] R1-074411, "Cyclic shift hopping pattern for uplink ACK/NACK", Panasonic
[4] R1-074491, "Proposed way forward on ACK/NACK channelization", Panasonic, Nokia, Nokia Siemens Networks, Samsung, Texas Instruments

[5] "3GPP TSG RAN WG1 #50bis Chairman Notes", Shanghai, China, October 8 – 12, 2007
[6] R1-074092, "Slot-level UL ACK/NACK cyclic shift/orthogonal cover remapping", Samsung
[7] R1-074058, "Resource-specific cyclic shift hopping ", Huawei, ZTE

6 Appendix:
CS hopping patterns in simulation
Table 1 and Table 2 show the simulated per-symbol and per-slot CS hopping patterns for ACK/NACK data for slot level hopping pattern 1. Table 3 and Table 4 show the simulated per-symbol and per-slot CS hopping patterns for ACK/NACK data for slot level hopping pattern 2. The CS hopping pattern for RS is not focused in this contribution and ideal channel estimation is adopted.

 Table 1: Cell-specific CS hopping patterns with slot based CS re-mapping pattern 1
	
	Slot1
	Slot2

	
	Sym#1
	Sym#2
	Sym#3~ #5
	Sym#6
	Sym#7
	Sym#1
	Sym#2
	Sym#3~ #5
	Sym#6
	Sym#7

	CS#1
	0
	3
	
	6
	9
	0
	3
	
	6
	9

	CS#2
	1
	4
	
	7
	10
	3
	6
	
	9
	0

	CS#3
	2
	5
	
	8
	11
	6
	9
	
	0
	3

	CS#4
	3
	6
	
	9
	0
	9
	0
	
	3
	6

	CS#5
	4
	7
	
	10
	1
	2
	5
	
	8
	11

	CS#6
	5
	8
	
	11
	2
	7
	10
	
	1
	4

	CS#7
	6
	9
	
	0
	3
	10
	1
	
	4
	7

	CS#8
	7
	10
	
	1
	4
	1
	4
	
	7
	10

	CS#9
	8
	11
	
	2
	5
	4
	7
	
	10
	1

	CS#10
	9
	0
	
	3
	6
	11
	2
	
	5
	8

	CS#11
	10
	1
	
	4
	7
	8
	11
	
	2
	5

	CS#12
	11
	2
	
	5
	8
	5
	8
	
	11
	2

Table 2: Resource-specific CS hopping patterns with slot based CS re-mapping pattern 1
	
	Slot1
	Slot2

	
	Sym#1
	Sym#2
	Sym#3~ #5
	Sym#6
	Sym#7
	Sym#1
	Sym#2
	Sym#3~ #5
	Sym#6
	Sym#7

	CS#1
	0
	3
	
	6
	9
	0
	3
	
	6
	9

	CS#2
	1
	10
	
	1
	10
	3
	0
	
	3
	0

	CS#3
	2
	5
	
	8
	11
	6
	9
	
	0
	3

	CS#4
	3
	0
	
	3
	0
	9
	6
	
	9
	6

	CS#5
	4
	7
	
	10
	1
	2
	5
	
	8
	11

	CS#6
	5
	2
	
	5
	2
	7
	4
	
	7
	4

	CS#7
	6
	9
	
	0
	3
	10
	1
	
	4
	7

	CS#8
	7
	4
	
	7
	4
	1
	10
	
	1
	10

	CS#9
	8
	11
	
	2
	5
	4
	7
	
	10
	1

	CS#10
	9
	6
	
	9
	6
	11
	8
	
	11
	8

	CS#11
	10
	1
	
	4
	7
	8
	11
	
	2
	5

	CS#12
	11
	8
	
	11
	8
	5
	2
	
	5
	2

Table 3: Cell-specific CS hopping patterns with slot based CS re-mapping pattern 2
	
	Slot1
	Slot2

	
	Sym#1
	Sym#2
	Sym#3~ #5
	Sym#6
	Sym#7
	Sym#1
	Sym#2
	Sym#3~ #5
	Sym#6
	Sym#7

	UE#1
	0
	3
	
	6
	9
	2
	5
	
	8
	11

	UE#2
	2
	5
	
	8
	11
	6
	9
	
	0
	3

	UE#3
	4
	7
	
	10
	1
	10
	1
	
	4
	7

	UE#4
	6
	9
	
	0
	3
	3
	6
	
	9
	0

	UE#5
	8
	11
	
	2
	5
	7
	10
	
	1
	4

	UE#6
	10
	1
	
	4
	7
	11
	2
	
	5
	8

	UE#7
	1
	4
	
	7
	10
	2
	5
	
	8
	11

	UE#8
	3
	6
	
	9
	0
	6
	9
	
	0
	3

	UE#9
	5
	8
	
	11
	2
	10
	1
	
	4
	7

	UE#10
	7
	10
	
	1
	4
	0
	3
	
	6
	9

	UE#11
	9
	0
	
	3
	6
	4
	7
	
	10
	1

	UE#12
	11
	2
	
	5
	8
	8
	11
	
	2
	5

	UE#13
	0
	3
	
	6
	9
	1
	4
	
	7
	10

	UE#14
	2
	5
	
	8
	11
	5
	8
	
	11
	2

	UE#15
	4
	7
	
	10
	1
	9
	0
	
	3
	6

	UE#16
	6
	9
	
	0
	3
	0
	3
	
	6
	9

	UE#17
	8
	11
	
	2
	5
	4
	7
	
	10
	1

	UE#18
	10
	1
	
	4
	7
	8
	11
	
	2
	5

Table 4: Resource-specific CS hopping patterns with slot based CS re-mapping pattern 2
	
	Slot1
	Slot2

	
	Sym#1
	Sym#2
	Sym#3~ #5
	Sym#6
	Sym#7
	Sym#1
	Sym#2
	Sym#3~ #5
	Sym#6
	Sym#7

	UE#1
	0
	3
	
	6
	9
	2
	5
	
	8
	11

	UE#2
	2
	5
	
	8
	11
	6
	9
	
	0
	3

	UE#3
	4
	7
	
	10
	1
	10
	1
	
	4
	7

	UE#4
	6
	9
	
	0
	3
	3
	0
	
	3
	0

	UE#5
	8
	11
	
	2
	5
	7
	4
	
	7
	4

	UE#6
	10
	1
	
	4
	7
	11
	8
	
	11
	8

	UE#7
	1
	10
	
	1
	10
	2
	5
	
	8
	11

	UE#8
	3
	0
	
	3
	0
	6
	9
	
	0
	3

	UE#9
	5
	2
	
	5
	2
	10
	1
	
	4
	7

	UE#10
	7
	4
	
	7
	4
	0
	3
	
	6
	9

	UE#11
	9
	6
	
	9
	6
	4
	7
	
	10
	1

	UE#12
	11
	8
	
	11
	8
	8
	11
	
	2
	5

	UE#13
	0
	3
	
	6
	9
	1
	10
	
	1
	10

	UE#14
	2
	5
	
	8
	11
	5
	2
	
	5
	2

	UE#15
	4
	7
	
	10
	1
	9
	6
	
	9
	6

	UE#16
	6
	9
	
	0
	3
	0
	3
	
	6
	9

	UE#17
	8
	11
	
	2
	5
	4
	7
	
	10
	1

	UE#18
	10
	1
	
	4
	7
	8
	11
	
	2
	5

_1255199315.unknown

_1255199485.unknown

_1255200187.unknown

_1255250843.unknown

_1255199864.unknown

_1255199945.unknown

_1255199751.unknown

_1255199418.unknown

_1255199103.unknown

_1255199287.unknown

_1254407519.vsd

_1254565959.vsd

_1254565222.vsd

_1254407130.vsd

