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1. Introduction

In order to reduce receiver complexity and power consumption, 24-bit transport block CRC (TB CRC) and 24-bit code block CRC (CB CRC) were agreed in Athens [1] and adopted in TS 36.212 [2].  As illustrated in Figure 1, a TB is first attached by a CRC sequence computed from all bits in the TB.  The entire frame is segmented into N CBs.  A CRC sequence of length L=24 is then computed for and attached to each CB independently.  

[image: image17.bmp]
Figure 1 Code block segmentation and CRC attachment.

Without explicit discussion in Athens, an identical 24-bit CRC generator is to be assumed for both CB and TB levels.  It was pointed out such configuration could have undesirable TB error detection consequences [3, 4].  Namely, a systematic error sequence (to be defined in Section 3) undetected by any CB-level CRC checking will remain undetectable to the TB-level CRC checking.  Analysis of the undetected TB error rates has been attempted in [5, 6].  However, neither approach has fully captured the performance characteristics under typical use of the two-level CRC [7, 8, 9] (see also Section 5.2):
If the correctness of a CB can be checked after each turbo decoding iteration, decoding resource could be reduced by stopping processing early.  If a CB is found to be correct, turbo decoding for the CB can be stopped and the decoder can proceed to process the next CB.  On the other hand, if a CB is found to be incorrect, decoding of the rest of the transport block can be aborted.

If no CRC failure is reported on any CB, the TB CRC checking is performed for the integrity of the TB.

In the case of using an identical CRC generator on both CB and TB levels, the rule of thumb from conventional analysis [5, 8, 9, 10, 11] places the undetected TB error rate at

P(TBE ^ Miss)
≈  N × P(CBE ^ Miss).
(1.1)

In this paper, we present a performance analysis for the typical use of two-level CRC backed by extensive simulation results.  The rule of thumb is tightened to

P(TBE ^ Miss)
≈  N × P(CBE ^ Miss) × ρ × (1−P(CBE))N−1,
(1.2)

where ρ is the conditional probability of error sequences being systematic.  That is, a typical TB error miss event consists of (N−1) CB decoding successes and one CB decoding failure with undetectable systematic error pattern.  Hence, TB error misses are most likely at medium SNR range.  On the other hand, even though there could be many CB errors at low SNR range, TB error misses are less likely.  This is because, given the low levels of CB error miss rates as shown in Figure 3 and Figure 5 of [5], it is practically impossible to miss detecting more one CB errors.  At high SNR range, both ρ and (1−P(CBE))N−1 approach unity and, hence, results from conventional analysis (EQ (1.1)) are correct.
The worst-case undetected TB error rate for using identical 24-bit CRC on both CB and TB levels is found to be between 3×10−6 and 5×10−6 (assuming K=6144, r=0.8 and N=25 CBs).  This is far higher than the requirement of 4×10−7 (or 10−7) set by TCP application throughput studies [9, 12].  Therefore, the conclusion and recommendation to set different CRC generator polynomials for the two levels [5, 13, 14] hold.

2. Overview of the Analysis
A classification of CB-level events relevant to the typical use of two-level CRC checking is presented in Figure 2.  The TB error detection performance is not affected by a CB that is either correct or incorrect but detected by the CB-level CRC checking.  In Section 3, we first establish that systematic error sequences not detected by the CB-level CRC remain undetectable to the TB-level CRC if an identical generator polynomial is used on both levels.  The non-systematic error sequences missed on the CB level will be detected by the TB-level CRC checking and thus do not compromise TB integrity checking.  We then present an upper bound and a simple conservative approximation for the conditional probability of error sequences being systematic, ρ, in Section 4.   The probability of undetected TB errors under the typical use of two-level CRC is analyzed in Section 5.  Conclusion on the shortcomings of using an identical CRC-24 generator on both CB and TB levels is presented in Section 6.
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Figure 2 Classification of CB events.

3. Systematic Error Sequences
As illustrated in Figure 3, an undesirable consequence of using an identical CRC generator in both CB and TB levels is that a systematic error sequence undetected by any CB-level CRC checking will remain undetectable to the TB-level CRC checking [3, 4].  A systematic error sequence for a CB is an error sequence that does not involve the last L bits and, hence, is not modified by the stripping of CB-level CRC attachments.  If the systematic error sequence is divisible the by CB-level CRC generator, it cannot be detected by the CB-level CRC checking and will be fed into the TB-level CRC checking.  If the CB- and TB-level CRC checking is based on the same generator, then the undetected errors from the CB level remains undetectable on the TB level.  A formal proof is presented below.
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Figure 3 Systematic error sequences are undetectable to both CB and TB CRC checking [3].

Without loss of generality, consider a case of two CBs of length K1 and K2, respectively.  The first CB consist of X1(D) of length K1−L and its CB CRC attachment C1(D):  


X1(D)×DL + C1(D) = GC(D) × Q1(D),
(3.1)

where GC(D) is the generator for CB level CRC computation.  The second CB consist of (X2(D)×DL + CT(D)) of length K2−L and its CB CRC attachment C2(D):  


[X2(D)×DL + CT(D)]×DL + C2(D) = GC(D) × Q2(D).
(3.2)

The length L TB-level CRC CT(D) is the remainder of X1(D)×DK2−L + X2(D)×DL divided by the TB-level CRC polynomial GT(D):


X1(D)×DK2−L + X2(D)×DL + CT(D) = GT(D) × QT(D).
(3.3)

A systematic error sequence in the i-th CB is of the form Ei(D)×DL, where Ei(D) is of length (Ki−L).  A systematic error sequence is undetectable to the CB-level CRC if it is divisible by GC(D):


Ei(D)×DL = GC(D) × QEi(D)×DL.
(3.4)

Feeding either or both undetected erroneous decoded bits into the TB-level CRC checking, we obtain:


(X1(D)+E1(D))×DK2−L + X2(D)×DL + CT(D) 




= GT(D)×QT(D) + GC(D)×QE1(D)×DK2−L,
(3.5)


X1(D)×DK2−L + X2(D)×DL + CT(D) + E2(D)




= GT(D)×QT(D) + GC(D)×QE2(D),
(3.6)


(X1(D)+E1(D))×DK2−L + X2(D)×DL + CT(D) + E2(D)




= GT(D)×QT(D) + GC(D) × (QE1(D)×DK2−L+QE2(D)).
(3.7)

If the same CRC generator is used on both levels, GT(D) = GC(D) = G(D), then all these erroneous TBs in above are divisible by G(D).  The errors hence remain undetectable by the additional TB-level CRC checking.
4. Bounds on the Conditional Probability of Error Sequences Being Systematic
An obvious upper bound on the conditional probability of an error sequence being systematic is ρ ≤ 1.  In order to develop a simple conservative approximation for ρ in Section 4.2, an approximation/upper bound on the CB bit error rates (BER) is developed in Section 4.1.  The approximations/bounds for ρ are then verified with simulation results in Section 4.3.
4.1. Upper Bounds on the CB-Level Bit Error Rates Pbit
Let βi denote the bit error rate after i-th decoding iterations without CRC-based early stopping and p denote the miss detection probability of CRC checking.  For large blocks and low to medium SNRs, p approaches 2−L [5, 15].
  With CRC-based early stopping, iterative decoding of a CB is terminated when the CB-level CRC checks.  Such checking is performed on the decoded bits after Imin, Imin+1, …, Imax iterations.  CB error events can be classified into two sub-categories: those missed and those detected by the CRC checking:


Pbit(CBE)
= Pbit(CBE ^ Miss) + Pbit(CBE ^ ~Miss),
(4.1)
where Pbit(CBE ^ Miss) denotes the contribution to BER from CB error miss events and Pbit(CBE ^ ~Miss) denotes that from CB error detection events.  A CB error is detected if and only if CB-level CRC checking does not pass on all tested iterations:

Pbit(CBE ^ ~Miss)
= βImax (1−p)Imax−Imin+1.
(4.2)

A CB error is missed if and only if the CB-level checking passes on any of the tested iterations:


Pbit(CBE ^ Miss)
= βImin p + βImin+1(1−p)p + … + βImax(1−p)Imax−Imin p.
(4.3)

For small p, these probabilities can be approximated by


Pbit(CBE ^ ~Miss)
≈ βImax (1−(Imax−Imin+1) p),
(4.4)


Pbit(CBE ^ Miss)
≤ p
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Pbit(CBE)
≤ βImax + p
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4.2. Simple Conservative Approximation of ρ
The bit error rate conditioned on undetected CB error events is 


θ
≡ Pbit(CBE ^ Miss) / P(CBE ^ Miss),
(4.7)

where P(CBE ^ Miss) is the probability of undetected CB errors given in EQ (2.6) of [5].  For an error sequence of length K, there are, hence, approximately 
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 ones on average.  A simple approximation to ρ is the probability of 
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 randomly selected positions from a block of K all fall in the first K−L positions:


ρ
≈ 
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(4.8)

Note that this approximation is generally conservative (i.e., lower than true ρ) because error bit positions from a turbo decoder are generally not likely to be arbitrarily widely separated.  Such kind of error patterns would generate parity bits with large Hamming distances and are, hence, unlikely to be selected by the decoder.
4.3. Numerical Results
To verify the BER bounds presented in Section 4.1, simulation for K = 1984, r = 0.4, and L = 12 is performed.
  As shown in Figure 4, the approximation/upper bounds on the BERs are accurate.
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Figure 4 Bit error rates for K = 1984, r = 0.4, L = 12 on the AWGN channel.

To verify the conservative approximation of ρ presented in Section 4.2, two simulations were performed.  Case 1 is based on K = 104, L = 8, and r = 0.4.  Case 2 is based on K = 1984, L = 12, and r = 0.4.  The empirically collected ρ is plotted with red stars in Figure 5.
The simple conservative bound on ρ is compute as follows.  The block and bit error rates, P(CBE ^ Miss) and Pbit(CBE ^ Miss), are first computed with EQ (2.6) of [5] and EQ (4.3) in this paper based on raw data of qi and βi.  The computed block and bit error rates are then used in EQ (4.7) and EQ (4.8) to calculate the approximate ρ.  As shown as blue circles, the simple conservative approximation is found to be quite accurate.
  Together with the upper bound ρ ≤ 1, the true value of ρ can be bounded in a range.
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(a) K = 104, L = 8, r = 0.4

[image: image11.png]
(b) K = 1984, L = 12, r = 0.4

Figure 5 Conditional probability of error sequences being systematic with Imin = 1.
5. Probabilities of Undetected Transport Block Errors

The probability of undetected TB errors with an identical CB and TB CRC generator is analyzed in Section 5.1 and numerical verification is presented in Section 5.2.  The case with different primitive polynomials is analyzed in Section 5.3.
5.1. Case with an Identical Generator for the CB- and TB-Level CRC
Under the typical use of two-level CRC, the TB-level CRC checking is performed if and only if no CB error is reported by any of the CB-level CRC checking.  The probability of the later events is given by


(1 − P(TBE ^ ~Miss))N
= (1−P(CBE) + P(CBE ^ Miss))N ,
(5.1)

where 1−P(CBE) is the probability of correct CB decoding.  Since the events of all the CBs are correct do not contribute to any error cases, the probability of TB errors missed by all CB-level CRC checking is


(1−P(CBE) + P(CBE ^ Miss))N − (1−P(CBE))N.
(5.2)

However, nonsystematic error events missed by the CB-level CRC checking will be detected by the TB-level CRC checking and hence do not contribute to TB error miss rates.  Excluding this type of events, the probability of undetected TB errors is given by:

P(TBE ^ Miss)
= (1−P(CBE) + ρ×P(CBE ^ Miss))N − (1−P(CBE))N.
(5.3)

For small p, this can be approximated by

P(TBE ^ Miss)
≈ N × P(CBE ^ Miss) × ρ × (1−P(CBE))N−1.
(5.4)

This approximation is different from the conventional analysis by a factor of ρ×(1−P(CBE))N−1.  
An intuitive interpretation of approximation EQ (5.3) is as follows.

· A typical TB error miss event consists of (N−1) CB decoding successes and one CB decoding failure with undetectable systematic error pattern.  Hence, TB error misses are most likely at medium SNR range.  
· On the other hand, even though there could be many CB errors at low SNR range, TB error misses are less likely.  This is because, given the low levels of CB error miss rates as shown in Figure 3 and Figure 5 of [5], it is practically impossible to miss detecting more one CB errors.
· At high SNR range, both ρ and (1−P(CBE))N−1 approach unity.  Results from conventional analysis (EQ (1.1)) are correct.

5.2. Numerical Results 

To verify the accuracy of the approximation/upper bound on TB error miss rate presented in Section 5.1, simulations for N=2 cases are performed.  To leave no uncertainty about what exactly was simulated, the simulator steps are spelled out as follows:
CRC2 = 1;
Decode CB1 with early stopping based on CRC1 checking;

If CRC1==0

Decode CB2 with early stopping based on CRC2 checking;

End

If CRC1==0 and CRC2==0

TB = [decoded1(1:end-L) ; decoded2(1:end-L)];


Compute CRCt based on TB;

Else


CRCt = 1;

End 

In the first test case, both CBs are of length K = 104 bits.  That is, excluding CRC-8 bits from the CB and TB levels, there are 96 and 88 information bits in the two CBs, respectively.  In the second test case, both CBs are of length K = 1984 bits.  Excluding CRC-12 bits from the CB and TB levels, there are 1972 and 1960 information bits in the two CBs, respectively.  The TB error miss probabilities collected from the simulations are plotted with red stars in Figure 6.  The results are consistent with the implication of EQ (5.4): TB error misses are most likely in medium SNR ranges.  The bending downward behavior of the TB error miss rates in the low SNR region is caused by the (1−P(CBE))N−1 factor.  That is, it is very unlikely to miss detecting multiple CB errors.

The empirical results are then compared to two analytical results.  The first is an upper bound obtained by setting ρ = 1 in EQ (5.3).  The second is a conservative approximation using both EQ (4.8) and EQ (5.3).  As shown in Figure 6, the two analytical results are found to provide accurate range estimates of the true TB error miss rates in the low to high SNR regions.  Note the maximum effect of ρ is represented by the separation between the two analytical results.  Numerical results indicate the effect of ρ is small for large CBs.  
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(a) K1 = K2 = 104, L = 8, r = 0.4

[image: image13.png]
(b) K1 = K2 = 1984, L = 12, r = 0.4

Figure 6 Probability of undetected TB errors with an identical generator for the CB- and TB-Level CRC. Each TB consists of N = 2 CBs and Imin = 1. 
5.3. Case with Different Primitive Polynomials for the CB- and TB-Level CRC
If the primitive polynomials of the CB and TB CRCs are different, an error sequence can pass both CRC checking only if it is divisible by both.  Hence, the TB CRC checking can further reduce the probabilities of misses.  Noting that (D+1) is common in both CRC generators, the TB error miss rate is given by

P(TBE ^ Miss)
= [(1−P(CBE) + P(CBE ^ Miss))N − (1−P(CBE))N ] × 2−(L−1).
(5.5)

The TB error miss rates can hence be reduced by almost seven orders of magnitude in the case of L = 24.
6. Conclusion

To investigate the TB error detection performance for = 6144, L = 24, r = 0.8, and Imin = 1, the conservative estimate of the conditional probability of error sequences being systematic, ρ, is plotted in Figure 7.  A comparison of TB error miss rates with identical or different 24-bit CRC on the TB and CB levels is made in Figure 7.  The TB error miss probabilities of using identical CB and TB CRC generators are unacceptable [9, 12].  Different generator polynomials are recommended for the TB and CR CRC attachments.
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Figure 7 Conservative estimate of the conditional probability of error sequences being systematic with K = 6144, L = 24, r = 0.8, and Imin = 1.

[image: image15.png]
Figure 8 Probability of undetected TB errors with K = 6144, r = 0.8, N = 25, L = 24 and Imin = 1.
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� In the (very high SNR) region where turbo decoding converges after Imin iterations, the degree-3 feedback polynomial of the turbo code can contribute to the overall CB-level CRC checking capability [5].  The miss detection probability could consequently approach p = 2−(L+3).  Hence, the approximations become upper bounds in this region.

� For all simulations performed in this paper, improved Max-Log-MAP turbo decoder is assumed and the maximum number of decoding iterations is Imax = 8.  The tested channel is the AWGN channel.  Up to a million blocks are simulated for each SNR point.

� Note that the empirically collected ρ from simulation is noisier at high SNR since there are less code block error occurrences to collect statistics for ρ.

� Matlab syntax.
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