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1. Introduction

In a previous submission [1] Sharp proposed the use of Optimized Zadoff-Chu-Like (OZCL) sequences for the UL demodulation reference signals.  In this submission Sharp presents updated results that verify the performance improvements for OZCL sequences.  
OZCL sequences offer significant gains for UL RS use compared to extended Zadoff-Chu (EZC) sequences and truncated Zadoff-Chu (TZC) sequences. as this contribution shows.

Based on these results and the properties of OZCL sequences, Sharp recommends the use of these sequences for UL RS demodulation signals for E-UTRA, at least for shorter length sequences (length 12-36).  We believe our approach represents the best way to actually obtain sequences that are designed to meet the requirements of E-UTRA: lower PAPR and cubic metric, lower cross-correlation, and better performance with sequences of different lengths.

In addition to focusing on the 12-subcarrier case, which represents the most stringent re-use requirements, we present link level simulation results for the case where there are 12 and 36 subcarriers assigned concurrently, as well as comments on complexity and an overall comparison with cyclically extended Zadoff-Chu  (EZC) sequences and truncated Zadoff-Chu (TZC) sequences. 

In the following section we will summarize the comparison between OZCL sequences and TZC/EZC sequences.  We will then review the algorithm used to design the sequences as described in [1], and present updated link simulation results. Following that we will describe implementation considerations.  We will then summarize our comparison with TZC/EZC sequences. 

Summary Performance Comparison

Based on results and considerations discussed in the following sections, we can summarize the performance properties of OZCL sequences compared to extended and truncated ZC sequences we can make the following tables:
Table 1 Summary comparison of properties between OZCL and TZC/EZC

	Criterion
	OZCL Sequences
	TZC/EZC Sequences

	Median Correlation 
	Lower
	Higher

	Storage
	Higher (but  2Kbytes with length 12)
	Lower

	Computational Complexity
	About the same if PAPR optimization is done in real-time
	More if OZCL sequence PAPR optimization not done in real time.

	Cross-correlation performance
	Always better
	Always worse

	Performance for 1RB
	Substantially better for 4RS per sector; always better for 2 RS per sector at median SINRs.
	Substantially worse for RS per sector, always worse for 2RS per sector at median SINRs.

	CM/PAPR
	PAPR optimization allows a direct trade-off between sequence cross-correlation performance and PAPR/CM, and this optimization creates sequences with less average cross-correlation than TZC/EZC sequences.
	Sequence selection is the optimization method; limits the number of usable sequences, Node B may need to re-assign sequences based on transmitted power [16].

	Sequence Hopping
	Performance advantages should still be better than TZC/EZC sequences
	Needed for cross-correlation performance

	Frequency Hopping
	Not a problem
	Not a problem


Table 2 Median SINR Performance
	Sequence
	Length 12 Sequences
	Length 36 equences, 
4 sequences/sector
	Length 12 and 
Length 36 Sequences, 
4 Sequences per sector

	
	2 Sequences/sector
	4 Sequences/sector
	
	

	
	SINR
	 OZCL
	SINR
	 OZCL
	SINR
	 OZCL
	

	OZCL
	0.06dB
	-
	-4.19dB
	-
	0.29dB
	-
	-3.84dB

(36&12)
	-4.67dB

(3x12&12)

	TZC
	-0.35dB
	-0.29dB
	-5.44dB
	-1.25dB
	0.05dB
	-0.24dB
	-4.97dB  (36 & 12)

	EZC
	-1.07dB
	-1.01dB
	-6.42dB
	-2.23dB
	-5.62dB
	-5.34dB
	-


Table 3 CM/PAPR 
	Sequence
	Max. Raw CM, dB

	
	Length 12
	Length 36

	OZCL
	3.32dB
	2.45

	TZC
	5.19 dB
	4.33

	EZC
	3.86 dB
	4.54 


Optimized UL RS Design Algorithm and Simulation Results

In [1] we proposed a set of OZCL sequences that are identical to Zadoff-Chu sequences when the number of the sequence length is chosen to be a prime number.  

However, when the Zadoff-Chu sequence length is not a prime number, the OZCL sequences derived from application of the proposed design algorithm will be optimized and have significantly improved mean correlation between any two pairs of sequences compared to extended or truncated Zadoff-Chu sequences.  The resulting sequences have the following properties:

Property 1: They are minimally correlated
.
Property 2: They have constant modulus
.
Property 3: Their subsets are orthogonal or nearly orthogonal, 
Property 4: Their subsets are cyclic shifts of each other.

Thus the set of OZCL sequences is “based on” GCL/CAZAC sequences, but with the proviso that the sequences are optimized for the LTE numerology and thus offer a significant performance advantage compared to TZC/EZC sequences.  In [2] it is shown that if a Welch Bound Equality set of sequences exist, then the frame, or matrix of sequences, must be a unit norm tight frame.  As such we restrict ourselves to sequences that are based on a projection to the nearest tight frame, which turns out to be the unitary part of a polar decomposition of the frame. Note that TZC or EZC sequences, especially for length 12, do not possess a key property that a tight frame implies, namely, that all eigenvalues of its singular value decomposition are not the same.  This is likely one reason that cross-correlation properties of TZC/EZC sequences are widely varying.

In the next section we demonstrate that the proposed OZCL sequences have significant enough performance gains to justify their use as UL RS.

In Annex A we describe the algorithm used to create such sequences in detail, based on alternating projections onto convex sets and orthogonal manifolds. 

Performance Comparison of OZCL with truncated ZC sequences 

In what follows we shall mainly base results for comparison with truncated ZC sequences. Regarding cross-correlation performance, EZC sequences generally perform worse than TZC sequences as can be seen from Table 1, and the gains of OZCL sequences with respect to EZC sequences are generally greater than with TZC sequences.  Hence we focused on a comparison with TZC sequences. 
To determine the relative difference OZCL sequences’ performance with respect to TZC sequences, we used, for 2 tiers of cells, with 3 sectors per cell, a genetic algorithm based on the concept suggested in [3].  Details of this algorithm are in Annex B.  

1.1. Cross-correlation between length 12 sequences 
In Figure 1, we show, for the 12 sub-carrier case, the comparison of CDF of cross-correlations of the OZCL designed from the algorithm presented in the Annex with 5000 iterations versus the TZC sequences, for 84 sequences, composed of 7 groups of 12 OZCL sequences.  In addition, the cross-correlations of 84 EZC sequences are shown.
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Figure 1 Cross- Correlation magnitude of OZCL sequences versus truncated sequences for 84 sequences of length 12

From the above curve while OZCL sequences have greater maximum correlation better than truncated ZC sequences; the average correlation magnitude is 1.2dB less than TZC sequences; and its median value is 0.75 dB better than TZC sequences.    

1.2. Intercell interference with length 12 sequences 
4.2.1
4 sequences per sector

Next we considered whether it is possible to assign sequences to cells and sectors that actually minimize the multiple access interference.  To answer that question we assigned 4 sequences to each of 3 sectors per cell, in a typical 19 hexagonal cell arrangement, using 25 iterations of the genetic assignment algorithm described in Annex B. The simulation included the parameters of Table 4, and the CDF of received SINR is depicted in Figure 2.  The median SINR of OZCL sequences is seen to be 1.25 dB better than for TZC sequences at the median. 

In addition, we compared the performance of EZC sequences with OZCL sequences. The EZC sequences, while having better CM properties than TZC sequences, also have worse cross-correlation properties; they are worse than OZCL sequences by 2.9dB at the median.

In this case, with 4 UEs per sector, OZCL sequences outperform EZC sequences by over 2.2dB. 

4.2.1
2 sequences per sector

We have also investigated the situation where only 2 RS are assigned per sector.  In that case, regarding SINR, OZCL sequences outperform TZC and EZC sequences by 0.4dB and 1.0 dB respectively at the median. 

Thus, for length 12 sequences:

· OZCL sequences have better cross-correlation properties and SINR performance than either TZC or EZC sequences.

· OZCL sequences have lower CM than either EZC or OZCL sequences.

· If the choice of sequences is restricted to EZC and TZC sequences, there is a penalty paid for trading off CM with sequence SINR, whereas with OZCL sequences it is possible to get the best benefits of EZC and TZC sequences. 
Table 4 Simulation Parameters

	Parameter
	Assumption

	Cellular Layout
	Hexagonal grid, 19 cell sites, 3 sectors per site

	Cell ISD
	1732m

	Distance-dependent path loss
	L=I + 37.6log10(.R), R in kilometers

I=128.1 – 2GHz

	Shadowing fading
	Log-normal, 10 dB standard deviation

	Antenna pattern (horizontal)

(For 3-sector cell sites
with fixed antenna patterns)
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	User distribution 
	Uniformly dropped in sector area, 4 UEs per sector

	Carrier Frequency
	2.0GHz

	Minimum distance between UE and cell
	>= 35 meters

	Maximum UE TX power including PAPR backoff
	24 dBm

	Noise Figure
	4dB

	Power control
	Maintain received signal power as that at cell edge
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Figure 2 SINR of 12-length OZCL sequences compared to TZC sequences, 4RSs per sector per RB
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Figure 3   EZC versus OZCL sequence SINR, 4RSs per sector per RB
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Figure 4  SINR distribution, 2RS per sector per RB

1.3. Length 36 sequences 
In addition, we investigated the properties of length 36 sequences. For sets of 108 sequences broken into 9 blocks of 12 cyclic-shift sequences the cross-correlation properties of these sequences is depicted in Figure 5. The raw cubic metric for the OZCL sequences was 2.45dB; for the 108 TZC sequences used it was 4.33dB. The median cross-correlation of the OZCL sequences is better than 4.5dB, when optimally assigned. The link simulation results are shown in Figure 6, the median difference in SINR was about 0.24 dB in favor of OZCL sequences.
This is to be expected; at some long-enough sequence length the cross-correlation advantage of OZCL sequences becomes negligible with respect to TZC and EZC sequences.

However, we should note:

· Unless scheduling is done above the AN, or unless resources are quarantined so that 12-length assignments are not made, it is difficult to ensure that resources over the air can be made so that sequences of 12 can never be assigned to RBs in which greater than length 12 allocations are made on an adjacent cell/sector. And if such a scheduling were to be done, it might inefficiently use resources on the air.

· Length 12 sequences are essential for VoIP applications ([14], [15]). This is why the basic Resource Block size was set at 12. Thus it is length 12 sequences that limit the performance of E-UTRA
Thus any comparison of E-UTRA sequence performance should assume the existence of contemporaneous transmissions of length 12 as well as higher length RBs.   We should also note that we performed a link simulation to gauge the effects of MAI with length 36 EZC sequences; the median cross-correlation in that case was -5.62dB. Evidently the large amount of cyclic shift extension for length from length 31 to length 36 sequences has bad effects on cross-correlation properties.  This is to be expected, because the extended length 31 sequences, when expressed as a matrix, can only have rank 31.
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Figure 5  Cross Correlation Magnitude for 36 length sequences 
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Figure 6 SINR of 36 length sequences

1.4. Interference between length 12 and length 36 sequences 
In [1] we introduced the idea that sequences of longer lengths can be constructed from concatenations in the frequency domain of sequences of length 12. We performed a variation of the sequence assignment algorithm in Annex B by considering a previous assignment of length 12 sequences in an assignment of length 36 sequences. 

We compared the SINR performance of OZCL sequences and TZC sequences of length 12 and 36 which were optimally assigned; the results are depicted in Figure 7. The non-concatenated length 36 sequences were generated as 9 blocks of 12 orthogonal, cyclic shifted sequences of length 36. The concatenated sequences were PAPR optimized in the frequency domain by using the algorithm presented in [7], applied as in section 5.1 below.   In each sector of each cell, 3RBs were assigned randomly with probability ½ to either a 36-length sequence or three 12 length sequences; we assumed that there were 4 interfering UEs per sector, and that previously an optimal sequence assignment was made. 
Comparing TZC with OZCL sequences of length 36 and length 12, along with concatenations of length 12 sequences, we find the following:

· The median SINR of the OZCL sequences that have been optimized perform best, by about 1.1dB.

· The concatenated sequences perform almost as well as the OZCL sequences themselves. 

· Comparing Figure 7 and 8 with Figure 2 it becomes apparent that the transmission of length 12 sequences limits the possible performance of length 36 sequences. Furthermore, it is apparent that OZCL sequences are more robust to this type of transmission than at least TZC sequences.
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Figure 7  CDF of Received SINR, for 36-length and 12-length Sequences
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Figure 8 Detail from Figure 7

2. Implementation considerations

We wish to address in this section the following considerations:

1. PAPR/CM of the sequences
2. Generation and storage of the sequences.
3. Compatibility with frequency hopping, sequence hopping, shift hopping
We believe that these are not substantial issues with respect to OZCL sequence, and in fact, have advantages over and above TZC or EZC sequences.
2.1. PAPR/Cubic Metric of the Sequences

In Annex A, we mention that the PAPR algorithm as derived in [7], when applied in the frequency domain, yields a set of sequences that are constant modulus in that domain. In order to verify the value of the cubic metric for those sequences, we used the expression given in [17]:

We assume that the sequence represented as {xi1…xid }will be transmitted at time kt as

xi(kt) = EQ \i\su(n=0, d, xine j2pnf\s\do2(0)k t)  
where f0 is the sub-carrier spacing, kt  ranges over the duration of a long block, and where d is the sequence length.  By optimizing PAPR over the sequence xi(kt) we can ensure that the CM is minimized as well.  Fortunately this minimization does not have to be done under the identical waveform as would be actually transmitted; we have found that using t ( 1.8/(df0) is sufficient to minimize CM (which of course is computed with a highly oversampled version of xi(kt)).  By optimizing PAPR in this way computation can be minimized, as the algorithm requires at least a partial sorting of the waveform’s amplitudes and certainly for length 12 and 36 sequences should not pose a problem for real-time computation.

2.2. Generation and Storage of OZCL Sequences

Previously we have mentioned that OZCL sequences are cyclic shift subsets, and can be made orthogonal, just like “real” ZC sequences, but with better cross-correlation properties when the sequence length is not a prime number.  For length 12 sequences, the results presented herein assume that 84 sequences are generated. With that assumption, the storage required for the sequences would be:

 84 sequences /12 Cyclic Shifts X 8bytes per sequence element X 12 sequence elements/sequence 
 = 672 bytes if PAPR optimization is done in real-time, and 8.064Kbytes if PAPR optimization is not done in real-time.

As we had previously stated, lengths that are a multiple of length 12 can be generated with concatenations of a length 12 sequence or, alternatively stored as a length 12*n sequence (PAPR optimized or not). In such a case if up to K length sequences are stored, the storage would become K(K+1)/2 X 672 bytes (assuming 84 sequences would be used). If blocks of 108 sequences were used for length 24 and 36 sequences, the results would be K(K+1)/2 X 864 bytes if cyclic shifts were stored, and K(K+1)/2 X 10.368 if PAPR optimized sequences were stored. At some point, for some sequence length, it is likely that the benefits from cross-correlation of the same sequences are nullified by the effect of sequence cross-correlation of different lengths (it appears to exist at length 36 from our results).  

An example of one possible method of storage/generation of sequences would be as in Table 5. Note these are just estimates, but they illustrate that if PAPR optimization is done in real time, or if PAPR requirements can be significantly relaxed, there is no significant impact on storage.

Table 5  Possible Storage Required for OZCL Sequences
	Number of Sequences
	Length
	Storage w/ PAPR Optimization
in Real Time,
Bytes
	Storage w/ PAPR 
Optimization in Data
Bytes

	84
	12
	672
	8064

	96
	24
	768
	18432

	108
	36
	864
	31104

	196
	48
	1568
	75264

	Total Storage
	
	3872
	132864


If one assumed that OZCL sequences >48 were never used, then the maximum storage could be bounded to approximately 8.64Kbytes if storage were at a premium, or 110.36Kb if computation were at a premium.  Note that this would be storage, and would not in itself consume a great deal of power.  For very long sequence assignments, the cross-correlation and PAPR optimization properties of TZC and EZC sequences is not problematic, and so likely the best tradeoff would be:

· Use OZCL sequences for short RB allocations (12-36 sub-carriers).

· For > 36 sub-carriers, use TZC/EZC sequences provided cross-correlation and CM are low enough.

2.3. Frequency Hopping/Shift Hopping of the Sequences

We have presented results for length 12 sequences assuming 84 possible sequences could be used.  We do not envision in particular any problem with respect to hopping of sequences; our view of sequence hopping though is purely random hopping sequence assignments must be worse than one in which hopping is coordinated from cell to cell. Moreover we would assume that sequence hopping would take place amongst various shifts of a base sequence within a given cell.
3. Conclusions

We have presented a sequence design algorithm for UL RS design for E-UTRA which offers significant performance advantages.  Sharp recommends the use of such a method and adoption of OZCL UL RS sequences derived from this design algorithm for E-UTRA, at least for shorter length sequences.  OZCL sequences mitigate both sequence cross-correlation and PAPR/CM, whereas it seems that with TZC and EZC sequences one can in general have one or the other, but not both.  
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Annex A: Details on Proposed OCZL RS Design Algorithm

4.1. Introduction

This document discusses the design of reference signals for MIMO (multiple input multiple output) systems in which reference signals are allocated amongst one or more mobile radios, for use in single user or multiple user MIMO.

The particular application at hand is the design of uplink reference signals in a cellular system, since this poses the most stringent requirements on time/frequency resources, especially for the immediate target application, which envisions a single or multiple carrier modulation with cyclic prefix, where there is synchronization between the transmission up multiple uplink signals and their respective base stations, and where sectorization amongst cells is employed to maximize capacity per cell.  In addition, the system so envisioned employs multiple bandwidth allocations simultaneously, where each bandwidth so allocated to a mobile terminal is an integer amount of some basic unit.

In such a situation, the following design criteria are to be considered:

1. The set of reference signals should be large enough to cover at least 3 sectors per cell, with at least 2 reference signals per sector (preferably 4).

2. The set of reference signals should be orthogonal in each sector of a given cell, and preferably in all sectors adjacent to a given sector.  If this is achieved, then it is possible, if reference signals are known to adjacent sectors, to design a best minimum mean square receiver ([4]).

3. For those reference signals not in adjacent sectors, or which are not orthogonal, they should be minimally correlated, with approximately the same correlation, and approach if not meet the Welch Bound ([5], [7]). 

4. The set of reference signals should have Peak to Average Power Ratio (PAPR) approaching if not equal to 1, where the PAPR is defined as for a sequence vector c as:

P =  EQ \f(||c||\s\do4(∞)\s\up5 (2), c\s\up5 (H) c) 
where  EQ ||c||\s\do4(∞)\s\up5 (2)  denotes the square maximum modulus component of c and where ( )H denotes conjugate transpose
.

5. Because we are working under the assumption of a single or multiple carriers with a cyclic prefix, it is desirable that Discrete Fourier Transforms of sequences be easily computable.  Thus it is desirable that amongst subsets of sequences with orthogonal elements, that each element be a cyclic shift of another element.  This property is also useful to provide robust performance if a transmission system which transmits a cyclic prefix for multipath elimination encounters multipath components with delay spread greater than the cyclic prefix length, as in such cases cyclic shifts, if scaled large enough, can still be distinguishable. 

6.  In a system where multiple bandwidths are employed simultaneously, it is desirable that the set of sequences be able to be recursively generated from a base sequence.

If the amount of reference signal space (time and frequency resources) is exactly large enough, (i.e., the basic unit of bandwidth allocation allows for 19 or any prime number larger of reference symbols available for 2 reference signals per sector or 37 or any prime number larger reference signals for 4 reference signals per vector) then the solution to the above problem would be easily solved by taking Zadoff-Chu sequences as the reference sequences ([6]) as they meet conditions 1- 6 exactly when the sequence length is a prime at least as large as the aforementioned numbers.  However, in a world where we are not blessed with such resource availability or sequence numerology (for example suppose we are given a sequence length that is an even number) we have to work a bit harder.  We describe here an algorithm for designing such sequences based on an alternating projections method given in [7].  

We note that current proposed solutions (see, for example [11] and [12]) rely on either truncation or cyclic extension of a particular set of Zadoff-Chu sequences.  This results in a tedious integer programming problem for sequence assignment, and no guarantee of minimal correlation.

The next section we will give a rigorous definition of the above problem, and in the section following that we shall give the justification for the algorithm that finds the nearest circulant matrix to a given matrix. In the section after that we present the algorithm.  Note that at present it is not known if sequences meeting the Welch Bound exist for any desired sequence length (this is an unsolved problem); however, it is known, and follows from [7], as well as proofs of the extensions derived below that each step of the algorithm provides the closest matrix meeting given conditions above, and so if a fixed point exists (i.e.,  the algorithm produces the same matrix at each iteration), this algorithm should find it, provided a “good” starting point is chosen, as suggested in [7]. 

4.2. Finding Minimally Correlated Sets of Matrices with Minimum PAPR

Consider a sequence of N column vectors {xn} EQ \a(N, n=1) , xn ( C d, d ( N, which we assign as columns of a matrix X = [x1  x2  … xN]; we call such a matrix a frame.  A frame is a generalization of an orthogonal basis.  We assume in the following that each vector has unit length, without any loss in generality, for convenience
. We group blocks of K of these vectors into a set of matrices, {Xi} EQ \a(K, i=1) so that (with MK=N)  X  = [X1  X2  … XM].  We denote the correlation of between vectors as <xk, xn> as the standard inner product in complex Euclidean d-space ([7]).   

The Welch Bound is, for k ( n, 

max k ( n<xk, xn>

  [image: image11.emf]
A frame that meets the Welch Bound with is called a tight frame.  This is precisely the kind of problem that is important for reference signal design; we wish to create a set of reference signals that is as close as possible to a tight frame.  But for MIMO applications we also would like to design subsets of vectors of the frame that are guaranteed to be orthogonal to each other.

Conditions 1 and 3 imply that for any <xk, xn> not in the same Xi, <xk, xn> ( , where  is a bound on the maximum correlation (for which the Welch bound may or may not exist).  Now if only conditions 1 and 3 were present, the method described in [7] section III, subsection F would be sufficient for finding X; however, because of additional structural constraints as described above, we need to do additional work.  However, we note that, as the [7] mentions, if we have any matrix Z ( C d X N, the matrix that comes closest in distance (as measured in element-wise or Frobenius norm [9]) is given by ZZ Z.  This condition also enforces an orthnormality condition between rows of X, if an optimal X exists. 

Condition 2 implies that Xi* Xi = IK; (obviously K ( d); that is each column in any Xi is orthogonal to any other column in Xi. To enforce this condition (which we require), we can repeat the above recipe for meeting conditions 1 and 3 with the role of X above now assumed by XiH.  In practice we have found that this projection increases the maximum correlation between sequences.  One way we have found to reduce the maximum correlation is therefore to relax the orthogonality condition by taking instead of XX X, we use 
(Id + (1-))XX X, where is a constant between 0 and 1. We have found that
( 0.1 provides a good tradeoff between maximum correlation and orthogonality.  (However results presented in this submission  do not use this method).

Meeting Condition 4 can be met with the algorithm presented in [7], section VI, on each of the component vectors of any candidate matrix, which will not be repeated here, as it is rather lengthy and is not the main subject of this document.    Suffice it to say that the algorithm creates vectors of constant modulus that are closest in Euclidean norm to a set of input vectors. Moreover, when the set of vectors is constrained to be a circulant matrix (or for those sub-blocks of the set of vectors which are circulant), with eigenvalues which are identical, the PAPR algorithm, when operated in the frequency domain will enforce orthogonality between column vectors (i.e. sequences). This condition happens when the PAPR algorithm minimizes FX, where 

F  =  EQ \b\bc\[(\a \al \co4 \vs3 \hs3( 1,     1,     …,     1,  1,    e-j2p/N,     …,   e-j2p(N-1)/N, \a\al\co1(.,.,.),     \a\al\co1(.,.,.),    \a\al\co1(.,  .,     .),    \a\al\co1(.,.,.), 1, e-j2p(N-1)/N  ,    (,    e-j2p(N-1)(N-1)/N))  

However, this will not in general minimize the CM. To minimize the CM, we minimize the PAPR of:

xi(kt) = EQ \i\su(n=0, d, xine j2pnf\s\do2(0)k t)  where f0 is the sub-carrier spacing, and where the range of kt is over a Long Block. We have found that taking t to be 1/(1.8x66.67)s, .

4.3. Finding the Circulant Matrix Nearest to a Given Matrix

Suppose we have a matrix Z = [z1 … zN], where each zi  is a column vector ( C N.  We wish to find the circulant matrix C = [c0 … cN-1], that is closest in Frobenius (element-wise) norm to Z. 

Let F be given as the Discrete Fourier Transform (DFT) matrix [8]:

F  =  EQ \b\bc\[(\a \al \co4 \vs3 \hs3( 1,     1,     …,     1,  1,    e-j2p/N,     …,   e-j2p(N-1)/N, \a\al\co1(.,.,.),     \a\al\co1(.,.,.),    \a\al\co1(.,  .,     .),    \a\al\co1(.,.,.), 1, e-j2p(N-1)/N  ,    (,    e-j2p(N-1)(N-1)/N))  

We also define the diagonal “delay” matrix D as

D = diag(1  e-j2/N  e-j2/N  . . . e-j2/N  ).

Then ([7]) for any circulant matrix C, C= FHF, where  is the DFT of the sequence/vector c0.   It is straightforward to show:

ci+1 mod N = FHDF ci  = (FHDF)(i+1) mod N c0.
Then || Z - C||  EQ \a(2, F)  =   EQ \i\su(i=1, N, ||zi - ci-1||2) =  EQ \i\su(i=1, N, ||zi - (FHDF)(i-1) c0||2) 
Now with  EQ \b \bc\[ (\a\al\co1(z1, z2,.,.,., zN, )) , and B =  EQ \b \bc\[ (\a\al\co1(IN, FHDF,.,.,., (FHDF)N-1, ))  the minimizing c0, which uniquely determines C, is given by c0, =  B+  , where B+  is the Moore-Penrose pseudo-inverse of  B. That is, B+    = (BH  B)-1  BH  ([9]).

Note that if we are considering only matrices where cyclic shifts are greater than unity between vectors, or we are dealing with reduced rank matrices (Z has fewer than N columns),   we need only modify the recurrence relation ci+1 mod N = FHDF ci  and forming the appropriate matrix B.  

Thus if only 2 vectors were required that were cyclic shifted 3 elements apart, we would have  c1  = (FHDF)3 c0  and  B would only contain the matrix elements IN  and (FHDF)2.  

Note that although the space of circulant matrices is closed and convex, the space of orthogonal matrices is not convex, and a solution that produces the best set of orthogonal matrices {Xi} may not be close enough to produce a desired minimal correlation.  Furthermore, the algorithm will generally take thousands of iterations to converge, depending on which set of constraints is used.  However, when the PAPR optimization is done in the frequency domain, far fewer iterations are needed, because the “closest” matrices do not usually correspond to the same fixed point.  However by choosing the order of the iterations judiciously, one can create the “nearest” set of sequences with the desired properties.

4.4. Overall Description of the Algorithm

Using the results of the last two sections, we are now in a position to describe the algorithm.

Let T = the total number of iterations (a given input).

Starting with any matrix  Z0  ( C d X N,  (we will restrict ourselves to matrices with elements on the unit hypersphere).  In particular, using TZC sequences or EZC sequences are possible.

Z0 ( Z  (“(” denotes a variable/matrix assignment operation)

For t=1 to T:

1.  Compute ZZ Z( Y.  This results in the frame nearest to Z.  Next we impose the constraints.

2.  Break up/express Y = [Y1  Y 2 . . . Y M ]  


For m =1 to M

Compute (Y m Y m Y m  ( Vm
end

Assemble the matrix V = [V1  V2 . . . VM ].

3. Compute Q as nearest circulant matrix to V following the method on each “base block” outlined in section 8.3. 

4.  Find W closest matrix with minimum PAPR to Q as per [7], section VI.

5.  Set W ( Z  

6. Update t + 1 ( t and continue.

7. Output Z when done.

Note that if we are optimizing in the frequency domain for PAPR, we compute DFTs of sequences prior to PAPR optimization, and then use an IDFT on the PAPR optimized sequence to do more iterations.

We note that [7] contains results on convergence (excluding the circulant matrix projection, although it is straightforward to demonstrate convergence for that algorithm); convergence may not yield a globally optimal solution, but should yield results that are improvements on initial conditions.  Typically, if we require strict orthogonality, and if the optimization of the PAPR is done only on the sequences themselves, not on their time domain representations, of the order of 500 iterations produces results near convergence (depending on the constraints used), but if we relax the orthogonality condition, converged results appear in as little as 10 iterations or so.  If however, we are optimizing the PAPR on the time-domain waveform, then in order to produce good results, it is useful to only perform the PAPR optimization every few hundred to one thousand iterations.  In practice, we have found that using TZC sequences of length 12 as input sequences, the approximately 5000 iterations makes the best tradeoff between average and peak cross-correlation of sequences.  Beyond 5000 iterations, the average cross-correlation continues to be reduced, but the peak correlation increases.  The maximum and mean correlations for the design of length 12 OZCL sequences are depicted in figures A-1 and A-2.  The PAPR optimization of time domain representations of the signals is applied every 1000 iterations.
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Figure A 1  Maximum Correlation of Length 12 Sequences
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Figure A 2 Mean Correlation of Length 12 Sequences
4.5. Summary

We have described a method for reference sequence construction applicable to uplink MIMO systems.  This method avoids many of the complexities involved with trying to fit variations of Zadoff-Chu sequences for cross-correlation and PAPR/CM, and thus should greatly simplify the design of E-UTRA. 

Sequences for Length 12

Each column represents one sequence of length 12.

Columns 1 through 6 

   0.3105 - 0.0521i   0.1621 - 0.0478i   0.1727 + 0.1409i  -0.2474 + 0.3731i  -0.2050 - 0.2134i   0.1360 + 0.0411i

   0.2045 + 0.0857i   0.3394 - 0.0353i   0.2514 + 0.0525i   0.3910 + 0.1906i  -0.1683 + 0.4138i  -0.2050 - 0.1945i

   0.1020 + 0.3386i   0.2313 + 0.0783i   0.3137 - 0.0630i   0.1326 - 0.0361i   0.3469 + 0.1341i  -0.1863 + 0.4002i

  -0.3244 + 0.0540i   0.1038 + 0.3219i   0.2699 + 0.0708i   0.3870 - 0.0463i   0.1029 - 0.0236i   0.3186 + 0.1406i

   0.1190 - 0.1857i  -0.2985 + 0.0290i   0.0347 + 0.3225i   0.1703 + 0.0678i   0.3782 + 0.0178i   0.1457 - 0.0073i

  -0.0512 + 0.2025i   0.1565 - 0.2100i  -0.3143 + 0.0281i   0.0782 + 0.4116i   0.2024 + 0.1107i   0.3885 + 0.0126i

  -0.1445 - 0.1104i  -0.0129 + 0.1873i   0.1212 - 0.2171i  -0.2903 + 0.0390i   0.1187 + 0.3506i   0.1933 + 0.0898i

   0.0916 + 0.0958i  -0.1095 - 0.1321i   0.0014 + 0.1493i   0.1065 - 0.2160i  -0.3245 + 0.0644i   0.1259 + 0.3372i

  -0.2584 - 0.1514i   0.0932 + 0.0369i  -0.0679 - 0.0969i  -0.0780 + 0.2070i   0.1485 - 0.1879i  -0.3443 + 0.0548i

  -0.2238 + 0.4429i  -0.2610 - 0.2028i   0.1950 + 0.0634i  -0.0338 - 0.0866i  -0.0116 + 0.1847i   0.1488 - 0.2036i

   0.3106 + 0.1917i  -0.2408 + 0.4249i  -0.3044 - 0.2588i   0.0700 - 0.0421i  -0.0625 - 0.0936i  -0.0361 + 0.1871i

   0.0635 + 0.0485i   0.2749 + 0.1557i  -0.1670 + 0.4143i  -0.1434 - 0.0431i   0.0925 + 0.0866i  -0.0748 - 0.0965i

Columns 7 through 12 

  -0.0391 - 0.0188i  -0.0931 + 0.0829i   0.1568 - 0.1413i  -0.3018 + 0.1226i   0.0457 + 0.3467i   0.1566 + 0.1265i

   0.1181 + 0.0374i   0.0028 - 0.0687i  -0.1268 + 0.1832i   0.1511 - 0.2334i  -0.3492 + 0.0381i   0.0262 + 0.3913i

  -0.2098 - 0.2039i   0.1191 + 0.0544i  -0.0618 - 0.1297i  -0.0069 + 0.1735i   0.0770 - 0.2332i  -0.3767 + 0.0911i

  -0.1906 + 0.3824i  -0.2096 - 0.2394i   0.2112 + 0.1189i  -0.0886 - 0.0855i  -0.0240 + 0.1693i   0.0810 - 0.2149i

   0.3283 + 0.1501i  -0.1621 + 0.3973i  -0.3002 - 0.2143i   0.1414 + 0.0257i  -0.0440 - 0.0677i  -0.0891 + 0.1540i

   0.1642 - 0.0137i   0.3544 + 0.1478i  -0.1220 + 0.3774i  -0.2113 - 0.2201i   0.1521 + 0.0534i  -0.0641 - 0.0624i

   0.3677 + 0.0128i   0.1500 + 0.0058i   0.3198 + 0.1860i  -0.1784 + 0.3967i  -0.1976 - 0.2599i   0.1495 + 0.0677i

   0.1823 + 0.0920i   0.3606 + 0.0455i   0.1040 + 0.0355i   0.2631 + 0.1493i  -0.1860 + 0.3862i  -0.2033 - 0.2441i

   0.1383 + 0.3593i   0.2118 + 0.0690i   0.3649 - 0.0357i   0.1440 - 0.0524i   0.3125 + 0.0838i  -0.1621 + 0.3894i

  -0.3464 + 0.0650i   0.1329 + 0.3177i   0.2412 + 0.0831i   0.4198 - 0.0297i   0.1580 - 0.0224i   0.3226 + 0.0939i

   0.1601 - 0.2090i  -0.3597 + 0.0986i   0.0519 + 0.3375i   0.2296 + 0.1576i   0.4002 - 0.0176i   0.1458 - 0.0248i

  -0.0331 + 0.1931i   0.1228 - 0.2300i  -0.2338 + 0.1155i   0.0203 + 0.3135i   0.2117 + 0.0807i   0.3461 - 0.0517i

Columns 13 through 18 

   0.2999 - 0.0081i   0.0201 + 0.1837i  -0.0852 + 0.0605i  -0.0352 - 0.0149i  -0.0349 + 0.0412i   0.0461 + 0.1270i

   0.4049 + 0.0404i   0.2861 + 0.0171i   0.0236 + 0.1902i  -0.0877 + 0.0563i  -0.0295 - 0.0049i  -0.0004 + 0.0273i

   0.2513 + 0.2354i   0.4193 + 0.0746i   0.2785 + 0.0274i   0.0200 + 0.1972i  -0.0858 + 0.0553i  -0.0341 + 0.0030i

  -0.2712 + 0.1790i   0.2568 + 0.2661i   0.4232 + 0.0909i   0.2783 + 0.0276i   0.0228 + 0.1767i  -0.1070 + 0.0675i

   0.2516 - 0.3998i  -0.2606 + 0.2220i   0.2688 + 0.2753i   0.4222 + 0.0931i   0.2558 + 0.0370i   0.0247 + 0.1811i

  -0.4269 + 0.1071i   0.2352 - 0.3966i  -0.2699 + 0.2401i   0.2682 + 0.2780i   0.4155 + 0.0969i   0.2950 + 0.0652i

  -0.0413 + 0.1701i  -0.4018 + 0.0944i   0.2592 - 0.3623i  -0.2697 + 0.2439i   0.2626 + 0.2953i   0.4131 + 0.0549i

   0.0607 + 0.0751i   0.0204 + 0.1576i  -0.3904 + 0.1235i   0.2600 - 0.3582i  -0.2640 + 0.2531i   0.2581 + 0.2842i

  -0.0385 + 0.0122i   0.0860 + 0.0744i   0.0235 + 0.1562i  -0.3840 + 0.1272i   0.2659 - 0.3571i  -0.2757 + 0.2321i

  -0.0555 - 0.0327i  -0.0550 - 0.0268i   0.0962 + 0.0547i   0.0292 + 0.1596i  -0.3877 + 0.1311i   0.2509 - 0.3611i

  -0.1183 + 0.0724i  -0.0102 - 0.0451i  -0.0440 - 0.0387i   0.0958 + 0.0549i   0.0348 + 0.1779i  -0.3844 + 0.1372i

   0.0031 + 0.1959i  -0.1432 + 0.0273i  -0.0186 - 0.0314i  -0.0450 - 0.0414i   0.1042 + 0.0763i   0.0284 + 0.1657i

  Columns 19 through 24 

  -0.0443 + 0.1433i  -0.3537 + 0.1760i   0.2705 - 0.3066i  -0.2376 + 0.2961i   0.1425 + 0.3027i   0.4111 + 0.0411i

   0.0887 + 0.1247i   0.0523 + 0.1053i  -0.4900 + 0.1649i   0.2188 - 0.3471i  -0.3407 + 0.3077i   0.2374 + 0.2446i

   0.0301 - 0.0074i  -0.0126 + 0.0264i   0.0766 + 0.1077i  -0.3670 + 0.0918i   0.1832 - 0.3159i  -0.3216 + 0.2530i

  -0.0233 - 0.0098i  -0.1012 + 0.0022i   0.0941 + 0.1103i   0.0135 + 0.1330i  -0.3609 + 0.1069i   0.1912 - 0.3408i

  -0.1057 + 0.0952i   0.0368 - 0.0534i  -0.0817 - 0.0222i   0.0884 + 0.1004i   0.0703 + 0.2120i  -0.4550 + 0.1156i

   0.0000 + 0.2202i  -0.1610 - 0.0670i   0.0226 + 0.0145i  -0.0682 - 0.0402i   0.0303 + 0.0092i  -0.0567 + 0.1898i

   0.3015 + 0.0630i   0.0295 + 0.2247i  -0.0638 + 0.0527i  -0.0483 - 0.0709i  -0.1453 - 0.0035i   0.0096 + 0.1990i

   0.4328 + 0.0343i   0.3528 + 0.0177i  -0.0054 + 0.1878i  -0.1022 + 0.0907i  -0.0746 + 0.0125i  -0.0076 + 0.0386i

   0.1977 + 0.2701i   0.3655 + 0.0610i   0.2229 + 0.0344i  -0.0244 + 0.1581i  -0.0965 + 0.0499i  -0.0432 + 0.0354i

  -0.2694 + 0.2503i   0.2800 + 0.2044i   0.3633 + 0.1154i   0.3040 - 0.0526i   0.0146 + 0.1122i  -0.0968 + 0.0889i

   0.2221 - 0.3670i  -0.3198 + 0.2580i   0.3206 + 0.2330i   0.4828 + 0.1240i   0.3158 + 0.0012i   0.0242 + 0.1954i

  -0.3881 + 0.1360i   0.3016 - 0.3015i  -0.2550 + 0.2421i   0.1778 + 0.2749i   0.4435 + 0.0596i   0.1814 + 0.0011i

  Columns 25 through 30 

   0.0650 + 0.2664i  -0.0488 - 0.1454i  -0.1837 + 0.2653i  -0.0915 + 0.2176i  -0.1714 - 0.1785i   0.0711 - 0.0073i

   0.4855 - 0.0382i   0.0959 + 0.2383i  -0.0793 - 0.1019i  -0.1632 + 0.2612i   0.0017 + 0.2418i  -0.1864 - 0.1681i

   0.2401 + 0.0860i   0.4578 - 0.0722i   0.0825 + 0.1934i   0.0180 - 0.0922i  -0.1637 + 0.2745i   0.0037 + 0.2449i

   0.1553 + 0.2883i   0.2595 + 0.0476i   0.4351 + 0.0693i   0.0054 + 0.2326i  -0.0470 - 0.2124i  -0.1680 + 0.2595i

  -0.1938 - 0.3195i   0.1105 + 0.3251i   0.3226 + 0.0948i   0.4037 + 0.0255i  -0.0247 + 0.2057i  -0.0578 - 0.2036i

  -0.0726 + 0.2940i  -0.2331 - 0.3540i   0.0867 + 0.3340i   0.2798 + 0.1156i   0.4961 + 0.0948i  -0.0399 + 0.2163i

  -0.1433 + 0.0838i  -0.0743 + 0.2435i  -0.1831 - 0.3051i   0.1106 + 0.2914i   0.2687 + 0.1328i   0.4947 + 0.0875i

   0.0859 - 0.0664i  -0.1941 + 0.1392i  -0.0101 + 0.3012i  -0.2865 - 0.3170i   0.0931 + 0.2400i   0.2690 + 0.1329i

  -0.1578 - 0.1702i   0.0860 - 0.0419i  -0.0744 + 0.1889i   0.0085 + 0.3216i  -0.2456 - 0.2115i   0.0854 + 0.2475i

   0.0041 + 0.2092i  -0.1561 - 0.1569i   0.0733 - 0.0765i  -0.0616 + 0.2184i   0.0236 + 0.3701i  -0.2383 - 0.2130i

  -0.1967 + 0.2365i  -0.0410 + 0.2397i  -0.1798 - 0.1931i   0.0379 - 0.0625i  -0.0864 + 0.1531i   0.0377 + 0.3636i

  -0.0669 - 0.2189i  -0.1981 + 0.2238i   0.0021 + 0.2633i  -0.2263 - 0.1998i   0.0442 - 0.0348i  -0.0895 + 0.1687i

  Columns 31 through 36 

  -0.0784 + 0.1583i  -0.0281 + 0.3647i  -0.2206 - 0.2198i   0.1564 + 0.2732i   0.2309 + 0.1361i   0.5252 - 0.0414i

   0.0365 - 0.0438i  -0.1102 + 0.2156i   0.0154 + 0.2974i  -0.3278 - 0.2122i   0.0808 + 0.2710i   0.1912 + 0.0786i

  -0.1599 - 0.2367i   0.0900 - 0.0220i  -0.0782 + 0.1217i   0.0186 + 0.2979i  -0.2904 - 0.1590i   0.1374 + 0.2484i

   0.0199 + 0.2638i  -0.2301 - 0.1574i   0.0634 - 0.0512i  -0.0702 + 0.1716i   0.0198 + 0.3059i  -0.2472 - 0.3013i

  -0.2293 + 0.2581i  -0.1370 + 0.2634i  -0.1589 - 0.2753i  -0.0423 - 0.0270i  -0.1665 + 0.1864i  -0.1224 + 0.3237i

  -0.0115 - 0.2107i  -0.2833 + 0.1993i  -0.0329 + 0.2365i  -0.0655 - 0.2373i   0.0707 - 0.0863i  -0.0395 + 0.1029i

   0.0494 + 0.2200i   0.0279 - 0.2427i  -0.2670 + 0.2518i  -0.1518 + 0.2985i  -0.1345 - 0.1400i   0.0242 - 0.0388i

   0.4915 + 0.1001i   0.0033 + 0.2908i   0.0125 - 0.2500i  -0.2512 + 0.1931i  -0.1321 + 0.2718i  -0.1875 - 0.1931i

   0.2559 + 0.0922i   0.3855 - 0.0340i   0.0664 + 0.2444i  -0.0355 - 0.1733i  -0.2344 + 0.3069i  -0.0259 + 0.2205i

   0.1237 + 0.2250i   0.2031 - 0.0340i   0.4177 + 0.0107i   0.0234 + 0.1327i  -0.0574 - 0.1246i  -0.2264 + 0.2608i

  -0.2303 - 0.1628i   0.1310 + 0.2533i   0.2445 + 0.0315i   0.4656 + 0.0054i  -0.0027 + 0.1516i  -0.0470 - 0.1392i

  -0.0141 + 0.3580i  -0.2322 - 0.2038i   0.1506 + 0.3305i   0.2808 + 0.0653i   0.4994 + 0.0158i   0.0106 + 0.2249i

  Columns 37 through 42 

     0.3503 - 0.0703i   0.1129 - 0.1660i   0.3736 + 0.0331i  -0.3753 - 0.1301i  -0.1483 - 0.0666i   0.0658 + 0.0771i

  -0.2461 + 0.2395i   0.3632 - 0.1136i   0.0653 - 0.2633i   0.2868 - 0.0319i  -0.3937 - 0.1055i  -0.1361 - 0.0750i

   0.1916 + 0.0922i  -0.2167 + 0.2451i   0.3421 - 0.1452i   0.1285 - 0.1970i   0.3174 - 0.0421i  -0.4079 - 0.1017i

   0.2299 + 0.1439i   0.2246 + 0.1193i  -0.2732 + 0.2949i   0.3614 - 0.1125i   0.0902 - 0.2110i   0.3306 - 0.0480i

  -0.0166 + 0.2295i   0.2009 + 0.1240i   0.2711 + 0.1254i  -0.2816 + 0.2483i   0.3681 - 0.0769i   0.0884 - 0.2125i

   0.2426 + 0.0160i  -0.0381 + 0.2089i   0.2332 + 0.0633i   0.1861 + 0.1585i  -0.3145 + 0.2401i   0.3697 - 0.0593i

   0.3169 - 0.1030i   0.2842 + 0.0008i  -0.0427 + 0.2013i   0.2398 + 0.0612i   0.1487 + 0.1359i  -0.3025 + 0.2222i

   0.0122 + 0.0836i   0.3471 - 0.1313i   0.2215 - 0.0747i  -0.0204 + 0.2987i   0.2492 + 0.0894i   0.1614 + 0.1142i

  -0.1874 - 0.1023i   0.0379 + 0.0624i   0.2238 - 0.1524i   0.2830 - 0.0606i  -0.0144 + 0.2692i   0.2697 + 0.1198i

  -0.4568 - 0.0775i  -0.1364 - 0.0594i   0.0128 + 0.1639i   0.2363 - 0.1639i   0.2630 - 0.0322i   0.0051 + 0.2452i

   0.3088 - 0.0648i  -0.4266 - 0.0802i  -0.0791 - 0.0286i   0.0736 + 0.1006i   0.2512 - 0.1636i   0.2474 - 0.0189i

   0.0906 - 0.1931i   0.3275 - 0.0279i  -0.3089 - 0.1965i  -0.1014 - 0.1285i   0.0459 + 0.0935i   0.2615 - 0.1641i

  Columns 43 through 48 

   0.2615 - 0.1489i   0.3299 - 0.0477i   0.0183 + 0.3029i   0.2052 + 0.0584i   0.2031 + 0.0838i  -0.2413 + 0.2288i

   0.0332 + 0.0351i   0.2113 - 0.1856i   0.2462 - 0.0319i  -0.0101 + 0.2503i   0.2725 + 0.1380i   0.2392 + 0.0798i

  -0.1745 - 0.0169i   0.0313 + 0.0241i   0.2749 - 0.2247i   0.2270 - 0.0502i   0.0531 + 0.2593i   0.1936 + 0.0726i

  -0.3942 - 0.1455i  -0.0415 - 0.1610i   0.1491 + 0.1477i   0.2815 - 0.2642i   0.2754 + 0.0093i  -0.1287 + 0.2275i

   0.2723 - 0.0359i  -0.4409 - 0.1429i  -0.0809 - 0.1691i   0.1081 + 0.1107i   0.2454 - 0.1215i   0.2124 + 0.0299i

   0.1277 - 0.1485i   0.2749 + 0.0695i  -0.3895 - 0.2506i  -0.1097 - 0.1806i   0.0610 + 0.1700i   0.2704 - 0.1373i

   0.2782 - 0.1531i   0.0910 - 0.2693i   0.3387 - 0.0202i  -0.3299 - 0.2284i  -0.1448 - 0.1452i   0.0212 + 0.0181i

  -0.2887 + 0.2663i   0.3017 - 0.0772i   0.0813 - 0.1959i   0.3301 + 0.0712i  -0.4000 - 0.1295i  -0.1516 - 0.0563i

   0.2397 + 0.1270i  -0.2535 + 0.2823i   0.3445 - 0.1031i   0.1368 - 0.2527i   0.3055 + 0.1415i  -0.4388 - 0.1589i

   0.1912 + 0.1571i   0.1387 - 0.0030i  -0.1685 + 0.1692i   0.3264 - 0.1077i   0.0130 - 0.1961i   0.3636 - 0.0394i

  -0.0442 + 0.2986i   0.2189 + 0.1371i   0.2197 + 0.0470i  -0.1659 + 0.2636i   0.2724 - 0.1568i   0.0135 - 0.2010i

   0.3234 - 0.0205i  -0.0283 + 0.2773i   0.1577 + 0.0683i   0.2101 + 0.0570i  -0.2515 + 0.2683i   0.3774 - 0.1236i

Columns 49 through 54 

   0.1420 - 0.0262i  -0.0486 - 0.2765i   0.2793 - 0.0977i   0.0416 - 0.1088i   0.1881 - 0.2818i  -0.1158 + 0.2464i

   0.0791 + 0.0739i   0.0458 - 0.0413i  -0.0466 - 0.2361i   0.2756 - 0.1453i  -0.0085 - 0.1122i   0.2550 - 0.3099i

  -0.2102 + 0.2528i   0.1712 + 0.0244i   0.0808 - 0.0164i  -0.0407 - 0.2467i   0.2606 - 0.2032i  -0.0088 - 0.1316i

   0.1122 - 0.0092i  -0.2430 + 0.2124i   0.0985 + 0.0765i   0.0478 - 0.0127i  -0.0430 - 0.2877i   0.3075 - 0.2329i

   0.5300 + 0.0260i   0.2400 + 0.0974i  -0.2368 + 0.2180i   0.0817 + 0.0962i   0.1244 - 0.0066i   0.0561 - 0.2608i

  -0.1549 + 0.2034i   0.6102 - 0.0021i   0.1602 + 0.0792i  -0.2933 + 0.2298i   0.0445 + 0.0358i   0.1390 - 0.0645i

  -0.0694 + 0.0468i  -0.1538 + 0.2112i   0.6289 + 0.0185i   0.1417 + 0.0976i  -0.2905 + 0.2228i   0.0054 + 0.0102i

  -0.1344 + 0.3295i   0.0495 + 0.0377i  -0.0866 + 0.2545i   0.5912 - 0.0243i   0.0685 + 0.0461i  -0.2584 + 0.2384i

   0.2129 - 0.3117i  -0.0872 + 0.3074i   0.0688 + 0.0190i  -0.0942 + 0.2483i   0.6029 - 0.0211i   0.0954 - 0.0073i

  -0.0332 - 0.1268i   0.1864 - 0.2443i  -0.0952 + 0.2486i   0.0603 + 0.0462i  -0.1844 + 0.1376i   0.5452 - 0.0627i

   0.2783 - 0.1926i   0.0422 - 0.1095i   0.2043 - 0.3030i  -0.0849 + 0.2852i  -0.0346 + 0.0540i  -0.1932 + 0.1513i

  -0.0088 - 0.3030i   0.2298 - 0.0927i  -0.0530 - 0.1273i   0.2258 - 0.2722i  -0.1091 + 0.2938i  -0.0749 + 0.0635i
 Columns 55 through 60 

   0.0432 + 0.0238i  -0.0878 + 0.2033i   0.5814 - 0.0780i   0.0995 + 0.0027i  -0.2640 + 0.2620i   0.0437 + 0.0773i

  -0.1132 + 0.2625i   0.0814 + 0.0324i  -0.0894 + 0.0960i   0.5793 - 0.0443i   0.0903 - 0.0323i  -0.2380 + 0.2730i

   0.2537 - 0.2944i  -0.1749 + 0.2592i  -0.0670 + 0.0551i  -0.1108 + 0.0650i   0.5378 - 0.0203i   0.0899 - 0.0264i

  -0.0048 - 0.1237i   0.1900 - 0.2887i  -0.0252 + 0.2466i  -0.0028 + 0.0511i  -0.1406 + 0.1806i   0.5301 + 0.0162i

   0.3220 - 0.2149i  -0.0242 - 0.0344i   0.2715 - 0.3590i  -0.0076 + 0.3291i  -0.0786 - 0.0001i  -0.1397 + 0.1700i

   0.0857 - 0.2602i   0.3046 - 0.1766i   0.1380 - 0.1188i   0.2639 - 0.3755i  -0.1141 + 0.2666i  -0.0979 + 0.0417i

   0.1692 - 0.0635i   0.1025 - 0.1761i   0.2784 - 0.0907i   0.1708 - 0.0714i   0.2423 - 0.3354i  -0.1210 + 0.3006i

   0.0238 + 0.0002i   0.2056 - 0.0276i  -0.0166 - 0.3006i   0.2887 - 0.0147i  -0.0147 - 0.1161i   0.2262 - 0.3403i

  -0.2439 + 0.2319i   0.1397 + 0.0002i   0.1274 - 0.0254i  -0.0917 - 0.2594i   0.3021 - 0.1710i  -0.0393 - 0.1205i

   0.1086 - 0.0165i  -0.2662 + 0.1896i   0.0533 + 0.0906i   0.0800 - 0.0336i   0.0234 - 0.3146i   0.2960 - 0.1898i

   0.5513 - 0.0812i   0.1206 + 0.0140i  -0.2034 + 0.1833i   0.0824 + 0.0899i   0.0786 - 0.0134i  -0.0006 - 0.3091i

  -0.1989 + 0.1262i   0.6075 - 0.0754i   0.2192 + 0.0813i  -0.2242 + 0.2196i   0.0908 + 0.0253i   0.0594 - 0.0199i

  Columns 61 through 66 

  -0.3092 + 0.0401i   0.2926 - 0.0609i  -0.4275 + 0.0302i  -0.1322 - 0.0547i  -0.1389 - 0.0488i  -0.3611 + 0.0611i

   0.2686 - 0.0590i  -0.3466 + 0.0261i   0.1284 - 0.0331i  -0.4209 - 0.0117i  -0.0982 - 0.0703i  -0.2178 - 0.0281i

  -0.2130 + 0.0358i   0.2400 - 0.0748i  -0.5405 + 0.0583i   0.1518 - 0.0981i  -0.4179 - 0.0038i  -0.1110 - 0.0729i

  -0.2212 + 0.0580i  -0.2210 + 0.0295i   0.0355 - 0.0324i  -0.5420 + 0.0194i   0.1802 - 0.1026i  -0.3679 - 0.0192i

   0.1140 + 0.0005i  -0.2133 + 0.0529i  -0.1499 + 0.0089i   0.0756 - 0.0666i  -0.4804 + 0.0247i   0.1670 - 0.0773i

   0.3809 - 0.0341i   0.1801 + 0.0001i  -0.3233 + 0.0867i  -0.1236 + 0.0002i   0.0575 - 0.0399i  -0.3796 + 0.0251i

   0.0058 - 0.0313i   0.3895 - 0.0174i   0.1450 + 0.0372i  -0.2334 + 0.0370i  -0.1116 + 0.0030i   0.1829 - 0.0497i

  -0.4778 + 0.0266i  -0.0096 + 0.0063i   0.4409 - 0.0279i   0.2004 + 0.0282i  -0.2618 + 0.0684i  -0.2005 + 0.0312i

  -0.3111 - 0.0417i  -0.4562 + 0.0541i  -0.0118 + 0.0046i   0.4597 - 0.0019i   0.2532 - 0.0022i  -0.2659 + 0.0807i

  -0.1017 - 0.0832i  -0.2703 - 0.0149i  -0.3499 + 0.0233i   0.0311 + 0.0240i   0.4913 - 0.0088i   0.2022 + 0.0378i

  -0.4312 - 0.0080i  -0.0798 - 0.0647i  -0.1276 - 0.0625i  -0.3428 + 0.0588i   0.0053 + 0.0367i   0.5361 - 0.0132i

   0.1806 - 0.0672i  -0.3861 + 0.0009i  -0.0234 - 0.0692i  -0.1394 - 0.0053i  -0.3394 + 0.0434i  -0.0336 + 0.0197i

  Columns 67 through 72 

   0.1024 + 0.0342i   0.5213 - 0.0117i   0.1671 + 0.0367i  -0.2211 + 0.0664i  -0.1197 + 0.0166i   0.1154 - 0.0459i

  -0.3641 + 0.0655i   0.0264 + 0.0210i   0.5280 - 0.0128i   0.1528 + 0.0270i  -0.2286 + 0.0567i  -0.1515 + 0.0123i

  -0.2186 - 0.0313i  -0.4434 + 0.0326i   0.0086 + 0.0111i   0.5060 - 0.0207i   0.1596 + 0.0120i  -0.2051 + 0.0583i

  -0.1109 - 0.0731i  -0.2657 - 0.0297i  -0.4788 + 0.0364i   0.0147 + 0.0130i   0.4615 - 0.0257i   0.1688 + 0.0201i

  -0.3645 - 0.0195i  -0.0645 - 0.0591i  -0.1979 - 0.0452i  -0.4594 + 0.0380i  -0.0123 + 0.0070i   0.4515 - 0.0098i

   0.1660 - 0.0765i  -0.4111 + 0.0106i  -0.0443 - 0.0506i  -0.1588 - 0.0477i  -0.4404 + 0.0325i   0.0235 + 0.0203i

  -0.3774 + 0.0223i   0.1568 - 0.0567i  -0.4140 + 0.0239i  -0.1533 - 0.0618i  -0.1524 - 0.0474i  -0.4071 + 0.0425i

   0.1803 - 0.0448i  -0.3566 + 0.0231i   0.1735 - 0.0581i  -0.4127 + 0.0014i  -0.1436 - 0.0630i  -0.1809 - 0.0498i

  -0.1999 + 0.0327i   0.1324 - 0.0538i  -0.3737 + 0.0305i   0.1727 - 0.0734i  -0.4732 + 0.0030i  -0.1398 - 0.0644i

  -0.2625 + 0.0782i  -0.1800 + 0.0174i   0.1248 - 0.0464i  -0.3919 + 0.0323i   0.1909 - 0.0825i  -0.4831 + 0.0032i

   0.2004 + 0.0421i  -0.1897 + 0.0721i  -0.1718 + 0.0250i   0.1287 - 0.0385i  -0.4047 + 0.0326i   0.2246 - 0.0766i

   0.5318 - 0.0126i   0.1750 + 0.0260i  -0.1362 + 0.0536i  -0.1404 + 0.0242i   0.1108 - 0.0332i  -0.4054 + 0.0406i

Columns 73 through 78 

   0.1897 + 0.1411i   0.1617 + 0.2339i  -0.0775 + 0.0633i   0.2673 + 0.1073i  -0.3587 - 0.4047i   0.3807 + 0.0316i

   0.0839 + 0.1283i   0.1951 + 0.2123i   0.1472 + 0.2483i  -0.0993 - 0.0134i   0.3528 + 0.0542i  -0.3844 - 0.3246i

   0.0211 + 0.1495i   0.1169 + 0.2144i   0.1780 + 0.2179i   0.2137 + 0.2597i  -0.2145 + 0.0580i   0.2088 + 0.0031i

   0.0531 - 0.0521i   0.0898 + 0.1994i   0.1103 + 0.2123i   0.1635 + 0.1823i   0.0732 + 0.1852i  -0.0528 + 0.0994i

  -0.1005 - 0.1984i  -0.0158 - 0.0616i   0.0785 + 0.1867i   0.0916 + 0.1600i   0.2542 + 0.0711i   0.1601 + 0.2483i

  -0.0158 - 0.1479i  -0.1735 - 0.1509i  -0.0226 - 0.0877i   0.0615 + 0.2075i   0.1583 + 0.1123i   0.2369 + 0.1601i

   0.4743 - 0.0214i  -0.0092 - 0.1189i  -0.1873 - 0.1642i   0.0206 - 0.0700i   0.1766 + 0.2030i   0.1359 + 0.1781i

   0.3601 - 0.0265i   0.3055 + 0.0564i  -0.0103 - 0.1331i  -0.1651 - 0.0973i   0.1463 - 0.0848i   0.1553 + 0.2350i

  -0.3881 - 0.3610i   0.3145 + 0.0364i   0.3020 + 0.0189i   0.0324 - 0.1088i  -0.1278 - 0.1693i   0.0477 - 0.0116i

   0.3102 + 0.0541i  -0.4911 - 0.3729i   0.3254 + 0.0457i   0.3180 - 0.0090i  -0.0214 + 0.0056i  -0.1829 - 0.1885i

  -0.1078 + 0.0423i   0.2604 + 0.0352i  -0.4695 - 0.3731i   0.3470 + 0.0870i   0.3466 + 0.0452i   0.0707 - 0.0868i

   0.1282 + 0.2343i  -0.1061 - 0.0095i   0.2831 + 0.0435i  -0.4925 - 0.3556i   0.3392 - 0.0029i   0.3888 + 0.1050i

  Columns 79 through 84 

   0.3713 + 0.0933i  -0.0419 - 0.0874i  -0.1833 - 0.1783i   0.0571 - 0.0679i   0.0871 + 0.1266i   0.0373 + 0.1598i

   0.3360 + 0.0761i   0.3392 + 0.1034i  -0.0262 - 0.1079i  -0.1740 - 0.1824i   0.0513 - 0.0761i   0.0692 + 0.1963i

  -0.4746 - 0.3165i   0.3253 + 0.0955i   0.3549 + 0.0556i  -0.0190 - 0.1105i  -0.0891 - 0.2253i   0.0734 - 0.0255i

   0.2812 + 0.0854i  -0.4742 - 0.3392i   0.2961 + 0.0502i   0.3555 + 0.0439i   0.0041 - 0.1499i  -0.1059 - 0.1853i

   0.0100 + 0.0474i   0.2461 + 0.0749i  -0.4947 - 0.3517i   0.2821 + 0.0328i   0.3674 + 0.0069i   0.0943 - 0.1653i

   0.2479 + 0.2233i  -0.0268 + 0.0810i   0.2340 + 0.0766i  -0.5038 - 0.3533i   0.2810 + 0.0104i   0.4302 - 0.0258i

   0.2067 + 0.1551i   0.2800 + 0.2419i  -0.0899 + 0.0418i   0.2318 + 0.0496i  -0.4990 - 0.3661i   0.3525 - 0.0060i

   0.1163 + 0.1767i   0.2053 + 0.1699i   0.1797 + 0.2363i  -0.1014 + 0.0236i   0.2434 + 0.0362i  -0.4344 - 0.3545i

   0.0664 + 0.1685i   0.1151 + 0.1825i   0.2027 + 0.2153i   0.1607 + 0.2477i  -0.1407 + 0.0096i   0.3026 + 0.0499i

   0.0143 - 0.0588i   0.0850 + 0.1858i   0.0849 + 0.1902i   0.1914 + 0.2299i   0.1347 + 0.2493i  -0.1153 + 0.0025i

  -0.0912 - 0.1562i   0.0482 - 0.0715i   0.1035 + 0.1811i   0.0819 + 0.1780i   0.2119 + 0.2132i   0.1110 + 0.1898i

   0.0844 - 0.1464i  -0.0990 - 0.1520i   0.0315 - 0.0273i   0.0885 + 0.1963i   0.0795 + 0.1800i   0.2076 + 0.1365i

5. Annex B: Details of Sequence Assignment Algorithm

To determine the sequence assignment we considered the following algorithm, suggested by an approach given in [3].  The object of the use of this algorithm was to determine, in a relatively efficient way, what a good sequence assignment would be with which to compare relative performance of sequences in a link simulation.  

A hexagonal cell layout of the form in Figure B-1 is used to keep track of which sequences are assigned to which cell/sector.  Sequences from the same “base” sequence group are assigned to each cell.  We assumed that 84 total sequences are possible for assignment, but this assumption was made simply to bound the problem.  We could have used more or less sequences, but this allowed us to produce 4 sequences per sector.

Based on the numerology of Figure B-1, we considered two possible re-use patterns as in Table B-1.

Table B 1 Re-use plans for base sequences

	Cell
	Re-use #1
	Re-use #2

	1
	12 and 17
	11, 17

	2
	14
	13

	3
	16
	15

	4
	8 and 15 and 18
	16,19

	5
	19
	9, 18

	6
	9 and 11
	8, 12

	7
	10, 13
	10, 14


A population of 500 possible sequence assignments was made based on the above possible re-use patterns (which were randomly chosen), with 4 sequences to be assigned per sector out of each set of base sequences. The set of base sequences assigned to each cell was also chosen randomly.  The choice of “goodness” for a given population was its maximum sum squared correlation over all sectors with respect to adjacent sector sequences.  The best 25% of sequences was allowed to “breed” by exchanging outer tier assignments with inner tier assignments randomly (thus having 2 “children” per set of 2 assignments), and the best 25% sequences were always kept. This made up 75% of the next generation of sequence assignment candidates.  In addition, the rest of the sequences for the next population were again chosen randomly.  In this manner it was observed that the fitness function as described above typically did not change after 20 iterations of the algorithm.   The effect of this algorithm is to exchange “core” cell assignments with re-use patterns.

For the 108 sequences of length 36, with 4 RS per cell, the inner 7 and cells 11 and 17 were assigned basic blocks of 12 sequences, with re-use patterns varying amongst the rest of the 2nd tier of cells.

For assignments of 2 RS per cell, for 84 sequences of length 12, the “core” sequence assignments were made to cells 10-12 and cells 16-18 in addition to the center and first tier of cells.
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Figure B- 1  Hexagonal Cell Layout







































































































































































































































� In our formulation, we have found that relaxing strict orthogonality somewhat reduces the maximum to average cross-correlation of sequences.  


� This property can be achieved either time or frequency domains.


� The cyclic shift property is lost if the sequences are optimized for PAPR and CM, but this last optimization can be done in real-time.


� Assuming each sequence is stored in single precision complex; this is likely a conservative estimate.


� Note that “sequence” and “vector” are often used interchangeably through this text. All sequences are vectors.


� When we describe the algorithm, we denote methods whereby this condition is enforced, in particular, when the PAPR is constrained as per the algorithm denoted in [6] section VI.
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