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1. Introduction
This contribution presents our views on the secondary synchronization channel (S-SCH) structure from the following points of view.

· S-SCH sequence structure.

· System information that should be conveyed by the S-SCH. More specifically, whether or not the S-SCH should be used for detection of the primary broadcast channel (P-BCH) transmit diversity mode.

· Mapping of system information onto the S-SCH sequences.

2. S-SCH Sequence Structure

2.1. Candidate S-SCH Structures

In this section, we compare two candidates for the S-SCH structure from the viewpoint of cell search time performance.
(a) Interleaved S-SCH Structure
In [1], interleaved mapping of the S-SCH sequence was proposed to increase the number of S-SCH sequences without using multiple scrambling sequences. Figure 1 shows the interleaved mapping of the S-SCH sequence assuming M = 2 codes. The resultant number of sequences becomes (Nsym/M) M (Nsym indicates the total number of S-SCH sub-carriers). For instance, when the total length of the interleaved orthogonal sequences is Nsym = 64, the total number of sequences becomes 1024 when M = 2, which is much greater than that when M = 1 and can be sufficient to convey all the system information required assuming that the number of cell ID group information, radio frame timing information, and P-BCH transmit diversity mode information are 170, 2, and 2 (see Sec. 3), respectively. By using the interleaved mapping of M codes, the frequency diversity effect is gained for the respective codes. 
The considered candidate sequences for the S-SCH short orthogonal sequence are the complex exponential wave (phase-rotated orthogonal sequence, time-domain cyclic shift) [1]-[3] and Walsh sequence [1]. Since the achievable performance is identical, our preference is to employ a Walsh sequence because it minimizes the complexity level of the correlation detection using the Walsh-Hadamard transform. The alternative method of employing the complex exponential wave should be used if the length of the S-SCH sequence is not equal to the power of 2, since in this case the Walsh sequence is not applicable.

The scrambling sequence can be multiplied to the interleaved short S-SCH sequences in order to randomize the time-domain S-SCH signal waveform and reduce the peak power of the S-SCH. Based on E-mail discussions, the candidate sequences are the CAZAC sequence [1]-[3] and a random binary sequence such as the PN sequence. Since only a single scrambling sequence is used for the interleaved S-SCH structure, we prefer to use the random binary sequence as the scrambling sequence for the interleaved S-SCH structure.
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Figure 1 – Interleaved S-SCH structure
(b) Two-layered S-SCH Structure

The alternate candidate for the S-SCH structure is the two-layered S-SCH sequence structure as shown in Fig. 2. In this structure, by applying multiple scrambling sequences, the number of S-SCH sequences is increased to the required number (680 in our view), which results in an increased amount of control information conveyed by the S-SCH, at the cost of degraded detection accuracy due to non-orthogonality between the S-SCH sequences generated by the different scrambling sequences.

The same views on the orthogonal sequence for the interleaved S-SCH structure are also applied to the two-layered S-SCH sequence structure. Regarding the scrambling sequence for two-layered S-SCH sequence structure, the CAZAC sequence is advantageous over the random sequence from the viewpoint of cross-correlation between multiple scrambling sequences.
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Figure 2 – Two-layered S-SCH structure

2.2. Simulation Comparison Between Two Candidate S-SCH Structures
Table 1 gives the simulation parameters assumed in the following cell search time evaluation. Simulation parameters basically follow the suggested ones in the E-mail discussion [4]. For the interleaved S-SCH structure, we assumed that length-32 Walsh sequence is used as orthogonal sequences with the M of 2, with single binary random sequence-based scrambling. For the two-layered S-SCH structure, we assumed the combination of length-64 Walsh sequence and 11 scrambling sequences based on the Generalized Chirp Like (GCL) sequence. The number of hypotheses at the S-SCH detection is set to 680 assuming that the number of cell ID groups, radio frame timing information, and P-BCH transmit diversity mode information are 170, 2, and 2, respectively.
Table 1 – Simulation parameters for cell search time evaluation
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Figure 3 shows the cumulative distribution of the cell search time of the interleaved S-SCH structure and the two-layered S-SCH structure. The cell search time at the SNR of 0 dB and 6 dB are plotted. The figure shows that the two S-SCH structures achieve almost identical cell search time performance. 
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Figure 3 – Comparison of the S-SCH structures
3. System Information Conveyed By S-SCH

The current working assumption for the system information that should be conveyed using the S-SCH is frame-timing information and cell ID group information. Whether or not the on/off mode information of the downlink RS hopping/shifting and the P-BCH transmit diversity mode information are conveyed using the S-SCH is FFS. Among these, we prefer to remove the redundant option of the on/off mode information for the downlink RS hopping/shifting [5]. Therefore, in the following, we focus on whether or not the P-BCH transmit diversity mode information should be conveyed using the S-SCH.

3.1. Required Number of Options for P-BCH Transmit Diversity Mode
Before discussing on the signals that should be used for detection of the BCH transmit diversity mode, we evaluate the required number of the options for the BCH transmit diversity mode.
We consider the following three alternatives for the number of options.
· 1 option: Regardless of the number of Node B transmit antennas, the single stream transmission is used. If a virtual antenna is employed, fixed precoding vector switching (PVS) (or virtual antenna switching) that is transparent to the UE can be used to achieve time diversity. In this case, the SCH should be used as the reference signal for the coherent detection of the P-BCH. However, since we assume that the P-BCH is transmitted once per radio frame, we did not evaluate this option in this contribution.
· 2 options: One or two (virtual) antennas are used. For the two (virtual) antenna case, either CDD, SFBC, or FSTD can be employed as the transmit diversity schemes.
· 3 options: One, two, or four antennas are used. For the two or four antenna cases, either CDD, SFBC, or FSTD or combination of theese can be employed as the transmit diversity schemes.
Table 2 summarizes the alternatives for the number of P-BCH transmit diversity modes, which are evaluated in the following simulation.
Table 2 – Alternatives for the number of P-BCH transmit diversity modes
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Figure 4(a) and 4(b) show the average BLER of the P-BCH as a function of the SNR for CDD and SFBC as the transmit diversity scheme, respectively. We assume the number of Node B transmit antennas is four. The transmission bandwidth of the P-BCH is 1.08 MHz, and QPSK with rate-1/3 convolutional coding with the repetition factor of 6 is assumed. The 6-ray TU channel model with the maximum Doppler frequency of 5.55 Hz is assumed. Real channel estimation using downlink RS is performed. The overhead of the orthogonal RS transmitted from a single or multiple (virtual) antennas is taken into account for the derivation of the SNR value.

Figures 4(a) and 4(b) show that the BLER improvement from a single virtual antenna transmission to two-virtual antenna transmission is significant. However, further BLER improvement using four-virtual antenna transmission is not large. This is partly due to the increased overhead of the RS in the four-virtual antenna transmission since four orthogonal RSs are needed. Considering that this tendency is further enhanced for the L1/L2 control channel as presented in [6] and [7], our preference for the P-BCH transmit diversity mode as well as that for the L1/L2 control channel is Alternative 2; 2 options.

In the following section, we investigate the optimum method to convey the P-BCH transmit diversity mode assuming that there are 2 options in the P-BCH transmit diversity mode.
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Figure 4 – P-BCH BER performance.
3.2. Optimum Signal for Conveying the P-BCH Transmit Diversity Mode
There are two candidate signals with which the UE detects the P-BCH transmit diversity mode that the target cell uses: S-SCH and RS. Figure 5 shows the cell search time comparison for various options for the transmission scheme of the P-BCH transmit diversity mode. The number of options for the P-BCH transmit diversity mode is assumed to be two. The interleaved S-SCH structure is assumed. For the case when the P-BCH transmit diversity mode is detected using the downlink RS, we evaluated two methods: the first one is the use of an extended orthogonal sequence to indicate the P-BCH transmit diversity mode as presented by Huawei in [8]. The other is the use of a pseudo random sequence to indicate the P-BCH transmit diversity mode as evaluated by TI in [9]. Other simulation parameters are the same as those in Fig. 3. The figure shows that the use of the S-SCH achieves better cell search time performance than the use of the downlink RS. Therefore, we recommend conveying the P-BCH transmit diversity mode using the S-SCH.
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Figure 5 – Comparison of cell search time for various transmission methods for the P-BCH transmit diversity mode information
3.3. Mapping of System Information onto S-SCH Sequences
In this section, our views on the detailed mapping of the multiple system information onto the S-SCH sequences are described, assuming the interleaved S-SCH structure with the M of 2. We believe that the structured mapping of the multiple system information on the S-SCH sequences can simplify the cell search procedure when some a priori information regarding the target cell is available, e.g., through a neighbor cell list. Then our preferences are as follows.
· One set of short orthogonal sequences in the interleaved S-SCH sequence structure using the M of 2 is used for detection of the first-layer cell ID group, which is tied to the frequency hopping pattern of the downlink RS [5].

· The remaining set of short orthogonal sequences represents the combination of radio frame timing, P-BCH transmit diversity mode, and second-layer cell ID group, which is tied to the frequency shifting pattern of the downlink RS [5].

The main reason for the above idea is that if the two-layered frequency hopping and shifting structure of the downlink RS is employed [5], typically, the same frequency hopping and thus the same first-layer cell ID group is used in the neighbor cells. Therefore, the UE can skip the correlation detection for the first set of the orthogonal sequences.
Figure 6 illustrates the suggested mapping of the system information to the S-SCH sequences.
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Figure 6 – Mapping of the system information to the S-SCH sequences
4. Conclusion
The following is a summary of the contribution.

· The interleaved S-SCH structure and the two-layered S-SCH structure achieve almost identical cell search time performance.
· The P-BCH transmit diversity mode should be conveyed using the S-SCH. The number of options for the P-BCH transmit diversity modes are two, i.e., the single transmit antenna case and two-stream transmit diversity case, in which two or four antennas are transparent to the UE.
· The structured mapping of the multiple system information on the S-SCH sequences is suggested in order to simplify the cell search procedure when some a priori information regarding the target cell is available, e.g., through a neighbor cell list. 
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