TSG RAN WG1 #47bis
R1-070549
Jan 14-19, 2007
Agenda Item:

6.4
Souce:

Motorola
Title:
Issues with LRI Turbo Interleaver
Document for:
Discussion

1. Introduction
This document reveals the fact that LRI interleavers [2] do not meet the definition of a contention-free interleaver, possibly because [2] neglected the condition on the deinterleavers. The document then focuses on the implementation disadvantage of not allowing a unified memory as one consequence of not being contention-free. Furthermore, it is shown that the LRI interleavers do not allow efficient radix-4 decoder implementation, which doubles the decoder throughput compared to a conventional radix-2 decoder.
Although LRI interleavers are discussed, the document illustrates the advantages of defining a good interleaver such as ARP and QPP for LTE.
2. Most LRI Interleavers are Not Contention-free

The definition of a contention-free interleaver in [1] is copied below.
An interleaver ((i), 0 (i < K, is said to be contention-free for a window size W if and only if satisfies the following constraint for both (= ((interleaver) and (= (-1 (de-interleaver).

[image: image1.wmf](

)

(

)

ú

û

ú

ê

ë

ê

+

¹

ú

û

ú

ê

ë

ê

+

W

vW

j

W

tW

j

y

y

(LISTNUM equat \l1
where 0 (j < W, 0 (t; v < M(=K/W), and t (v.

Here it is emphasized that the condition (1) needs to be satisfied by both the interleaver and the de-interleaver.
Examination of the LRI interleaver [2] indicates that the LRI interleavers that have matrix size m=P, n=P-1 satisfy (1) for both the interleaver and de-interleaver (i.e., information bits K<=930). However, for the majority of the LRI interleavers (i.e., all K>930), the matrix size is m=P (>=37), n=32. For these interleavers, although the interleaver satisfies (1) the de-interleaver does not satisfy (1). Assuming Kmax = 5114 (parameter of Rel-6; may be increased in LTE), it is estimated that approximately 80% of the LRI interleavers are not contention-free.

In contrast, it can be proved that true contention-free interleavers such as QPP and ARP satisfies (1) for both the interleaver and the de-interleaver for all K. Therefore, the implementation benefits enjoyed by contention-free interleavers such as ARP and QPP do not apply to a LRI solution. For example, true contention-free interleavers allow the decoder to use a unified memory, while the LRI interleavers won’t. This is discussed in details next.
3. LRI Interleaver Does Not allow Unified Memory

It is much more efficient to use a unified memory (i.e., a single wide memory) where M values (LLRs in the case of turbo decoder) can be pulled out with one address, than using M individual narrow memories where M addresses are needed to pull out M values. For instance, it was shown in [4] that a parallelized Rel‑6 decoder would require 165 kgates more for extrinsic memory than a parallelized decoder using a contention‑free interleaver. This is significant because 165 kgates could represent as much as 5‑10% of an LTE modem.
To allow using an unified memory, M LLRs need to be taken from the memory as a vector, and provided to the M processors, possibly after a permutation among the M LLRs. Figure 1 illustrates the process with an example with M=4 parallel windows, and a window size of W = 8. On the left side, one row is taken at a time and provided to the M parallel processors of DEC1. The rows are taken in sequential order from row 0 to row W-1. The entries within a row are provided to the M parallel processors sequentially without permutation.
To provide the LLRs to DEC2 properly, firstly the rows are taken in a permuted order. For example, in Figure 1, the rows are taken in the order of row 0, row 7, row 6, row 5, row 4, row 3, row 2, row 1. Secondly, after a row is taken from the memory, the entries within a row are permuted. For example, in Figure 1, the permutation for the 4 entries of each row is illustrated on the right side.

[image: image2.emf]0 8 16 24

1 9 17 25

2 10 18 26

3 11 19 27

4 12 20 28

5 13 21 29

6 14 22 30

7 15 23 31

0 24 16 8

15 7 31 23

14 6 30 22

29 21 13 5

28 20 12 4

11 3 27 19

10 2 26 18

25 17 9 1

address i address



(i)

memory

0

memory

1

memory

2

memory

3

0 3 2 1

1 0 3 2

1 0 3 2

3 2 1 0

3 2 1 0

1 0 3 2

1 0 3 2

3 2 1 0

Take one row at a

time

Permute among

entries within a row

M

W

Figure 4.
LLR layout of DEC 1 and DEC 2 with a QPP interleaver (.(i)=7i + 8 i2 mod 32. The left matrix contains the index of the LLRs before interleaving; the matrix on the right contains the index of the LLRs after interleaving. The LLR at index (.(i) before interleaving is moved to position i after interleaving.
This examples illustrates that the interleaver must satisfy the following condition to allow a unified memory in the decoder.

[image: image3.wmf](

)

(

)

(

)

(

)

W

vW

j

W

tW

j

,

mod

,

mod

+

=

+

p

p

,
(LISTNUM equat \l1
where 0 (j < W, 0 (t; v < M(=K/W), and t (v. Obviously when (2) is satisfied by the interleaver (, it is also satisfied by the de-interleaver (-1.
It is simple to prove that both ARP interleavers and QPP interleavers [3] satisfy (2) and would allow a unified memory. This is due to the algebraic nature of the interleaver definition.

In contrast, for LRI interleavers with K>930, where m(n+1, condition (2) is not satisfied and would not allow a unified memory in the decoder. In other words, if 32 parallel processors are used, then 32 individual, narrow memories need to be used, each addressed separately.

4. LRI Is Inefficient for Radix‑4 Processing
A common technique for increasing the throughput of a trellis‑based decoder is to increase the radix of the recursions. Radix‑2 recursions process 1 trellis step per clock cycle, whereas radix‑4 recursions double the throughput by processing 2 trellis steps per cycle. Radix‑8 recursions and higher are not common due to an exponential increase in hardware complexity with increasing radix.

This discussion also assumes the canonical turbo decoding architecture consisting of a single time multiplexed log‑MAP processor which runs in “decoder 1” and “decoder 2” modes. For reference, in radix‑2 mode to process trellis step i, decoder 1 fetches data at address i, whereas decoder 2 fetches data at address (i). On the other hand, in radix‑4 mode to process trellis steps 2i and 2i+1 decoder 1 fetches data at addresses 2i and 2i+1 (in a single cycle) whereas decoder 2 fetches data at addresses (2i) and (2i+1) (in a single cycle).

In order to obtain single‑cycle read access of addresses 2i and 2i+1 for all i it is sufficient that even‑indexed and odd‑indexed data be placed in physically separate memories. For decoder 2 to enjoy single‑cycle read access to (2i) and (2i+1), it is clear that either

· (2i) must be even and (2i+1) must be odd (i.e., an “even‑odd” permutation), or

· (2i) must be odd and (2i+1) must be even (i.e., an “odd‑even” permutation).

Note that the QPP, ARP, and IBP interleavers are all even‑odd, whereas the LRI is neither even‑odd nor odd‑even.

Note that radix‑4 processing can also be obtained with dual‑port memories. Given a maximum block size Kmax, a dual‑port memory Kmax locations deep may be used for single‑cycle read access of data for 2 trellis steps. Furthermore, with this approach another dual‑port memory must be available for simultaneous write access. In total, 2 dual‑port memories Kmax locations deep are required.

However, when the interleaver is even‑odd or odd‑even, 2 dual‑port memories only Kmax/2 locations deep are required. With this solution one port is used for single‑cycle read access while the other port is used for simultaneous single‑cycle write access. An even‑odd or odd‑even interleaver also admits the use of 4 single‑port memories Kmax/2 locations deep if desired.

The analysis presented here assumes the memories and processors are both driven at the same clock rate. Radix‑4 processing with a non‑even​odd or non‑odd‑even interleaver can also be implemented using a single dual‑port memory driven at twice the clock rate of the processors. However, this is costly in terms of power consumption and an even‑odd or odd‑even interleaver can be implemented without having to resort to this approach.

The analysis discussed here also pertains to a decoder that has been vectorized through the use of contention‑free interleavers.

References

[1]. R1-062080, Motorola, “Eliminating memory contentions in LTE channel coding,” 3GPP TSG RAN WG1#46, Tallinn, Estonia, August 28 – September 1, 2006.
[2]. R1-070209, Mitsubishi Electric, “A PIL-Based New Contention-Free Interleaver for Turbo Codes,” 3GPP TSG RAN WG1 #47bis, Sorrento, Italy, January 15-19, 2007.
[3]. R1-070054, Motorola, “Contention-free Interleaver designs for LTE Turbo Codes,” 3GPP TSG RAN WG1 #47bis, Sorrento, Italy, January 15-19, 2007.
[4]. R1-070057, Motorola, “Summary of Rel 6 Turbo Code Interleaver Issues for LTE,” 3GPP TSG RAN WG1 #47bis, Sorrento, Italy, January 15-19, 2007.

 Page 1 of 3

_1230208156.vsd

_1230237563.unknown

_1216219208.unknown

