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1. Introduction

 This document is a follow-up on contribution R1-063092 recently submitted for RAN1#47 at Riga.  The basic definition of the proposed LRI interleaver is the same as in R1-063092, but we add the following:

· A simplified definition of the LRI interleaver.  We believe that this interleaver has the simplest implementation among the CF interleavers proposed for LTE.

· A revised parameter table (Table 2) obtained through extensive simulations of all possible cases.  Simulation results have also produced a complete characterization of performance for the 42 codeword lengths specified in R1-063617, as well as other important cases.  Performance is at least as good as that of Rel-6 PIL for all codeword lengths.
· A summary of the discussion that occurred in the e-mail exploder, where the definition of a “CF Interleaver” was contrasted against a “CF implementation” for a generic interleaver (such as the Rel-6 PIL). The LRI interleaver meets the more stringent definition of a “CF interleaver,” but is also well‑suited to a “CF implementation.”  This is important in that it gives the system designer maximum flexibility.
 More specifically, in this document, we reference the definition of “CF interleaver” published by Takeshita [2], and we introduce a more general definition that allows a number of parallel processors that is not a divisor of the codeword length and where the number of memory banks is not necessarily the same as the number of processors.  This is necessary to include some of the proposed interleaver schemes and to highlight the importance of a flexible standard that leaves plenty of freedom for the system designer to choose a hardware implementation.

 In the description of the proposed LRI interleaver, we highlight the similarity to the current Rel‑6 PIL interleaver.  Address calculation uses the same recursive relation and a similar table of prime number parameters.  However, the LRI interleaver is easier to implement and considerably more flexible for parallel implementation.
 We also include a more detailed discussion of the performance of the LRI interleaver in the waterfall region.  Results are based on additional simulations completed recently.  LRI performance is essentially identical to that of the Rel-6 interleaver in spite of its easier implementation.  New performance data are discussed in Section 5.
This contribution presents a novel internal interleaver of turbo codes which can support high parallel operation to achieve over 100Mb/s as maximum throughput. It is well known that parallel turbo decoding has a memory-bank‑access problem.  One way to avoid the problem is to use an internal interleaver structured such that no two processors need to access the same memory bank at the same timing in parallel operation. The name of the proposed interleaver is “LRI” which stands for “Latin square and Rectangle structured Interleaver”[1].  This interleaver solves the aforementioned problem, and has a very simple generation rule. The LRI interleaver requires fewer operations and parameters to implement than the Rel-6 internal interleaver [refer to Table 1], and it can be implemented “on the fly.” The LRI interleaver has the following characteristics,
· Uses a table similar to the PIL table to make only one pseudo-random sequence C(i).
· Simple structure based on cyclic shifts of C(i).
· Equivalent performance to turbo codes with PIL.

 We describe the generating rule and why it solves the memory contention problem. We also show the BLER performance of various interleaver size. We note that the LRI interleaver has high parallelization and maintains good BLER performance. We believe that the LRI interleaver satisfies the requirements of 3GPP LTE system such that, over 100Mbps throughput, coding gain is preserved. Furthermore, turbo codes with our interleaver can decode within the required time duration in the 2x2 MIMO case.
Table 1 complexity comparison
	
	LRI (proposed)
	PIL (Rel’6)

	Table to Construct the basic sequence C(i)
	Same as the PIL table 
(Similar to PIL)
	Table look up

 (primes & primitive roots) 

	Inter row 

Permutation
	Read sequentially from last row

(Simpler than PIL)
	Table look up

(Order of permutation)

	Intra row 

permutation
	Only Cyclic shift of C(i)
(Simpler than PIL)
	Calculate from C(i) per each rows


2. Definition of CF Interleaver
In a recent publication, Takeshita [2] provides an often-quoted definition of a CF interleaver.   Takeshita’s definition involves some restrictive constraints:

· A received codeword is subdivided into a number of “windows” of identical size.

· The number of parallel processors is equal to the number of windows.

· All processors execute the same number of steps to achieve a decoded codeword.  

Each “window” is stored in a separate memory bank.  An interleaver is defined as Contention-Free (CF) if no two processors ever need to access the same memory bank at the same time.  Of course, with the above constraints, codeword size must be an integer multiple of the number of processors.
Mitsubishi feels that, in practical designs, it should be allowable to 
· Store the received data into a number of memory banks without requiring that the same amount of data be stored in all memory banks.

· Allow a number of parallel processors different from the number of memory banks.  (Of course, to avoid memory‑bank contention, the number of processors cannot be larger than the number of memory banks.)
· Allow the processing load to be distributed unevenly among processors.  (For example, processors may execute idle cycles, with different processors executing different numbers of idle cycles).

In accordance with the terminology used in the e-mail exploder, we refer to the proposed extended definition as “CF Implementation.”  In support of the extended definition, note that the codeword lengths defined in R1-063617 for testing interleaver performance were deliberately chosen not to have any patterns or special features.  The interleaver standard should not force a specific architecture based on the fact that it works well for certain codeword lengths.  It is up to the proponents of a specific interleaver to analyze the complexity of its implementation.  Note also that flexibility of implementation should be the top priority in defining a standard.  The interleaver must give the system designer a wide range of choices for the number and size of memory banks, the number parallel processors, and the distribution of workload.

Figure 1 illustrates the structure of the less restrictive “CF Implementation.”  In the figure, a codeword of length N = 14 is processed by M = 3 processors.  Since N is not a multiple of M, we choose the window size W = (N / M( = 5; and the last processor will not utilize the last WM – N = 1 positions of its window.  Similarly, we choose the number of memory banks as B = 4, which is not a divisor of N; therefore, the number of available memory locations in each bank must be at least (N / B( and, in the last memory bank, only two memory locations are used.
In this example, the unused resources mean that hardware utilization is not optimal.  However, it is easy to see that, when the numbers become large, the unused resources become a small fraction of the total.  In any case, waste of hardware resources is unavoidable because the decoder must work with an arbitrary codeword length.  Even if the interleaver is chosen to obey the Takeshita constraints, it will be necessary to use “padding” to round the codeword length up to the next larger value that meets the constraints.  This also results in a waste of resources.
[image: image1.png]
Figure 1. Example of a contention-free property for a sequence of length  N = 14, stored in  B = 4 memory banks, processed by  M = 3 processors, in windows of  W = 5 processing cycles.  Compared to optimal resource utilization, 2/16 = 12.5% of memory is unused, and 1/15 = 6.7% of processing power is unused.
The modified Takeshita definition is as follows:
Definition 2.1 : Contention-Free Implementation (CF Implementation)
The exchange and processing of a sequence of N extrinsic information symbols between subblocks of an iterative decoder can be parallelized by M processors working on window sizes of length up to W in each subblock and retrieving data from memory banks of size up to B without contending for memory access provided that the following condition holds for both the interleaver f(x); 0 ≤ x < N and for the deinterleaver g(x) = f -1(x)

(π(j + tW) / B( ≠ (π(j + vW) / B(
(1)
where 0 ≤ j < W,  0 ≤ t < v < M,  j + vW < N, 
       and  π(•) is either f(•) or g(•),
       and  B ≤ W,  (M – 1)W < N ≤ MW.
3. Proposed Turbo Code internal Interleaver
Here we present the generating rule of the proposed internal interleaver: Latin square and Rectangle structured Interleaver (LRI). The LRI interleaver is defined through seven steps.  The first step is setting the parameters. The table of primitive roots is similar to that for the Rel-6 interleaver.  The second step is generating pseudorandom numbers.  This operation is same as generating the base sequence in the Rel-6 interleaver.  The third step is performing the inter-row permutation. We can easily understand that this operation is only reading C(i) sequentially.  The fourth and fifth steps are making the input matrix and the output matrix; and the sixth step is making the permuted output sequence.  These steps yield an LRI interleaver for an information block length, K, of the form K = P×n, where P is a prime number and n is a positive integer number less than P.  An additional seventh step is needed for the more general case where K < P×n; the seventh step is based on deleting some of the elements of the permutation (pruning) to yield the desired length for the permuted sequence.
Proposed Interleaver

The symbols used as 


K 

: The number of information bits per turbo codeword

P 

: Prime number from Table 2.

m = P

: The number of columns for interleaving


n 

: The number of rows for interleaving.

G0

: A primitive root. 
Step 1
* Define the parameters for interleaving

(1) Determine the prime number P (equal to the number of columns, m) and n such that


If  {K ≤ 930 (=31×30) } then



Find minimum prime number P from Table 2 such that




K ≤ (P − 1) × P,


then set the matrix size as

m = P,
    n = P − 1

Else if  { 931 ≤ K ≤ 992(= 32 × 31) } then



set the matrix size as

m = P = 37,   n = 32

Else



Find minimum prime number P from Table 2 such that




K ≤ 32 × P,



then set the matrix size as

m = P,
    n = 32


End if

Step 2

* Generate a sequence of P −1 pseudorandom numbers.
(1) Select a primitive root G0 from Table 2.
Table 2: List of prime numbers P and associated primitive root v
	P
	G0
	P
	G0
	P
	G0
	P
	G0
	P
	G0

	7
	5
	53
	3
	103
	6
	163
	7
	227
	5

	11
	8
	59
	6
	107
	5
	167
	5
	229
	10

	13
	2
	61
	6
	109
	11
	173
	5
	233
	3

	17
	3
	67
	20
	113
	6
	179
	6
	239
	7

	23
	14
	71
	13
	127
	3
	181
	10
	241
	7

	29
	11
	73
	5
	131
	8
	191
	21
	251
	6

	31
	17
	79
	7
	137
	5
	193
	5
	257
	3

	37
	2
	83
	6
	139
	3
	197
	5
	
	

	41
	13
	89
	6
	149
	10
	199
	3
	
	

	43
	3
	97
	5
	151
	7
	211
	3
	
	

	47
	13
	101
	7
	157
	5
	223
	3
	
	


(2) Generate a pseudorandom sequence, C(i). 

C(0) = 1,

For i = 0,...,P−3 { C(i+1) = G0 ( C(i) mod P }
C(P−1) = 0

Step 3

* Construct a permutation matrix.
Construct an n×m matrix where each row is a cyclic shift of the C(•) sequence.  Specifically, if CLj(i) is the generic matrix element, we have:  


For j = 0,1,...,n−1 {

For i = 0,1,...,m−1 {CLj(i) = C((n−1−j+i) mod m) }

}
Step 4

* Construct the n×m input matrix, Uj(i), as a sequence of consecutive numbers increasing left to right and then down.  Specifically, if Uj(i) is the generic matrix element, we have: 

        For j = 0,1,...,n−1 {

For i = 0,1,...,m−1 { Uj(i) = i + m(j }

}

Step 5

* Construct the n×m output matrix U’j (i) from the CLj(i) matrix by adding P×(n−1−j) to each row.  (We’ll call this value the “base number” for the row.) Specifically, if U’j (i) is the generic matrix element, we have : 


For j = 0,1,...,n−1 {

For i = 0,1,...,m−1 { U’j(i) = P×(n−1−j) + CLj(i) }

}
Note that this definition is equivalent to

  
For j = 0,1,...,n−1 {

For i = 0,1,...,m−1 { U’j(i) = U(n−j−1)(CLj(i)) }

}

Step 6

* Construct the permuted output sequence u’(k) by reading the output matrix elements starting from top left and going down each column in sequence.  Specifically, if u’(k) is the generic output sequence element, we have : 


For j = 0,1,...,n−1 {

For i = 0,1,...,m−1 { u’(j+n(i) = U’j(i) }

        }

[image: image2.png]
Figure 2. Block diagram of rate-⅓ turbo encoder.

Step 7

* Trimming (pruning) the sequence:  If K = m×n, then no trimming (pruning) is needed; the interleaver generated in Step 6 is the desired CF interleaver.  (Note: in the Rel-7 document this operation is referred to as “pruning.”  We prefer the term “trimming” as more descriptive of the kind of operation performed here and to avoid confusion with the use of “pruning” as applied to algorithm trees).  Otherwise, if K < m×n, the matrix contains more elements than the number of information bits to be transmitted.  In this case, the sequence is shortened by deleting the values that exceed K–1; specifically, values such that u’(j) ≥ K are deleted from the sequence to obtain the desired sequence of length K.  Note that, when a processor encounters one of the deleted values in the sequence specified by Step 6, it should stay idle for one clock cycle, so as not to go out of synchronization with the other processors.  This is necessary to preserve the CF feature of the interleaver.
An example is shown in the Appendix.
4. Implementation of parallel processing

The following table gives the possible parallelisms for all the 42 block sizes values defined by RAN1 members for simulation purposes.  The LRI interleaver is a CF interleaver according to the more stringent Takeshita definition, and also has a CF implementation according to Definition 2.1 above.  More specifically, when a codeword length K is represented as a rectangular array of size n×m, with m=P, a number of parallel processors that is a divisor of n can be supported according to the more restrictive Takeshita definition of a CF interleaver.  With the more general Definition 2.1 above, any number of processors up to n can also be supported with a CF implementation.
Table. 3 Possible parallelisms for all the 42 block sizes 

	K
	P
	n
	Parallelism available

	
	
	
	CF Interleaver
	CF Implementation 

	40
	7
	6
	1,2,3,6
	1,2,3,…,6

	52,67,87,99
	11
	10
	1,2,5,10
	1,2,3,…,10

	113,129,146
	13
	12
	1,2,3,4,6,12
	1,2,3,…,12

	167,190,216,246
	17
	16
	1,2,4,8,16
	1,2,3,…,16

	280,319,363,384,414,471
	23
	22
	1,2,11,22
	1,2,3,…,22

	536,611,695,792
	29
	28
	1,2,4,7,14,28
	1,2,3,…,28

	902
	31
	30
	1,2,3,5,6,10,15,30
	1,2,3,…,30

	others
	≧37
	32
	1,2,4,8,16,32
	1,2,3,…,32


5. Performance
We show the required Eb/N0 for BLER = 0.1, 0.01, 0.001, 0.0001 for the proposed interleaver and we compare those results to the Rel-6 interleaver.  (For K > 5114, where the Rel-6 interleaver is not defined, we use code block segmentation to obtain an “equivalent” Rel-6 performance.) The recursive convolutional code of Rel-6 and tail-biting (terminated trellis) encoding is used, coding rate is K/(3K+12) where K is the information block size.
The Max-Log-Map algorithm with 8 iterations has been used.  These results show that the required Eb/N0 for BLER = 0.01, 0.001, 0.0001 for the LRI interleaver is as good as Rel-6 interleaver.  In this figure, “LRI　BLER=1%” indicates the required Eb/N0 for BLER = 0.1 for the LRI interleaver, and so on.

[image: image3.png]
Figure.3 required Eb/N0 for BLER = 0.1, 0.01, 0.001,0.0001 for the proposed LRI interleaver and for the Rel-6 interleaver (using random information bits).
Table 4 - Block Error Rate performance table: Required Eb/N0 (in dB)
	Info Block Size
	Rel-6  BLER= 10%
	LRI      BLER= 10%
	Rel-6 BLER= 1%
	LRI     BLER= 1%
	Rel-6 BLER= 0.1%
	LRI      BLER= 0.1%
	Rel-6 BLER= 0.01%
	LRI      BLER= 0.01%

	40
	1.68406 
	1.76713 
	2.85665 
	2.84379 
	3.63450 
	3.67915 
	4.43078 
	4.43897 

	52
	1.72184 
	1.71728 
	2.58417 
	2.60650 
	3.34257 
	3.35691 
	4.13047 
	4.08140 

	67
	1.57719 
	1.63879 
	2.44754 
	2.41303 
	3.13380 
	3.07738 
	3.72184 
	3.61785 

	87
	1.44377 
	1.41044 
	2.23672 
	2.18743 
	2.87638 
	2.81396 
	3.49952 
	3.33968 

	99
	1.40190 
	1.44042 
	2.17230 
	2.19121 
	2.78166 
	2.67835 
	3.37139 
	3.14804 

	113
	1.37470 
	1.32149 
	2.09136 
	2.05376 
	2.64172 
	2.58041 
	3.15484 
	3.15121 

	129
	1.33707 
	1.31552 
	2.00334 
	1.97894 
	2.55080 
	2.45274 
	3.13317 
	2.94234 

	146
	1.25378 
	1.25693 
	1.92169 
	1.93221 
	2.45595 
	2.36938 
	3.04408 
	2.78906 

	167
	1.22324 
	1.18843 
	1.79699 
	1.82192 
	2.26201 
	2.26284 
	2.72885 
	2.66193 

	190
	1.23495 
	1.20233 
	1.73800 
	1.74818 
	2.16253 
	2.16031 
	2.59547 
	2.54191 

	216
	1.17379 
	1.14916 
	1.66555 
	1.65979 
	2.06703 
	2.07529 
	2.42331 
	2.40806 

	246
	1.13372 
	1.11947 
	1.60371 
	1.63509 
	1.95925 
	1.99534 
	2.28390 
	2.34795 

	280
	1.11071 
	1.09073 
	1.54224 
	1.50821 
	1.88920 
	1.91188 
	2.22726 
	2.21354 

	319
	1.04513 
	1.10246 
	1.47186 
	1.50195 
	1.81711 
	1.83428 
	2.08712 
	2.19002 

	363
	1.04331 
	1.07034 
	1.44662 
	1.44687 
	1.73049 
	1.73611 
	2.03923 
	2.06001 

	384
	1.03121 
	1.02014 
	1.37957 
	1.42277 
	1.69218 
	1.71291 
	1.99646 
	2.00491 

	414
	0.99875 
	1.03783 
	1.38944 
	1.37115 
	1.67141 
	1.67456 
	1.90488 
	1.98425 

	471
	0.97091 
	0.95888 
	1.33216 
	1.34222 
	1.57935 
	1.63085 
	1.85193 
	1.92809 

	536
	0.93709 
	0.92923 
	1.26285 
	1.27427 
	1.51328 
	1.53332 
	1.77426 
	1.76716 

	611
	0.91672 
	0.92222 
	1.23629 
	1.23697 
	1.49294 
	1.49663 
	1.74290 
	1.75008 

	695
	0.90171 
	0.91596 
	1.21334 
	1.20188 
	1.41712 
	1.42740 
	1.61765 
	1.64521 

	792
	0.88064 
	0.90243 
	1.16590 
	1.17669 
	1.36971 
	1.39508 
	1.56787 
	1.60807 

	902
	0.85719 
	0.86384 
	1.11857 
	1.14211 
	1.31979 
	1.34592 
	1.48991 
	1.55660 

	1027
	0.84173 
	0.84609 
	1.09782 
	1.07741 
	1.25909 
	1.27843 
	1.45160 
	1.47778 

	1169
	0.81746 
	0.83511 
	1.04771 
	1.05623 
	1.21365 
	1.24664 
	1.39288 
	1.43469 

	1331
	0.80180 
	0.79902 
	1.02768 
	1.04269 
	1.17760 
	1.20000 
	1.33544 
	1.36256 

	1536
	0.79014 
	0.77282 
	0.97387 
	0.99525 
	1.13944 
	1.15609 
	1.31940 
	1.32672 

	1725
	0.76019 
	0.77386 
	0.94746 
	0.96803 
	1.09230 
	1.11053 
	1.24000 
	1.25589 

	1965
	0.77027 
	0.77409 
	0.93541 
	0.94580 
	1.07120 
	1.07565 
	1.19908 
	1.19225 

	2237
	0.74408 
	0.74951 
	0.91601 
	0.92026 
	1.04028 
	1.04336 
	1.20109 
	1.16980 

	2304
	0.74840 
	0.74349 
	0.90831 
	0.90204 
	1.03028 
	1.03606 
	1.16271 
	1.14012 

	2547
	0.74783 
	0.74477 
	0.89742 
	0.88926 
	1.00503 
	1.00900 
	1.18468 
	1.10555 

	2900
	0.71523 
	0.73162 
	0.86855 
	0.86870 
	0.97987 
	0.97684 
	1.09235 
	1.07422 

	3302
	0.70814 
	0.71690 
	0.85218 
	0.84565 
	0.95668 
	0.95340 
	1.07466 
	1.05000 

	3760
	0.71141 
	0.71090 
	0.82241 
	0.82662 
	0.93104 
	0.92550 
	1.06529 
	1.00876 

	4096
	0.70534 
	0.70859 
	0.81866 
	0.82661 
	0.91469 
	0.91818 
	1.05027 
	0.99927 

	4281
	0.68355 
	0.69648 
	0.80979 
	0.81208 
	0.90723 
	0.91023 
	1.00342 
	0.99678 

	4874
	0.67959 
	0.67906 
	0.80047 
	0.80267 
	0.89228 
	0.88543 
	0.98977 
	0.96409 

	5550
	0.71187
	0.67537 
	0.87536
	0.78921 
	0.98472
	0.86393 
	1.11116
	0.94200 

	6144
	0.70822
	0.66679 
	0.85334
	0.77003 
	0.96819
	0.85152 
	1.08524
	0.93848 

	7195
	0.70041
	0.65895 
	0.83003
	0.75598 
	0.9394
	0.83028 
	1.07022
	0.89344 

	8192
	0.70534
	0.65330 
	0.81866
	0.74713 
	0.91469
	0.81893 
	1.05027
	0.87716 


6. Summary
 We present an interleaver for turbo codes that is suitable for highly‑parallel decoding. Proposed interleaver, LRI, has Latin‑square construction and supports contention‑free memory access. The LRI interleaver does not only support contention‑free memory access, but also has flexibility for the number of parallel operations. It’s suitable for high‑throughput decoding of Turbo codes, and BLER performance is maintained at about the same level as with the Rel-6 interleaver. Finally, the LRI interleaver uses the same generation rule as the Rel‑6 interleaver, which allows the re-use of technology already developed. 
Our interleaver has the following advantages
· Much easier implementation in comparison with PIL.  Furthermore, because of its similarity to the Rel-6 interleaver, it's possible to implement the Rel-6 turbo decoder with PIL and LRI on a common hardware.
· Multiple options for the number of parallel processors so as to allow freedom for the system designer to choose from a variety of parallel implementations.
· Support Successive Interference Cancellation (SIC) when using 2x2 MIMO.  (Note that 2x2 MIMO requires double the decoding speed as SISO.)
· Yield BLER performance at least as good as that of Rel-6 turbo codes.
· Contention‑free for parallel processing
We believe the LRI interleaver satisfies the requirements of 3GPP LTE system with significant advantages over alternative proposals.
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Appendix A.  An example of proposed interleaver
We show how to define an LRI interleaver for the following case:
· Codeword length: K = 146
· Number of parallel processors: M = 6.
Step1
We have an information block size of K = 146. We set m = P = 13, n = 12 by computing 13 × 12 = 156

Note that the number of processors is a divisor of n, so that this interleaver meets the more restrictive Takeshita definition of a CF interleaver for this number of processors.
Step2
From Table 2, we find that the primitive root for P = 13 is G0 = 2.  Accordingly, we generate the sequence of 13 pseudorandom numbers:


C(i) = {1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 0}

Where C(0) = 1, C(i  + 1) = (C(i) × 2) mod P, and C(P−1) = 0.
Step3
We create the CLj(i) matrix with 12 rows and 13 columns. Each row is a cyclic shift of the pseudorandom sequence.
	7
	0
	1
	2
	4
	8
	3
	6
	12
	11
	9
	5
	10

	10
	7
	0
	1
	2
	4
	8
	3
	6
	12
	11
	9
	5

	5
	10
	7
	0
	1
	2
	4
	8
	3
	6
	12
	11
	9

	9
	5
	10
	7
	0
	1
	2
	4
	8
	3
	6
	12
	11

	11
	9
	5
	10
	7
	0
	1
	2
	4
	8
	3
	6
	12

	12
	11
	9
	5
	10
	7
	0
	1
	2
	4
	8
	3
	6

	6
	12
	11
	9
	5
	10
	7
	0
	1
	2
	4
	8
	3

	3
	6
	12
	11
	9
	5
	10
	7
	0
	1
	2
	4
	8

	8
	3
	6
	12
	11
	9
	5
	10
	7
	0
	1
	2
	4

	4
	8
	3
	6
	12
	11
	9
	5
	10
	7
	0
	1
	2

	2
	4
	8
	3
	6
	12
	11
	9
	5
	10
	7
	0
	1

	1
	2
	4
	8
	3
	6
	12
	11
	9
	5
	10
	7
	0


Step4
We form the input matrix Uj(i).  It also has 12 rows and 13 columns.  The numbers increase from left to right and from top to bottom.  Each row represents bits that are stored in the same memory bank; in this case, there are 6 processors and, therefore, 6 memory banks.  The labels at left show the memory bank where each row is stored.  For the non-permuted sequence, each processor starts at the beginning of a memory bank (i.e,, the beginning of a row).  The starting points of the six processors are shown in italics.  Since K = 146 is less than m×n = 156, the last 10 bit positions correspond to bits that will be deleted from the final sequence; that’s why they are shown with dark shading.
	Mem. Bank 0
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	Mem. Bank 1
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25

	Mem. Bank 2
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38

	Mem. Bank 3
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51

	Mem. Bank 4
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64

	Mem. Bank 5
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77

	Mem. Bank 0
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90

	Mem. Bank 1
	91
	92
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103

	Mem. Bank 2
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116

	Mem. Bank 3
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129

	Mem. Bank 4
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142

	Mem. Bank 5
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155


Step5
We form the output matrix U’j(i) from the CLj(i) matrix of Step3.  We add a “base number” to each row.  At the left, we show the numbers that were added; they simply decrease by P = 13 from one row to the next.  The shaded numbers (to be deleted) are in a different position now.  The interleaved sequence starts from the top left value and goes down the first column, then continues down the second column, and so on.  As before, the first processor starts at the beginning of the permuted sequence; the second processor starts in the 13th position; and so on.  The italicized numbers show the starting points for the six processors; we can see that they occur in different memory banks and, as the processors move through the sequence down the columns, they will continue to be in different memory banks.
	Mem. Bank
	Base n.
	
	
	
	
	
	
	
	
	
	
	
	
	

	5
	143
	150
	143
	144
	145
	147
	151
	146
	149
	155
	154
	152
	148
	153

	4
	130
	140
	137
	130
	131
	132
	134
	138
	133
	136
	142
	141
	139
	135

	3
	117
	122
	127
	124
	117
	118
	119
	121
	125
	120
	123
	129
	128
	126

	2
	104
	113
	109
	114
	111
	104
	105
	106
	108
	112
	107
	110
	116
	115

	1
	91
	102
	100
	96
	101
	98
	91
	92
	93
	95
	99
	94
	97
	103

	0
	78
	90
	89
	87
	83
	88
	85
	78
	79
	80
	82
	86
	81
	84

	5
	65
	71
	77
	76
	74
	70
	75
	72
	65
	66
	67
	69
	73
	68

	4
	52
	55
	58
	64
	63
	61
	57
	62
	59
	52
	53
	54
	56
	60

	3
	39
	47
	42
	45
	51
	50
	48
	44
	49
	46
	39
	40
	41
	43

	2
	26
	30
	34
	29
	32
	38
	37
	35
	31
	36
	33
	26
	27
	28

	1
	13
	15
	17
	21
	16
	19
	25
	24
	22
	18
	23
	20
	13
	14

	0
	0
	1
	2
	4
	8
	3
	6
	12
	11
	9
	5
	10
	7
	0


Step6 and Step7
Going through the specified sequence, we obtain the permuted output sequence.  We show explicitly the spots where the shaded values have been skipped.

      u1’(i) = {140, 122, 113, … , 15, 1, 143, 137, … , 32, 16, 132, 118 … , 43, 28, 14}
Appendix B.  Performance of block sizes except for 42 test sizes
We show the required Eb/N0 for various information block size except for 42 as shown above. They are {1223, 1423, 1911, 2407, 2547, 2753, 3111, 3237, 3469, 3622, 4401, 4567, 4777, 5114, 5385, 5499, 5773, 5992, 6215, 6403, 6617, 6859, 7298, 7450, 7517, 7674, 7933} that we chose to use all prime in table2 at random.
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Table 5 - Block Error Rate performance table: Required Eb/N0 (in dB)
	Info Block Size
	LRI      BLER= 10%
	LRI     BLER= 1%
	LRI      BLER= 0.1%
	LRI      BLER= 0.01%

	1223
	0.82418 
	1.05044 
	1.21355 
	1.38562 

	1423
	0.79092 
	1.01158 
	1.16325 
	1.32825 

	1911
	0.76673 
	0.94606 
	1.08445 
	1.20861 

	2407
	0.73524 
	0.90006 
	1.02149 
	1.12200 

	2547
	0.74477 
	0.88926 
	1.00900 
	1.10555 

	2753
	0.72633 
	0.87148 
	0.98463 
	1.08166 

	3111
	0.71018 
	0.86241 
	0.96575 
	1.06278 

	3237
	0.71844 
	0.85152 
	0.95442 
	1.05651 

	3469
	0.71024 
	0.84598 
	0.94650 
	1.04648 

	3622
	0.71850 
	0.83741 
	0.93493 
	1.04882 

	4401
	0.70049 
	0.81703 
	0.90200 
	0.97502 

	4567
	0.69532 
	0.80699 
	0.89365 
	0.97309 

	4777
	0.69192 
	0.80511 
	0.88851 
	0.96599 

	5114
	0.67870 
	0.79187 
	0.87290 
	0.94806 

	5385
	0.67535 
	0.79224 
	0.86913 
	0.94349 

	5499
	0.67330 
	0.78450 
	0.86273 
	0.93577 

	5773
	0.68466 
	0.77925 
	0.85438 
	0.92600 

	5992
	0.67316 
	0.77595 
	0.84974 
	0.92200 

	6215
	0.66431 
	0.76841 
	0.84546 
	0.91730 

	6403
	0.66631 
	0.77377 
	0.84880 
	0.91674 

	6617
	0.66578 
	0.76290 
	0.83717 
	0.90400 

	6859
	0.67430 
	0.76608 
	0.83518 
	0.89641 

	7298
	0.65829 
	0.75464 
	0.82765 
	0.89145 

	7450
	0.66139 
	0.75647 
	0.82633 
	0.88326 

	7517
	0.64828 
	0.74916 
	0.82402 
	0.87906 

	7674
	0.65642 
	0.75096 
	0.82093 
	0.87816 

	7933
	0.65333 
	0.74770 
	0.82203 
	0.88803 


Appendix C.  Discussion on how to compare complexity among different interleavers

In Riga, we agreed on a standardized set of block sizes, and on a sequence of steps to achieve a meaningful performance comparison among interleaver proposals.  It is already evident that a number of proposed interleavers have performance equivalent to the Rel-6 interleaver.  Indeed, much of the discussion on the e-mail exploder has been about complexity of implementation rather than performance.

Mitsubishi feels that, in order to achieve a more meaningful discussion, we need to agree on some standards for comparing complexity of different interleavers, much as we did for performance in Riga.  For the purpose of starting that conversation, we introduce the block diagram shown below; we believe that it is applicable to all the interleavers being discussed.

[image: image5.png]
Figure C1. Functional block diagram of generic parallel turbo decoder.

The intent of the block diagram is not to depict any specific hardware implementation; rather, the blocks are meant to represent the functionalities of a parallel turbo decoder that are affected by interleaver design.  In a particular implementation, a particular block may well disappear or be greatly simplified if the interleaver structure allows it.  The blocks are:

1. Decoder Array – The general consensus seems to be that the complexity of individual decoders is not affected by interleaver design; accordingly, the details of the decoders are not needed to compare different interleavers.  The number of parallel processors is denoted by M.
2. Memory Buffer – All interleaver designs require a memory buffer that provides a number of input/outputs data paths to be routed to the individual decoders (processors). Each data path consists of several bits (e.g., 6 or 7).  The number of data paths is denoted by B.
a. Memory Banks – We refer to the memory area that feeds a particular data path as a “memory bank”

b. Address decoders – This is the logic that converts bank address into control signals for the individual bit storage units.  I3P interleaver designs achieve a reduction in the complexity of this function by using the same address for all memory banks.  (Note that this structure is frequently referred to as a “single” memory.  However, since B data paths are still needed, this block diagram considers the portions of memory that feed different paths as a distinct “memory banks” that are all addressed in parallel.) 
3. Bi-directional Routing Network – At every decoding step different data paths must connect to different processors.  The pattern of connections is, of course, intimately dependent on interleaver design.  The complexity of this block increases as M2, making it a sizable component of highly-parallel designs.

a. Connecting Crosspoints – Shown as black dots in the diagram, they represent points where a bi-directional connection is needed.  Which crosspoints are needed depends on the structure of the interleaver.  Each crosspoint connects N logic values, one for each bit.
For 32 processors and 32 memory banks, a full routing matrix needs 32×32=1024 crosspoints, whose complexity cannot be ignored.

4. Address Generator – Interleaver structure has a strong influence on the complexity of this block.
5. Routing Network Controller – Each node needs to be activated at the proper point in the decoding sequence.  The control logic may be very complex, or not, depending on interleaver design.
6. Sequencer – We have included this block for completeness.  We do not believe that its complexity is significantly affected by interleaver design.
As already mentioned, the purpose of this block diagram is to show generic functionality.  We envision that each proponent of a specific interleaver design should address the complexity of each block and, as appropriate, indicate the simplifications afforded by their design.









































































































































































