3GPP TSG RAN WG1 #47bis R1-070054
Sorrento, Italy

January 15-19, 2007
Agenda Item:

6.4
Souce:

Motorola
Title:
Contention-free Interleaver designs for LTE Turbo Codes
Document for:
Discussion and Decision

1. Summary

In Riga, the decision in Tallinn to replace the Rel-6 interleaver with a new contention free (CF) interleaver was upheld. Several different CF interleavers were proposed (summarized in R1-063514), including ARP [6]

 REF _Ref149136446 \r \h
[7]

 REF _Ref152575838 \r \h
[8], QPP [6]

 REF _Ref152578109 \r \h
[9], IBP [11], etc.. This document contains a revision of the ARP proposal in [8] in line with the CF selection plan [13]. It also contains a QPP design in line with [13], and a comparison between the ARP and QPP contention-free interleavers.

Both ARP and QPP will support any information input size (in bits), with defined and stored interleavers only required for a subset of sizes. As recognized in Riga, the density of interleavers may decrease as block size increases. Required parallelism increases with block size, though the exact required supported number of processors is manufacturer dependent. Both ARP and QPP have the following advantages:

· Contention-free (CF) property for various degrees of parallelism in decoder, thus allowing LTE to achieve or exceed the target peak throughput.

· CF design allows efficient parallelization inside turbo decoder, thus leading to low latency.

· Different classes of UE capabilities can be supported using the same interleaver definition.

· Simple algebraic description leads to efficient hardware implementation.

· Performance similar to or better than Rel. 6 turbo codes.
The storage requirements for ARP and QPP are minimal, on the order of 2 bytes per interleaver. A QPP interleaver is defined with two larger parameters (see Section 4) while an ARP interleaver is defined with one larger parameter and a few bits indexing the dither configuration (see Section 3.2). It is found that the extra degrees of freedom in the ARP interleaver description reduce the search time for good interleavers, and the interleavers found generally have higher minimum distance. Both ARP and QPP have the advantage of being naturally contention-free, while ARP has the additional advantage of the availability of ARP interleaver chips for DVB and other standards. ARP [8] has also been shown to work for both tailed and tail-biting constituent codes, which is to be decided after interleaver selection.

This document provides ARP and QPP designs for the 42 test information block sizes. The ARP design uses an indexing method to reduce storage. The study shows that ARP may have a slight performance advantage over QPP. It is found that ARP interleavers are the best choice for LTE turbo coding while QPP interleavers also form an attractive alternative.
2. Interleaver Sizes

For LTE, it is not essential to define CF interleaver for each block size between 40 and 5114 bits. A limited or a small set of well-designed CF interleavers is sufficient to cover all the block sizes. For undefined block sizes (i.e., for which CF interleavers are not defined), the well-known technique of zero-padding (i.e., appending filler bits) can be used effectively. This has several advantages, including, reduced interleaver storage and better parallelism. Note that the performance of the new scheme is still equivalent or better than that of Rel-6 turbo code for all the information block sizes.

A suggested set of complete interleaver sizes K for covering Kinfo from 40 to 8192 bits are listed in Table 1. Details of the zero padding and puncturing procedure to handle any information block size Kinfo between 40 and Kinfo,max are discussed in Appendix B. However, for performance verification traditional shortening and puncturing may be applied also. In specific, if an interleaver of size Kinfo is not available, then the interleaver with the next higher size K is used. Before encoding, K- Kinfo zeros are prepended to the information block. After encoding the systematic and the two parity bits corresponding to the padding positions are removed before transmitting over the channel. The 12 tail bits are always kept as defined in Rel 6.
As in [8], the amount of padding (Kfiller= K – Kinfo) increases with Kinfo, from 8 to 16, 32, 64, 128, as indicated by the different shading in Table 1. Table 1 is different from [8] in that this design has a denser spacing of interleavers with a maximum of 3% padding (except the first few sizes).

Table 1. A suggested complete set of contention-free interleaver sizes K for LTE. The K’s that have step sizes 8 are not highlighted; The Ks that have step sizes 16 are highlighted in yellow; The Ks that have step sizes 32 are highlighted in pink; The Ks that have step sizes 64 are highlighted in green; The Ks that have step sizes 128 are highlighted in blue. The sizes highlighted in gray are beyond 6144 and may be too large for LTE.
[image: image1.emf]40 48 56 64 72 80 88 96 104 112

120 128 136 144 152 160 168 176 184 192

200 208 216 224 232 240 248 256 264 272

280 288 296 304 312 320 328 336 344 352

360 368 376 384 392 400 408 416 424 432

440 448 456 464 472 480 488 496 504 512

528 544 560 576 592 608 624 640 656 672

688 704 720 736 752 768 784 800 816 832

848 864 880 896 912 928 944 960 976 992

1008 1024 1056 1088 1120 1152 1184 1216 1248 1280

1312 1344 1376 1408 1440 1472 1504 1536 1568 1600

1632 1664 1696 1728 1760 1792 1824 1856 1888 1920

1952 1984 2016 2048 2112 2176 2240 2304 2368 2432

2496 2560 2624 2688 2752 2816 2880 2944 3008 3072

3136 3200 3264 3328 3392 3456 3520 3584 3648 3712

3776 3840 3904 3968 4032 4096 4224 4352 4480 4608

4736 4864 4992 5120 5248 5376 5504 5632 5760 5888

6016 6144 6272 6400 6528 6656 6784 6912 7040 7168

7296 7424 7552 7680 7808 7936 8064 8192

Note that the sizes shown in Table 1 is only an example defined for Kinfo,max of 8192 bits and used in the comparison study of the 42 information block sizes. If other Kinfo,max such as 6144 bits are used, then any K greater than Kinfo,max will be removed from Table 1.

For simplicity, the sizes shown in Table 1 did not consider the difference between using tailed or tail-biting constituent codes. If the turbo encoder is made tail-biting, then the Ks that are multiples of 7 cannot be used. These will be either removed or modified.

3. Almost Regular Permutation (ARP) Interleaver

3.1. ARP Interleaver description

Given an information block size K, an “almost regular” permutation (ARP) interleaver [5] of size K is defined by the following.

[image: image2.wmf](

)

(

)

(

)

K

i

d

A

P

i

i

mod

0

+

+

´

=

p

(LISTNUM equat \l1
where 0 (i (K-1 is the sequential index of the bit position after interleaving, (i) is the bit index before interleaving corresponding to position i, K is the information block size, P0 is a number that is relatively prime to K, A is a constant, C is a small number (divisor of K) called the cycle length, and d(i) is a “dither” vector of length C. For all block sizes, d(i) assumes the form

[image: image3.wmf](

)

(

)

(

)

C

i

C

i

P

i

d

mod

mod

0

b

a

+

´

=

,
(LISTNUM equat \l1
where ((() and ((() are both vectors of length C, periodically applied for 0 (i (K-1. Both ((() and ((() are composed of multiples of the cycle length C.

When an ARP interleaver is used in a tail-biting turbo code, the overall code becomes quasi-cyclic (i.e., has periodic properties), which greatly simplify the code design process. However, ARP interleavers can also be designed for tailed turbo codes as defined in [2], though the tail may induce lower minimum distance (dmin) and may lead to performance degradation. Therefore, it is proposed to make the constituent convolutional codes in the EUTRA turbo code tail-biting [6].

The ARP interleaver belongs to the class of CF interleavers that have good properties from a design perspective [5]

 REF _Ref149136446 \r \h
[7]. For an ARP interleaver of length K and cycle length C, any window size W, where W is a multiple of C and a factor of K, can be used for high-speed decoding without memory access contentions. This flexibility in choosing parallelism can be used advantageously in hardware design. For instance, suppose K = 6144-bit ARP interleaver is designed with C = 8, then any number from the set {1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 768} is a valid choice for the number of processors M = K/W to obtain contention-free memory access.

Appendix A discusses implementation and CF property of the ARP interleaver using an example.

3.2. ARP Interleaver For LTE

To compare the ARP interleaver with the Rel-6 turbo interleaver for the 42 selected information block sizes Kinfo [13], 42 ARP interleavers of size K are defined, as listed in Table 2 (page 8). The interleaver sizes K are a subset of the complete interleaver sizes in Table 1.

As in [8], the cycle length C=4 is used for K<1024, C=8 for K (1024. A larger cycle length C leads to better minimum distance dmin at larger block sizes.

Compared to the ARP design in [8], a couple of changes are adopted to make the interleaver definition simpler. Firstly, instead of A=3, A=0 is used for all the sizes. Secondly, instead of allowing each K to have a different ((() and ((() vector, only a small set of (and (values are allowed to reduce storage of the interleaver definition. The set of allowed (and (values are defined below.

When cycle length C=4,

(=

[0 0 4 4

 0 4 4 0];

(=

[0 4 12 8

 0 12 24 8

 0 24 8 12

 0 16 8 4

 0 12 24 4

 0 12 16 24

 0 8 20 24

 0 4 8 12];

When cycle length C=8,

(=

[0 0 8 0 8 0 8 8

 8 0 8 8 8 0 0 0];

(=

[0 16 24 88 64 8 32 40

 0 64 136 160 48 192 24 120

 0 24 80 40 16 96 64 32

 0 8 72 40 88 48 32 96

 0 16 88 96 56 24 48 64

 0 8 48 32 64 88 40 56

 0 32 8 56 80 16 72 48

 0 72 64 48 88 8 184 248

 0 16 48 24 8 32 40 88

 0 16 120 152 24 216 64 240

 0 32 176 216 136 64 224 248

 0 16 40 96 88 80 32 48

 0 24 208 112 224 168 184 48

 0 8 16 64 24 48 80 32

 0 8 40 16 96 80 56 88];

Thus each row of (could be used as an (vector, each row of (can be used as a (vector. The index a and b are therefore defined for each K to index into the rows of (and (, where 1<=a<=2, 1<=b<=2C. The indexing method substantially reduces the storage of the ARP interleaver since only P0 (8 bits), index a (1 bit) and b (3-4 bits) needs to be stored per interleaver. The cycle length C can be determined based on if K is less than 1024 bits. In addition, the amount of parameter storage for using C=8 vs C=4 is only the difference in the size of (and (matrix, which is trivial, therefore allowing the freedom to use higher C if necessary.

In Table 2, the parallelism M available for each interleaver size is listed as well. Only M(32 are listed since parallelism higher than 32 is not expected to be useful for initial LTE deployment. It is illustrated that the ARP interleaver has flexible parallelism, advantageous for implementation. The parallelism shown in Table 2 assumes the naturally parallel windows discussed in Section 3.1 and Appendix A. With a different definition of parallel windows, it is possible to use any factor of K as the number of parallel windows [12], the same as QPP.

In Figure 1, the number of naturally contention-free parallel windows that can be used to decode each size in Table 1 is shown, assuming a maximum window size of 1024 or 512. Note that Figure 1 shows an example of how the contention-free interleavers may be implemented. The manufacturer will determine the exact required level of parallelism.

[image: image4.wmf]
Figure 1. Number of contention-free parallel windows that can be used in the decoder with ARP or QPP interleavers. All sizes in Table 1 are examined. Maximum window size is assumed to be 1024 or 512.

A fixed block size granularity over the entire range of supported block sizes is not desirable. For instance, if the block size granularity is 8, then the maximum parallelism is limited to 8 for several cases when the size K = 8 × p, p is a prime. Therefore, there are many sizes where the decoder may be operated at a lower throughput.
4. Quadratic Polynomial Permutation (QPP) interleaver

Given an information block size K, a quadratic polynomial permutation (QPP) interleaver of size K is defined by the following.

[image: image5.wmf](

)

(

)

K

i

f

i

f

i

mod

2

2

1

´

+

´

=

p

(LISTNUM equat \l1
where 0 (i (K-1 is the sequential index of the bit position after interleaving, (i) is the bit index before interleaving corresponding to position i, K is the information block size, f1 and f2 are the factors defining the interleaver.
QPP interleavers are maximum contention-free, i.e., every factor of the interleaver size K is a possible level of parallelism. Similar to ARP, QPP also leads to quasi-cyclic turbo code when tail-biting is used. However, compared with the ARP interleavers, following are some observations regarding the QPP interleavers for LTE (Note that QPP proposals from other companies [9] have demonstrated good performance):

1. Our study shows that the QPP interleavers often have lower minimum distance than the ARP interleavers but quite high compared to Rel-6 interleaver. This is also illustrated in the figures in [14]. It is preferred to use a type of interleaver that provides higher dmin and avoids the potential error floors caused by low dmin encountered with the Rel-6 interleaver.

2. To ensure the QPP interleavers are (a) valid, (b) irreducible (optional for small sizes), and (c) having quadratic inverse polynomial, there are certain restrictions on the choice of f1 and f2 [14]

 REF _Ref152580341 \r \h
[15]. As noted in [14], these restrictions may “narrow the pool of the good QPP-based interleavers” for turbo codes of large block sizes.

For each of the 42 information block sizes Kinfo (and interleaver sizes K) in Table 2, the QPP interleaver parameters and available parallelism (M(32) is shown in Table 3 (page 9). Note these interleavers have a quadratic inverse also. Figure 1 applies to QPP interleavers as well.

5. Conclusions

This document provides ARP and QPP designs for the 42 test information block sizes. The ARP design uses an indexing method to reduce storage. The study shows that ARP may have a slight performance advantage over QPP. It is found that ARP interleavers are the best choice for LTE turbo coding while QPP interleavers also form an attractive alternative.
References

[1]. 3GPP TR 25.814 V1.2.2 (2006-3): “Physical layer aspects for evolved UTRA (Release 7)”.

[2]. 3GPP TS 25.212 v6.4.0 (2005-03): “Multiplexing and Channel Coding (FDD) (Release 6)”.

[3]. R1-063564, “Proposed way forward on turbo interleaver,” 3GPP TSG RAN WG1 #47, Riga, Latvia, 06 – 10 November 2006.

[4]. E. Rosnes and O. Ytrehus, “Improved algorithms for the determination of turbo-code weight distributions,” IEEE Transactions on Communications, Vol 53, No. 1, pp. 20 – 26, Jan. 2005.

[5]. Berrou C., Saouter Y., Douillard C., Kerouedan S., Jezequel M., “Designing good permutations for Turbo Codes: towards a single model”, in Proc. of ICC 2004, vol. 1, pp. 341-345, June 2004.

[6]. R1-061050, Motorola, France Telecom, GET, Orange, ”EUTRA FEC Enhancement,” 3GPP TSG RAN WG1#44bis, Athens, Greece. 27-31 March 2006.
[7]. R1-062080, Motorola, ”Eliminating memory contentions in LTE channel coding,” 3GPP TSG RAN WG1#46, Tallinn, Estonia, August 28 – September 1, 2006.

[8]. R1-063061, Motorola, “A Contention-free Interleaver design for LTE Turbo Codes,” 3GPP TSG RAN WG1 #47, Riga, Latvia, 06 – 10 November 2006.

[9]. R1-063137, Ericsson, “Quadratic Permutation Polynomial Interleavers for LTE Turbo Coding,” 3GPP TSG RAN WG1 #47, Riga, Latvia, 06 – 10 November 2006.

[10]. R1-063092, Mitsubishi Electric, “A contention-free interleaver for turbo codes,” 3GPP TSG RAN WG1 #47, Riga, Latvia, 06 – 10 November 2006.

[11]. R1-063456, ITRI, “Turbo coding interleaver design issues,” 3GPP TSG RAN WG1 #47, Riga, Latvia, 06 – 10 November 2006.

[12]. R1-063243, Broadcom, “A contention-free memory mapping for ARP interleaved turbo codes of arbitrary Sizes,” 3GPP TSG RAN WG1 #47, Riga, Latvia, 06 – 10 November 2006.

[13]. R1-063564, “Proposed way forward on turbo interleaver.” 3GPP TSG RAN WG1 #47, Riga, Latvia, 06 – 10 November 2006.

[14]. E. Rosnes, O. Y. Takeshita, “Optimum distance quadratic permutation polynomial-based interleavers for turbo codes,” in Proc ISIT 2006, pp. 1988-1992, Seattle, USA, July 9-14, 2006.

[15]. J. Ryu and O. Y. Takeshita, “On quadratic inverses for quadratic permutation polynomials over integer rings,” IEEE Transactions on Communications, Vol 52, No. 3, pp. 1254–1260, March 2006.

Appendix A. ARP Example

Consider an ARP interleaver for K = 128 defined using following parameters (see first row of Table 1):

C = 4, P0=81, A=3, (= [4 0 0 4]; (= [0 20 120 68].

Note that ((() and ((() are both vectors of length C=4, and each contain integers that are multiples of C=4. The ARP interleaver is thus realized with the following C=4 equations:

[image: image6.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

ï

ï

î

ï

ï

í

ì

+

=

+

´

+

+

´

+

=

+

+

=

+

+

´

+

=

+

+

=

+

+

´

+

=

+

=

´

+

+

´

=

;

3

4

;

128

mod

68

81

4

3

81

3

4

3

4

;

2

4

;

128

mod

120

3

81

2

4

2

4

;

1

4

;

128

mod

20

3

81

1

4

1

4

;

4

;

128

mod

81

4

3

81

4

4

j

i

j

j

j

i

j

j

j

i

j

j

j

i

j

j

p

p

p

p

(LISTNUM equat \l1
where 0<=j<=31 (=K/C-1). This illustrates that the ARP implementation uses simple operations and small storage. As i increments, the address (i) is generated by cycling through the 4 equations in (4). Moreover, as i increments, the i×P0 term can be obtained by adding P0.

This example is also useful to illustrate the CF property. In (4), the following congruence is observed (illustrated again in Figure 2)

[image: image7.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

ï

ï

î

ï

ï

í

ì

+

=

=

Û

=

+

=

=

Û

=

+

=

=

Û

=

=

=

Û

=

;

3

4

;

3

4

,

mod

,

2

4

,

mod

;

2

4

;

2

4

,

mod

;

1

4

,

mod

;

1

4

;

1

4

,

mod

;

0

4

,

mod

;

4

;

0

4

,

mod

;

3

4

,

mod

j

i

i

i

j

i

i

i

j

i

i

i

j

i

i

i

p

p

p

p

(LISTNUM equat \l1

[image: image8.emf]Congruence class before interleaving 4j 4j+1 4j+2 4j+3 Congruence class after interleaving 4j 4j+1 4j+2 4j+3

Figure 2. Congruence mapping of addresses before and after interleaving.

Consider a turbo decoder that utilizes M=32 processors (i.e., windows), where each processor processes W=4 trellis steps. During decoding, in each cycle, M=32 extrinsic LLRs are produced to be written to M=32 memory banks concurrently. The congruence property (5) guarantees that no memory contentions occur during these (de)interleaving operations. Let it be assumed that the i-th memory bank (i=0,1….32-1) stores indices given by C×i to C×(i+1)-1. In each step described below, both (de) interleaving can be performed without memory contentions.

Step 1. 32 LLRs of indices 4j+3 (before interleaving) are fetched from 32 memory banks, processed in parallel for trellis steps of indices 4j (after interleaving), and the output LLRs are placed back in the respective memory banks.

Step 2. 32 LLRs of indices 4j (before interleaving) are fetched from 32 memory banks, processed in parallel for trellis steps of indices 4j+1 (after interleaving), and the output LLRs are placed back in the respective memory banks.

Step 3. 32 LLRs of indices 4j+1 (before interleaving) are fetched from memory, processed in parallel for trellis steps of indices 4j+2 (after interleaving), and the output LLRs are placed back in the respective memory banks.

Step 4. 32 LLRs of indices 4j+2 (before interleaving) are fetched from memory, processed in parallel for trellis steps of indices 4j+3 (after interleaving), and the output LLRs are placed back in the respective memory banks.

Any window size that is a multiple of C also follows similar congruence property, and hence allows CF memory access. For example, using window size W=2(C=8, relationships similar to (5) exist:

[image: image9.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

ï

ï

ï

ï

ï

î

ï

ï

ï

ï

ï

í

ì

+

=

=

Û

=

+

=

=

Û

=

+

=

=

Û

=

+

=

=

Û

=

+

=

=

Û

=

+

=

=

Û

=

+

=

=

Û

=

=

=

Û

=

;

7

8

;

7

8

,

mod

,

2

8

,

mod

;

6

8

;

6

8

,

mod

,

1

8

,

mod

;

5

8

;

5

8

,

mod

,

4

8

,

mod

;

4

8

;

4

8

,

mod

,

3

8

,

mod

;

3

8

;

3

8

,

mod

,

6

8

,

mod

;

2

8

;

2

8

,

mod

;

5

8

,

mod

;

1

8

;

1

8

,

mod

;

0

8

,

mod

;

8

;

0

8

,

mod

;

7

8

,

mod

j

i

i

i

j

i

i

i

j

i

i

i

j

i

i

i

j

i

i

i

j

i

i

i

j

i

i

i

j

i

i

i

p

p

p

p

p

p

p

p

(LISTNUM equat \l1
Thus 16 processors (i.e., windows) with a window size of 8 can be used for parallel processing, where at each step 16 output LLRs are generated in parallel.

Appendix B. Zero-padding and Puncturing

For Kinfo not equal to any K in Table 1, the smallest K larger than Kinfo will be used. Zero-padding is then used to pad the Kinfo–bit information block to a length-K FEC input block. The zero-padding and puncturing can be performed in many ways. The way we chose to use in our study is explained below, as an example only. This is closely related to the rate matching mechanism, which should be addressed separately from the turbo interleaver issue. Other rate matching mechanisms can also be used with the interleavers defined in this document.

The number of zeros to be padded is Kfiller = K – Kinfo. The Kfiller zero bits are appended in the front of the information block to make an FEC input block of length K. The FEC input block is sent to the turbo encoder, which encodes using an interleaver of length K.

After encoding, the systematic stream S, the parity bit 1 stream P1, and the parity 2 stream P2 (excluding tail bits T for all) are subblock interleaved individually into S(, P1(, and P2(. The subblocks of the parity streams are then interlaced into P(. If zero padding is used, then the padding bits in the systematic stream S(and the parity 1 stream P1(are removed, i.e., the first Kfiller zeros for both the systematic stream and the parity 1 stream are not transmitted over the channel. For the parity 2 stream P2((corresponding to FEC input block after interleaving), the padding bits are not removed, since they may take any value (i.e., not always zero). Finally the bits are collected into a sequence, [S(, T, P(]. The first N bits of the sequence are then transmitted over the channel, where N=K/R, and R is the code rate. The related rate matching technique is explained in detail in [6] as well.

Table 2. Parameters of the set of ARP interleavers defined for LTE. A constant offset A=0 is used for all sizes. Possible parallelisms less than or equal to 32 are listed.

[image: image11.emf]K_info K C P0 index a index b Parallelism available

40 40 4 41 1 6 1,2,5,10

52 56 4 13 1 1 1,2,7,14

67 72 4 13 1 4 1,2,3,6,9,18

87 88 4 75 2 3 1,2,11,22

99 104 4 23 1 1 1,2,13,26

113 120 4 73 1 8 1,2,3,5,6,10,15,30

129 136 4 11 1 6 1,2,17

146 152 4 129 1 5 1,2,19

167 168 4 25 1 4 1,2,3,6,7,14,21

190 192 4 43 1 1 1,2,3,4,6,8,12,16,24

216 216 4 133 1 1 1,2,3,6,9,18,27

246 248 4 57 2 6 1,2,31

280 280 4 33 2 1 1,2,5,7,10,14

319 320 4 207 1 4 1,2,4,5,8,10,16,20

363 368 4 87 2 3 1,2,4,23

384 384 4 91 1 1 1,2,3,4,6,8,12,16,24,32

414 416 4 77 1 1 1,2,4,8,13,26

471 472 4 61 1 4 1,2

536 544 4 237 1 1 1,2,4,8,17

611 624 4 49 1 7 1,2,3,4,6,12,13,26

695 704 4 43 1 4 1,2,4,8,11,16,22

792 800 4 151 1 1 1,2,4,5,8,10,20,25

902 912 4 49 1 1 1,2,3,4,6,12,19

1027 1056 8 217 2 1 1,2,3,4,6,11,12,22

1169 1184 8 49 1 11 1,2,4

1331 1344 8 253 2 2 1,2,3,4,6,7,8,12,14,21,24,28

1536 1536 8 187 2 8 1,2,3,4,6,8,12,16,24,32

1725 1728 8 65 1 3 1,2,3,4,6,8,9,12,18,24,27

1965 1984 8 121 1 14 1,2,4,8,31

2237 2240 8 137 2 6 1,2,4,5,7,8,10,14,20,28

2304 2304 8 193 1 4 1,2,3,4,6,8,9,12,16,18,24,32

2547 2560 8 157 1 3 1,2,4,5,8,10,16,20,32

2900 2944 8 121 1 7 1,2,4,8,16,23

3302 3328 8 137 2 1 1,2,4,8,13,16,26,32

3760 3776 8 119 1 3 1,2,4,8

4096 4096 8 169 2 11 1,2,4,8,16,32

4281 4352 8 179 1 3 1,2,4,8,16,17,32

4874 4992 8 211 1 3 1,2,3,4,6,8,12,13,16,24,26

5550 5632 8 237 1 7 1,2,4,8,11,16,22,32

6144 6144 8 253 2 13 1,2,3,4,6,8,12,16,24,32

7195 7296 8 181 1 7 1,2,3,4,6,8,12,16,19,24

8192 8192 8 203 1 7 1,2,4,8,16,32

Table 3. Parameters of the set of QPP interleavers defined for LTE. Possible parallelisms less than or equal to 32 are listed.

[image: image10.emf]K_info K f1 f2 Parallelism available

40 40 37 20 1,2,4,5,8,10,20

52 56 19 42 1,2,4,7,8,14,28

67 72 19 60 1,2,3,4,6,8,9,12,18,24

87 88 5 22 1,2,4,8,11,22

99 104 45 26 1,2,4,8,13,26

113 120 103 90 1,2,3,4,5,6,8,10,12,15,20,24,30

129 136 19 102 1,2,4,8,17

146 152 135 38 1,2,4,8,19

167 168 101 84 1,2,3,4,6,7,8,12,14,21,24,28

190 192 85 24 1,2,3,4,6,8,12,16,24,32

216 216 13 36 1,2,3,4,6,8,9,12,18,24,27

246 248 33 62 1,2,4,8,31

280 280 103 210 1,2,4,5,7,8,10,14,20,28

319 320 21 120 1,2,4,5,8,10,16,20,32

363 368 25 138 1,2,4,8,16,23

384 384 25 240 1,2,3,4,6,8,12,16,24,32

414 416 77 52 1,2,4,8,13,16,26,32

471 472 175 118 1,2,4,8

536 544 35 68 1,2,4,8,16,17,32

611 624 41 234 1,2,3,4,6,8,12,13,16,24,26

695 704 155 44 1,2,4,8,11,16,22,32

792 800 207 80 1,2,4,5,8,10,16,20,25,32

902 912 85 114 1,2,3,4,6,8,12,16,19,24

1027 1056 229 132 1,2,3,4,6,8,11,12,16,22,24,32

1169 1184 217 148 1,2,4,8,16,32

1331 1344 211 252 1,2,3,4,6,7,8,12,14,16,21,24,28,32

1536 1536 71 48 1,2,3,4,6,8,12,16,24,32

1725 1728 127 96 1,2,3,4,6,8,9,12,16,18,24,27,32

1965 1984 185 124 1,2,4,8,16,31,32

2237 2240 209 420 1,2,4,5,7,8,10,14,16,20,28,32

2304 2304 253 216 1,2,3,4,6,8,9,12,16,18,24,32

2547 2560 39 240 1,2,4,5,8,10,16,20,32

2900 2944 231 184 1,2,4,8,16,23,32

3302 3328 51 104 1,2,4,8,13,16,26,32

3760 3776 179 236 1,2,4,8,16,32

4096 4096 95 192 1,2,4,8,16,32

4281 4352 477 408 1,2,4,8,16,17,32

4874 4992 233 312 1,2,3,4,6,8,12,13,16,24,26,32

5550 5632 45 176 1,2,4,8,11,16,22,32

6144 6144 263 480 1,2,3,4,6,8,12,16,24,32

7195 7296 137 456 1,2,3,4,6,8,12,16,19,24,32

8192 8192 417 448 1,2,4,8,16,32

� A previous version of this document was submitted to the reflector on November 30th for CF interleaver selection.

 Page 1 of 9

_1223125331.unknown

_1226223836.unknown

_1223126327.unknown

_1222861750.unknown

_1222971835.doc
Congruence class before interleaving

4j
4j+1
4j+2
4j+3

Congruence class after interleaving

4j
4j+1
4j+2
4j+3

_1222850908.unknown

_1222852371.unknown

