3GPP TSG RAN WG1Meeting#47
R1-063458
Riga, Latvia, November 6–10, 2006
Agenda Item:
6.7
Source:
ITRI
Title:
Turbo coding tail-bits removal procedure and system impact
Document for:
Discussion
1 Introduction

The tail-biting encoding removes tail-bits of convolutional code and enhances bandwidth efficiency. The contribution R1-062079 [2] has mentioned the advantages of tail-biting encoding, e.g. saving tail-bits overhead, simple rate matching algorithm, equal protection and performance. This document further provides the detail encoding formulation for Rel’6 turbo coding and provides the other features and problems. We also provide some solutions for these potential problems.
2 Tail-biting encoding
2.1 Encoding method
Tail-biting encoding for turbo code is a two stage encoding procedure. [1] demonstrates the tail-biting encoding for recursive convolutional code encoders. Keeping the initial state and the end state of convolutional code the same is the tail-biting concept. It is more complex for recursive convolutional code encoding which is applied for turbo coding. At the first stage, the encoding requires calculating the initial state corresponding to overall input data sequence. At the second stage, it applies the calculated state as initial state to encode. We provide the initial state calculation in the following points and apply the equation to point out problems.
Assume data sequence with length N. Denote by u=(u0,u1,…,uN-1) input data sequence and by x=(x0,x1,…,xN) the state transition during encoding. The state transition can be shown as

[image: image1.wmf]T

t

t

t

Bu

Ax

x

+

=

+

1

, (1)
where A is the (mxm) state matrix, B is the (mxk) control matrix, k is the number of encoder inputs and m is the number of registers. Denote by
[image: image2.wmf]]

[

zi

t

x

 and
[image: image3.wmf]]

[

zs

t

x

 the zero-input solution and the zero-state solution. Eqn. (1) implies

[image: image4.wmf]1

[][](1)[]

00

0

t

zizsttsTtzs

tttst

s

xxxAxABuAxx

-

--

=

=+=+=+

å

. (2)
To satisfy tail-biting convolutional condition
[image: image5.wmf]0

N

xx

=

, we have
[image: image6.wmf][]

00

Nzs

NN

xxAxx

==+

, and therefore initial state is

[image: image7.wmf]1[]

0

()

Nzs

N

xIAx

-

=+

. (3)
We summarize encoding methodology. The first stage applies conventional encoding method to render
[image: image8.wmf]]

[

zs

t

x

 and calculates the corresponding
[image: image9.wmf]0

x

 by eqn (3). The second stage applies
[image: image10.wmf]0

x

 as the initial state and the conventional encoding method again. Therefore the encoder requires doubled encoding latency comparing with the conventional convolutional code encoding.
2.2 The tail-biting impact
Some advantages have been mentioned in [2]. We further provide other relative advantages and disadvantages. For the shortcomings, we also provide the corresponding solutions.
2.2.1 Advantage
2.2.1.1 Simpler decoding architecture
The tail-biting decoder is simpler comparing with conventional convolutional code decoder. The tail-biting convolutional code has a regular trellis. The trellis of conventional convolutional code is irregular because the initial state and end state are zero for conventional convolutional code. The decoder requires more control complexity to cover initial and end parts. Therefore the tail-biting decoder is simpler in terms of hardware complexity.
2.2.2 Disadvantages and solutions
2.2.2.1 Un-encodable data length
Eqn. (3) shows that
[image: image11.wmf])

(

N

A

I

+

 must be invertible, i.e.
[image: image12.wmf]N

A

I

¹

. The control matrix A corresponding to Rel’ 6 turbo coding is
[image: image13.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

1

1

0

0

0

1

1

0

0

A

, and A7=I. If data length is equal the multiple of 7, data may not be encodable. Our system supports data length ranging from 40 to 5114 bits. To facilitate the tail-biting technology, we have to avoid some kinds of data length, e.g. 420 bits.
Applying shortening and puncturing technology [3] simply solve this problem. Inserting dummy bits fits encodable data length and removing the dummy bits corresponding parity bits further makes the codeword fit the desire length. Therefore the issue is simply addressed.
2.2.2.2 Doubled encoding latency
Encoding latency is doubled. Eqn. (3) shows that encoding twice is necessary. Twice encoding results in doubled encoding latency. However encoder can not encode like decoder in parallel and parallelism is not achievable. Double encoding latency is necessary.
Separate encoding supports parallel encoding and reduce encoding latency. However, it provides better performance at low rate but sacrifices performance at very high rate. The trade-off between both deserves FFS.
3 Conclusion
The tail-biting encoding is a very attractive technology to save redundant bits and simplify rate matching algorithm. The tail-biting decoder is also simpler than conventional decoder. However it causes unsupported data length and double encoding latency. Fortunately these two issues can be well-addressed. Shortening and puncturing is suggested to support all data length; separate encoding is suggested to reduce encoding latency. We can enjoy the advantages without further concerns.
4 Reference
[1] C. Weiβ, C. Bettstetter, S. Riedel, “Code construction and decoding of parallel concatenated tail-biting codes,” IEEE Trans. on Inform. , vol 47, no. 1, pp. 366-386, Jan 2001.
[2] R1-062079, Motorola, “Eliminating tail bits in LTE channel coding,” 3GPP TSG RAN WG1#46, Tallinn, Estonia, Aug 28th – Sep 1st 2006.
[3] R1-063457, ITRI, “Turbo coding shortening and puncturing,” 3GPP TSG RAN WG1#47, Riga, Latvia, Nov 6th – Nov 10th 2006.

PAGE
3

_1203753915.unknown

_1207947407.unknown

_1207947543.unknown

_1222782056.unknown

_1222782070.unknown

_1207947565.unknown

_1207947464.unknown

_1203754599.unknown

_1203754986.unknown

_1203754571.unknown

_1203753891.unknown

_1203753754.unknown

