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1 Introduction

A major drawback of OFDM transmission is the high peak-to-average power ratio (PAPR) of the transmit signal. A high PAPR requires a large power amplifier back off so that the operation of the power amplifier remains approximately linear, which in turn reduces the average transmit power and the power efficiency for a particular power amplifier.
In this paper, we discuss different definitions of PAPR and their applicability to the OFDM downlink. The actual PAPR for the OFDM downlink in E-UTRA as well as some PAPR approximations are shown. Since large PAPR increases the required input back off of the power amplifier, we demonstrate the effects of the power amplifier back off on the power efficiency. For a presumed power efficiency increase of 5% due to a PAPR reduction of 2-3 dB, we illustrate the cost-savings for the operators. However, the PAPR reduction usually also comes at the expense of some small reduction of the capacity or throughput. The need for PAPR reduction can then be decided as a tradeoff based on operator costs and revenues.

2 Definitions of PAPR

There are different definitions for the PAPR and their associated complementary cumulative distribution functions (CCDF), cf. Table 1. In particular, investigations of the PAPR signals for multi-carrier signals focus on the symbol-wise PAPR because this is the quantity that can be optimized by PAPR reduction methods. While symbol-wise PAPR investigates only the maximum per OFDM symbol, the overall probability of certain peak powers is more relevant for the power amplifier design. Therefore, the long-term PAPR is usually considered when investigating spectral characteristics, non-linearities and clipping behavior of the power amplifier. It may be noted that there is a significant difference in the results for long-term and symbol-wise PAPR.       

Table 1: Definitions of the PAPR and their associated CCDF

	
	Long-term PAPR
	Symbol-wise PAPR

	Definition of PAPR
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	Definition of CCDF
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The power amplifier receives a continuous valued signal, and therefore the maxima in the PAPR definition correspond to the peak values of the continuous valued signal. Usually, the peaks from the continuous valued envelope signal are sufficient accurately modeled by 4-8 times oversampling the equivalent complex valued baseband signal.

The complementary cumulative distribution functions (CCDF) that are used to illustrate the PAPR are defined in Table 1. It may be noted that the CCDF corresponding to the long-term PAPR is sometimes also called the probability that certain “instantaneous-to-average power ratios” (IAPR) are exceeded.

3 PAPR range and approximations for OFDM

Table 2 shows some useful approximations of the CCDF for PAPR for the LTE downlink. Apparently, the PAPR for OFDM does only depend on the number of sub-carriers chosen, provided the number of sub-carriers is large enough, which is demonstrated for E-UTRA bandwidths 1.25 MHz, 5 MHz and 20 MHz in Figure 1 for 76, 301 and 1201 used sub-carriers, respectively [1]. It may be noted that the curves for the long-term PAPR are virtually identical regardless of the bandwidth, while the actual peaks per OFDM symbol are increasing with the number of used sub-carriers. The PAPR is also not dependent of the modulation scheme chosen, provided the number of used sub-carriers is large enough. The results in Figure 1 have been obtained with 8 times oversampling and a mix of 64QAM, 16QAM and QPSK users with various different power settings.

Table 2: Approximations of the CCDF for PAPR for OFDM

	
	Long-term PAPR
	Symbol-wise PAPR

	CCDF 

for N OFDM subcarriers
	Gaussian approximation:
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	Wei, Goeckel and Kelly approximation [2]:
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Figure 1: PAPR for LTE with 1.25 MHz, 5 MHz and 20 MHz bandwidths

4 Effect of PAPR on Power Amplifier Efficiency

Power amplifiers can certainly support the high PAPR shown in Figure 1 and can be designed to be linear over a large range of input amplitudes. However, high PAPR causes increased costs for the power amplifier and the power consumption by the power amplifier. In particular, the power efficiencies for different types of currently available power amplifiers are depicted in Figure 2 as a function of the necessary input power backoff. It is conceivable, e.g. from the results obtained in [3], that PAPR can be reduced by roughly 3 dB through the usage of PAPR reduction methods. A 3 dB reduction of PAPR implies that the input backoff of the power amplifier can be decreased by 3 dB, which corresponds to a 5-10% increase in the power efficiency of the power amplifiers. 

The effect of a 5% increase in the amplifier power efficiency is illustrated based on some simple calculations in the Appendix. Considering a network with 20000 basestations, an efficiency increase by 5% corresponds to an annual saving of roughly 4.5 Million Euros in operational expenses, and  28 Million Dollar capital investment for the less expensive power amplifiers in the basestations.

It may be noted that the power efficiency for Class S power amplifiers could be substantially increased and the slope of the power efficiency of Class S power amplifiers could be quite different from the ones shown in Figure 2. However, commercial availability of these power amplifiers within the timeframe of E-UTRA deployment is uncertain. 
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Figure 2: Power amplifier efficiencies vs. input backoff

5 Conclusions

It is recommended for reasons of power efficiency to support PAPR reduction methods explicitly with the
E-UTRA specification. 
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7 Appendix: Illustration of a 5% efficiency improvement

Drain efficiency definition:
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Reformulation: 
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Assuming that efficiency would raise from 15 to 20% for a wanted RF power of 20 Watts through the use of a PAPR reduction technology, then:
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The difference is: 
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Now assuming 6 Transmitters in a basestation e.g. 3 sectors with 2 antenna paths, this makes:


[image: image14.wmf]W

W

P

BTS

saving

DC

200

6

33

,

,

=

×

=


Regarding heat dissipation by final stage of PA
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There would be an increase of dissipated heat by 33W per Transmitter. For a basestation this would mean:
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Assuming that the effort for cooling is 10% of the heat power to be shuffled, then the power drawn from AC/DC converter is:


[image: image18.wmf]W

W

W

P

P

P

saving

heat

saving

DC

out

Converter

220

1

.

0

200

200

1

.

0

,

,

,

=

×

+

=

×

+

=


Now assuming an AC/DC converter of 85% efficiency
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7.1 OPEX view by Operator

Now assuming 20000 basestations for a network in a country:
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OPEX cost savings for energy per year, assuming 10ct/kWh:
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So 4.5 Mil EUR savings per year on OPEX for an operator just by a 5% increase of efficiency!

7.2 Per country view

Assuming 4 networks per country energy saving is:
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For comparison one nuclear power plant is at 400…1500MW

Saving in Energy consumption per year
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In 2004, Germany produced 158 TWh electricity by nuclear power plants. Above saving would account for a saving by 0.11%

7.3 CAPEX view

Assuming that the efficiency improvement by 5% comes from a crest factor reduction from 12 to 9 dB, the following peak power can be calculated:
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That corresponds to the following peak powers in Watt.
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The peak power capability therefore differs by:
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Now assuming a rough figure for power of 1 to 2 $ per Watt this makes a cost difference of round about:
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Now assuming again 6 PAs per basestation and 20000 basestation in a network:
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So when deploying a network an operator could save 28 Mil$ on investment just by a 5% Efficiency improvement or equivalent a 3 dB PAPR reduction.

This view neglects that also other stages can be affected by an increased peak power like increased peak power handling requirements in PA circulator and duplex filters. So costs savings will be higher than approximated above.
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