3GPP TSG RAN WG1#44bis R1-060874
Athens, Greece. 27 - 31 Mar 2006
Agenda Item:

10.1
Souce:

Intel, ITRI, LG, Mitsubishi, Motorola, Samsung, ZTE
Title:
Complexity Comparison of LDPC Codes and Turbo Codes
Document for:
Discussion

1. Introduction
According to TR25.913, the system should support an instantaneous downlink peak data rate of 100Mb/s within a 20 MHz downlink spectrum allocation (5 bps/Hz) and an instantaneous uplink peak data rate of 50Mb/s (2.5 bps/Hz) within a 20MHz uplink spectrum allocation. With such a high throughput target, significant alterations to the current channel coding scheme would be required.

As an alternative to the rate 1/3 turbo code (TC) currently defined [2], a promising channel coding candidate to consider is low-density parity-check (LDPC) codes. As discussed in [3], LDPC codes have several performance and implementation advantages over turbo codes, making them a good candidate for channel coding in LTE.
On the other hand, to be backwards compatible, any new channel coding technique has to coexist with the existing turbo code. Thus it is very important to adopt a low-complexity solution while achieving the high data rate requirement. In this contribution, using well-known optimal and sub-optimal decoding algorithms, the complexity of the LDPC decoder is compared with the current turbo decoder in terms of operations count. Comparison of LDPC and turbo decoders based on implementations in literature is also tabulated.
The analysis shows that LDPC decoder requires 30-70% operations as the existing turbo code, to achieve the same performance. Although further comparisons that include all the hardware cost (e.g., control logic, memory) are necessary, the analysis show that LDPC codes is a low-complexity high-performance channel coding technique that should be considered for LTE and its future evolution.
2. Decoder Description

2.1. Notations

R

Code rate. R = K/N in general; R = (nb - mb)/nb for LDPC;

N

Number of codeword bits in a block; N = nb(z for LDPC;
K

Number of information bits in a block; K = (nb-mb)(z for LDPC;
M

Number of parity bits in a block; M = mb(z for LDPC;
mb

Number of rows in the base matrix of the LDPC code;
nb

Number of columns in the base matrix of the LDPC code;
z

Expansion factor of the LDPC code;

dv

Average column weight of the LDPC code;
dc Average row weight of the LDPC code;
dv,max
Largest column weight of the LDPC code;
W

Base matrix weight (W= Ndv=Mdc);

ITC

Number of turbo decoding iterations;

ILDPC
Number of LDPC decoding iterations;

2.2. LDPC Decoder
The structured LDPC codes of [3] are used as an example to compare the decoder complexity with the 3GPP TC. The code rates used are R({1/3, 1/2, 3/4} with codeword size N = 2304. Of the two types of popular LDPC decoding schedules, the layered decoding schedule of the BP algorithm known as Layered Belief Propagation (LBP) is chosen as it requires lesser memory and offers faster convergence compared to the Standard Belief propagation (SBP) algorithm. The standard belief propagation (SBP) uses the flooding schedule so that all the check nodes are updated simultaneously and all the variable nodes are updated simultaneously. In the layered belief propagation (LBP), the check nodes are updated block by block and each block uses the latest messages available.

The number of decoding iterations for LBP is set to 20 based on the convergence results (see Appendix I). Table 1 lists three kernel implementations (optimal and sub-optimal) used with the LBP algorithm.
In this document, the following notation is used. C(n) denotes the set of check nodes connected to variable node n, V(m) denote the set of variable nodes connected to check node m., where 0 (n (N‑1, 0 (m (M‑1. C(n)\m refers to exclusion of m from set C(n), and similarly V(m)\n refers to exclusion of n from set V(n).

Variable Node update:

In the VNU, variable node n has messages Rm(n coming in from all check nodes m(connected to it, in addition to its channel LLR Lch(n). The outgoing message Qnm on an edge n(m is the sum of all messages except Rmn. More specifically, at iteration i, each variable node n calculates messages Qnm[i], which is sent from variable node n to each check node m(C(n). Message Qnm[i] is the LLR of variable node n based on all the check nodes in C(n)\m, and is calculated as

[image: image1.wmf][

]

(

)

[

]

(

)

å

Î

¢

¢

-

+

=

m

n

C

m

n

m

ch

nm

i

R

n

L

i

Q

\

1

where Lch(n) is the channel LLR of variable node n.

Check node update:
In the CNU, check node m has messages Qnm coming in from all variable nodes n(connected to it. Each check node m calculates messages Rmn[i], which is sent from check node m to each variable node n(V(m). Message Rmn[i] is the LLR of variable node n based on all the variable nodes in V(m)\n.

[image: image2.wmf][

]

[

]

(

)

(

)

[

]

(

)

[

]

(

)

å

Õ

Õ

Î

¢

¢

Î

¢

¢

-

Î

¢

¢

+

=

÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

´

=

n

m

V

n

m

n

n

m

V

n

m

n

n

m

V

n

m

n

mn

i

Q

i

Q

i

Q

i

R

\

\

1

\

]

[

2

tanh

tanh

2

sgn

The ideal kernel ([+]) may be implemented via table-lookup or other equivalent methods, and this is referred to as “exact” in the analysis.
The box-plus kernel can be simplified by using the min-approximation to reduce complexity. [19]
This is referred to as “min-sum” in the analysis. Using the Min-Sum algorithm results in significant performance degradation because it overestimates the magnitude of the check-to-variable messages. The Min-Sum algorithm can be improved by reducing the magnitude of the check-to-variable messages by an appropriate scaling factor or offset value [8]. In this document, the Min-Sum with offset is used for comparison (see Appendix II for performance of the above mentioned algorithms and their comparison with turbo-decoding algorithms).
Table 1. LDPC decoding kernels considered (with LBP scheduling).
	Schedule + Kernel
	Comment

	LBP + ideal kernel
	LBP with LUT-based kernel, same performance as ideal kernel (optimal performance)

	LBP + Min-Sum
	LBP with min approx, 0.3~0.5 dB loss compared to ideal kernel(sub-optimal performance)

	LBP + Min-Sum + Offset
	Min approximation with an offset, close to the ideal kernel(sub-optimal performance)

2.3. TC Decoder
Complexity of a decoder for the rate 1/3 turbo codes defined in [2] is studied in this section. The Bahl-Jelinek Cocke and Raviv (BCJR) algorithm, also known as the symbol-by-symbol MAP algorithm is optimal for estimating the states or outputs of a Markov process observed in white noise. However, a direct implementation of the algorithm is very expensive. The Log-MAP algorithm performs the calculation in log domain to reduce complexity.

Several approximations of the Log-MAP algorithm have been proposed in literature, such as the suboptimal Max-Log-Map algorithm. The performance of Max-Log-Map can be improved by sclaing the extrinsic information with a scale factor (SF) that compensates for the over-optimistic extrinsic information generated by the Max-Log-MAP algorithm. This improved Max-Log-MAP is called Max-Log-MAP + Extrinsic Scaling in this contribution.

The Approximation: Max-Log-MAP
For APP algorithm, we define {0,1} , which include all possible symbol for a binary input. Let
[image: image3.wmf]k

d

 represents the transmitted symbol，
[image: image4.wmf]k

x

 the BPSK signal of
[image: image5.wmf]k

d

 as the input of channel，
[image: image6.wmf]k

y

 the received LLR of
[image: image7.wmf]k

x

 from the channel，
[image: image8.wmf]y

 the observed sample as the output of channel。Let the state of the encoder at time k be
[image: image9.wmf]k

S

 , which take on values between 0 and 2v-1, where v is the number of memory bits. The bit
[image: image10.wmf]k

d

 is associated with the transition from step k-1 to step k. One goal of the MAP algorithm is to provide us with the logarithm of the ratio of the a posteriori probability(APP) of each information bit
[image: image11.wmf]k

d

 being 1 to the APP of it being 0. Assume that the received sequence from channel is
[image: image12.wmf]{

}

11

,...,,...,

N

kN

RRRR

=

，here
[image: image13.wmf]{

}

,

sp

kkk

Ryy

=

.

The formula in the following can represent the Max-Log-Map decoding algorithm of 3GPP turbo codes, which has been deduced in [20].

[image: image14.wmf]1

111

(,)

()max((,,),)())

k

kkikkkkk

Si

SRSSS

aga

-

»+

[image: image15.wmf]1

111

(,,)

max((,,)()

kk

ikkkkk

SSi

RSSS

ga

-

-+

[image: image16.wmf]'

1111

(,)

()max((,,)())

kkikkkkk

mi

SRSSS

bgb

+-+-

»+

[image: image17.wmf]1

111

(,,)

max((,,)()

kk

ikkkkk

SSi

RSSS

ga

-

+--

-+

；

[image: image18.wmf]1

1111

(,)

()max((,,)()())

kk

kkkkkkkk

SS

LuRSSSS

gab

-

=++

[image: image19.wmf]1

0111

(,)

max((,,)()()

kk

kkkkkkk

SS

RSSSS

gab

-

-++

 From 3GPP turbo trellis, we know that the number of states is M=2v=23=8.There are two possible input symbols, such as {0,1}. S includes the M=8 possible states.

Correction of the Approximation: The Log-MAP Algorithm [20]
The Max-Log-MAP algorithm is suboptimal and yields an inferior soft output than the MAP algorithm. The problem is to exactly calculate
[image: image20.wmf](

)

12

lnexp()exp()exp()

n

ddd

+++

L

. This problem can be solved by using the Jacobian logarithm:

[image: image21.wmf](

)

(

)

(

)

(

)

(

)

1212

||

12

1212

lnmax,ln1

max,||

c

eee

f

dddd

dd

dddd

--

+=++

=+-

where
[image: image22.wmf](

)

c

f

g

is a correction function.

Let us now prove recursively that the expression
[image: image23.wmf](

)

12

lnexp()exp()exp()

n

sss

+++

L

 can be computed exactly. The recursion is initialized with the formula above. Suppose that
[image: image24.wmf](

)

1

1

ln

n

ee

d

d

d

-

=++

L

 is known. Hence,

[image: image25.wmf](

)

(

)

1

1

1

ln

ln()

max(ln,)(|ln|)

max(,)(||)..

n

nn

ncn

ncn

ee

ewithee

f

fqed

d

d

dd

d

dd

dddd

-

++

=D+D=++

=D+D-

=+-

L

L

When deriving the Log-MAP algorithm, we now augment all maximizations over two values with the correction function. As a consequence, by correcting at each step the approximation made by the Max-Log-MAP; we have preserved the original MAP algorithm. By calculating
[image: image26.wmf](

)

c

f

g

, we lose some of the lower complexity of the Max-Log-MAP algorithm. That is why we approximate
[image: image27.wmf](

)

c

f

g

by a pre-computed table. Since the correction only depends on the formula above, this table is one dimensional. We shall see that only very few values need to be stored.

Improvement of the Approximation: Max-Log-MAP with Extrinsic Scaling
According to [18], the extrinsic information can be derived as following:

[image: image28.wmf](

)

()

()()

2

ese

k

outkkink

Lu

LuyLu

=-+

The explanation for the formula is that the output extrinsic information of one component decoder can be obtained by subtracting the input prior information and the intrinsic information from the log-likelihood ratio of information bits. The output extrinsic information of the current decoder will be sent to the next decoder as the input prior information.

For the approximation algorithm, Max-Log-MAP, the extrinsic information normally has proved to be over-optimistic, thus a scale factor will be applied to the extrinsic information and reduce the likelihood value. Thus the extrinsic message improved Max-Log-MAP needs to change the formula above to the formula as following:

[image: image29.wmf](

)

()

()()

2

ese

k

outkkink

Lu

LuyLus

éù

=-+×

êú

ëû

,
where s is a scaling factor less than 1. Considering the tradeoff between performance and implementation, s = 0.75 is recommended.

3. Complexity
In this section, the operations count of the optimal and sub-optimal decoding algorithm for LDPC and Turbo codes is described to compare the computational complexity.
3.1. LDPC Code
We define the computational complexity of the optimal and sub-optimal decoder for LDPC codes. The LBP decoding [16] with ideal kernel is chosen for optimal decoding, and the Min-Sum with Offset kernel [17] is chosen for sub-optimal decoding. As discussed in [19], the complexity can be calculated assuming the following degree distributions for the LDPC codes: dv= 3.3750 (R=1/3), dv= 3.7292(R=1/2), dv= 3.9375(R=3/4). The ratio of calculation costs is assumed to be as follows: Addition (A) : Comparison (C) : Scaling (S) : LUT = 1 : 1 : 2 : 6.
Table 2. Decoder Operations Count per iteration for LDPC codes.
	LDPC codes
	Optimal decoding
	Sub-optimal decoding

	Schedule + Kernel
	LBP+ideal kernel
	LBP+Min-Sum+Offset

	For check node processing
	A : dvN + (2dc-1)(N-K)
LUT : 2 dc (N-K)
	A : dvN + 2(N-K)
C : (2dc -3)(N-K) + 2(N-K)

	For bit node processing
	A : dvN
	A : dvN

	Costs
	A: Addition(1)
	2dvN + (2 dc -1)(N-K)
	2dvN + 2(N-K)

	
	C: Comparison(1)
	
	(2dc -3)(N-K) + 2(N-K)

	
	LUT(6)
	2dc (N-K)
	

	Total cost

(R=1/3)
	160K
	38.5K

	Total cost

(R=1/2)
	118.3K
	28.8K

	Total cost

(R=3/4)
	83.7K
	20.6K

3.2. Turbo Code
In this section, the operations count of the optimal and sub-optimal decoder for Turbo codes is shown. Log-MAP decoder is defined as optimal decoder, and Max-Log-Map + extrinsic scaling [18] is defined as sub-optimal decoder.

Table 3. Decoder Operations Count per iteration for Turbo codes
	Turbo codes
	Optimal decoding
	Sub-optimal decoding

	Algorithm
	Log Map
	Max Log Map+extrinsic scaling

	For Delta (or Gamma)
	A : 2*3
	A : 2*3

	For Beta
	A : 2*2M+2*M
C : 2*M
LUT : 2*M
	A : 2*2M
C : 2*M

	For Alpha
	A : 2*2M+2*M
C : 2*M
LUT : 2*M
	A : 2*2M
C : 2*M

	For Lambda
	A : 2*(2M+1) + 2*2(M-1)
C : 2*2(M-1)
LUT : 2*2(M-1)
	A : 2*(2M+1)
C : 2*2(M-1)

	For Extrinsic
	A : 3
	A : 3
S : 2

	Costs
	A: Addition(1)
	2*(6M+4)+3+2*(4M-2)
	2*(6M+4)+3

	
	C: Comparison(1)
	2*(4M-2)
	2*(4M-2)

	
	S: Scaling(2)
	-
	2

	
	LUT(6)
	2*(4M-2)
	-

	Total cost (R=1/3)
	587K
	171K

	Total cost (R=1/2)
	587K
	171K

	Total cost (R=3/4)
	587K
	171K

3.3. Comparison results
Appendix I shows that for the LDPC codes, the LBP decoding converges within 15 to 20 iterations, while it is well-known that eight turbo-decoding iterations are sufficient for convergence. Therefore, for a fair comparison between LDPC and turbo-decoding algorithms, the number of iterations is chosen to be 20 and 8, respectively. Appendix II compares the performance of LDPC codes with the 3GPP turbo code at different code rates, showing that LDPC codes have similar performance as the 3GPP TC at lower code rates (1/3 to 1/2), and LDPC codes significantly outperform the 3GPP TC at higher code rates (e.g., at rate-3/4).
The operations count of LDPC and turbo decoding algorithms are listed in Table 4 and Table 5 for the optimal and sub-optimal algorithms using the parameters listed above. The complexity of turbo codes is calculated according to the mother code of rate-1/3. For the LDPC code, the parity-check matrices for higher code rates may be designed independently, or they may be obtained by shortening and puncturing a mother code of rate-1/3.

As Table 4 indicates, using an optimal LDPC decoding algorithm results in approximately 30% to 60% reduction in complexity compared to optimal turbo decoding. Table 5 indicates that similar reduction in complexity (40% to 70%) is obtained when sub-optimal LDPC decoding is compared with the sub-optimal turbo decoding. Therefore, it is concluded that LDPC codes can offer the same performance as the 3GPP TC with approximately 30%-70% reduction in computational complexity. The next subsection compares the hardware implementations of LDPC and turbo decoders available in literature.
Table 4. Operations count comparison of optimal LDPC and TC decoders.
	
	LDPC
	TC
	Complexity of LDPC / Complexity of TC

	Algorithm
	LBP

ideal kernel
	Log MAP
	

	Number of Iterations
	20
	8
	

	Total cost

(R=1/3)
	160K x 20 = 3200K

	587K x 8 = 4696K

	68%

	Total cost

(R=1/2)
	118.3K x 20 = 2366K

	587K x 8 = 4696K

	50%

	Total cost

(R=3/4)
	83.7K x 20 = 1674K

	587K x 8 = 4696K

	36%

Table 5. Operations count comparison of sub-optimal decoders LDPC and TC decoders.
	
	LDPC
	TC
	Complexity of LDPC / Complexity of TC

	Algorithm
	LBP

Min-Sum+Offset
	Max Log Map
+extrinsic scaling

	

	Number of Iterations
	20
	8
	

	Total cost

(R=1/3)
	38.5K x 20 = 770K

	171K x 8 = 1368K

	56%

	Total cost

(R=1/2)
	28.8K x 20 = 576K

	171K x 8 = 1368K

	42%

	Total cost

(R=3/4)
	20.6K x 20 = 412K

	171K x 8 = 1368K

	30%

3.4. Implementations in literature

Although the LDPC codes are less complex than TC from an operations count perspective, a completely fair comparison is not possible as it would require fully optimized hardware implementations of TCs and LDPC codes designed for the desired set of parameters (FER performance, code rate, block size, throughput, gate count power consumption, etc). Therefore, in addition, Table 6 and Table 7 show some of the hardware LDPC and TC implementations that are available in literature [9], [10], [11], [12], [13], [14], [15] to demonstrate the throughputs achievable with current technology. Some of the turbo implementations use parallelization techniques to improve their throughputs. The decoders that appear in the tables were chosen among the huge number of published results due to their rigorous implementation details, and especially for the high throughputs that they deliver.
Table 6. Comparison of published hardware LDPC decoder implementations.

	
	Italy
Pisa [9]
	Korea
KAIST [10]
	USA, Lebanon
UIUC, AUB [11]

	Year
	2005
	2005
	2006

	Iterations
	12
	8
	10

	Codeword size
	1944
	1024
	2048

	Throughput
(Mbps)
	565.1 (R=1/2)
941.8 (R=5/6)
	985 (R=1/2)
	640 (R=8/16 to 14/16)

	Clock (MHz)
	180
	200
	125

	Gate count
	375.14 k
	543 k
	220k

	Area (mm^2)
	6.96
	10.08
	14.3

	CMOS technology
	0.18 um
	0.18 um
	0.18 um

	Code type
	Structured (WWiSE)
	Random
(3,6) regular
	Structured

	Features
	* LBP

* LUT-based kernel
	* LBP
* LUT-based
kernel
	* LBP
* Linearly-approximated kernel

Table 7. Comparison of the published hardware 3GPP TC implementations.
	
	Canada
Waterloo [12]
	Germany
Kaiserslautern [13]
	Australia
Bell Labs [14]
	Belgium
Leuven [15]

	Year
	2004
	2002
	2003
	2003

	Iterations
	5
	6
	6
	6

	Throughput
(Mbps)
	5
	39
59.6
	24
	80.7

	Clock (MHz)
	100
	166
	145
	170.9

	Gate count
	
	
	410k
	373k

	Area (mm^2)
	0.58
	9.29
12.999
	14.5
	14.7

	CMOS
technology
	0.18 um
	0.18 um
	0.18 um
	0.18 um

	Code type
	3GPP Turbo
	3GPP Turbo
	3GPP Turbo
	3GPP Turbo

	Features
	Log-MAP
	Parallel MAP
	Log-MAP
	Parallel MAP

To interpret the published implementations summarized in Table 6 and 7, the throughput of all the decoders is normalized by assuming that all decoders would use the same area, clock, code rate, and provide the same performance. Table 8 shows the references used to normalize the throughput calculated as follows,

[image: image30.wmf]÷

ø

ö

ç

è

æ

´

÷

ø

ö

ç

è

æ

´

÷

ø

ö

ç

è

æ

´

÷

ø

ö

ç

è

æ

´

=

iterations

Reference

iterations

Used

coderate

Used

rate

-

code

Reference

clock

Used

clock

Reference

Area

Used

area

Reference

Throughput

Throughput

Normalized

Table 8. Reference for normalized throughput of LDPC and turbo decoders.
	
	LDPC
	Turbo

	Area (mm^2)
	10

	Clock (MHz)
	200

	R1
	1/3

	R2
	1/2

	R3
	3/4

	Iterations
	20
	8

Note that the TC implementation of [12] is used as the baseline (i.e., normalized throughput = 1). The normalized throughput is tabulated in Tables 9 and 10 for LDPC and TC, respectively.
Table 9. Normalized throughput of published hardware implementations of LDPC decoder.

	
	Italy
Pisa [9]
	Korea
KAIST [10]
	USA, Lebanon
UIUC, AUB [11]

	Nomalized
Throughput (Mbps) R1=1/3
	360.84
	260.58
	238.69

	Throughput ratio (LDPC/Turbo[12])
	3.35
	2.42
	2.22

	Nomalized
Throughput (Mbps) R2=1/2
	541.26
	390.87
	358.04

	Throughput ratio (LDPC/Turbo[12])
	5.02
	3.63
	3.32

	Nomalized
Throughput (Mbps) R3=3/4
	811.90
	586.31
	537.06

	Throughput ratio (LDPC/Turbo[12])
	7.53
	5.44
	4.98

Table 10. Normalized throughput of the published hardware implementations of 3GPP TC.
	
	Canada
Waterloo [12]
	Germany
Kaiserslautern [13]
	Australia
Bell Labs [14]
	Belgium
Leuven [15]

	Nomalized Throughput (Mbps) R=1/3, ½, 3/4
	107.76
	37.93
	17.12
	48.18

	Throughput ratio
(LDPC/Turbo[12])
	1.00
	0.35
	0.16
	0.45

Table 9 shows that practical LDPC codecs can provide large throughputs (desired for LTE) with further room for increase in parallelism without performance degradation. Furthermore, the results after normalization suggest that LDPC decoders can offer at least 2x improvement in throughput compared to the 3GPP TC decoders.
4. Conclusions

This document compared LDPC codes with the existing 3GPP turbo code. It shows that LDPC codes requires 30% - 70% as many operations count when compared to existing TC at same performance. Moreover, literature survey indicated that LDPC decoders can provide enormous parallelism with throughputs that are well-suited to the LTE target data rates. Considering the low-complexity and higher throughput benefits, LDPC codes must be considered for LTE channel coding.
References

[1]. 3GPP TR 25.814 V1.0.1 (2005-11): “Physical layer aspects for evolved UTRA (Release 7)”.

[2]. 3GPP TS 25.212 v6.4.0 (2005-03): “Multiplexing and Channel Coding (FDD) (Release 6)”.

[3]. R1-060022, ”LDPC Codes for E-UTRA,” 3GPP TSG RAN WG1#44 , R1-060383 Denver, USA. 13-17 Feb. 2006.
[4]. IEEE Standard 802.16-2004, “Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems,” Oct. 2004.
[5]. M.M.Mansour and N.R.Shanbhag, “High-Throughput LDPC Decoders,” IEEE Trans. On VLSI Systems, Vol. 11, No 6, pp. 976-996, December 2003

[6]. J. Chen and M. P. C. Fossorier, “Density evolution for two improved BP-based decoding algorithms of LDPC codes,” IEEE Trans. Commun. Lett., vol.6. no. 5. pp. 208-210, May 2002.

[7]. J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X. Hu, “Reduced complexity decoding of LDPC codes,” IEEE Trans. Commun., vol. 53, no. 8, pp. 1288-1299, Aug. 2005.
[8]. E. Eleftheriou, T. Mittelholzer, and A. Dholakia, “Reduced complexity decoding algorithm for low-density parity check codes,” IEEE Electronic Letters, vol. 37, no. 2, pp. 1288-1299, pp. 102-104, Jan. 2001.
[9]. M. Rovini, N. E. L'Insalata, F. Rossi, and L. Fanucci, "VLSI design of a high-throughput multi-rate decoder for structured LDPC codes, " In 8th Euromicro Conference on Digital System Design (DSD05), Portugal, pp. 202-209, Aug.-Sep. 2005.

[10]. S. H. Kang and I. C. Park, "Loosely coupled memory-based decoding architecture for low density parity check codes," IEEE Tran. Circuit and Systems, Accepted for future publication.

[11]. Mansour, M.M.; Shanbhag N.R. "A 640-Mb/s 2048-Bit Programmable LDPC Decoder Chip", IEEE Journal of Solid-State Circuits, vol. 41, no. 3, pp. 684-698, Mar. 2006.
[12]. I. A. Al-Mohandes and M. I. Elmasry, "Low-energy design of a 3G-compliant turbo decoder," NEWCAS2004, pp. 153-156, Jun. 2004.

[13]. M. J. Thul, F. Gilbert, T. Vogt, G. Kreiselmaier, and N. Wehn, "A scalable system architecture for high-throughput turbo-decoders," Workshop on Signal Processing Systems, 2002.

[14]. M. Bickerstaff et al., “A 24 Mb/s radix-4 LogMAP turbo decoder for 3GPP-HSDPA mobile wireless,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 150–151, 2003.

[15]. M. Bougard et al., “A scalable 8.7 nJ/bit 75.6 Mb/s parallel concatenated convolutional (turbo-) codec,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 152–153, 2003.

[16]. 3GPP, R1-051360, ZTE et al., “Comparison of structured LDPC codes and 3GPP Turbo codes”
[17]. Jinghu Chen and Marc Fossorier, Density evolution of two improved BP-based algorithms for
LDPC decoding, IEEE Communications Letters, March 2002.
[18]. J. Vogt and A. Finger: "Improving the max-log-map turbo decoder", in: IEEE Electronics Letters, 2000, Vol. 36, No. 23, pp.1937-1939.
[19]. R1-060334, ”LTE Channel coding” 3GPP TSG RAN WG1#44, Denver, USA. 13-17 Feb. 2006.
[20]. P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal MAP
decoding algorithms operating in the log domain,” IEEE, pp. 1009-1024, 1995
APPENDIX I. Convergence Speed in LDPC Decoder
To compare the decoding complexity of a potential LDPC decoder against the 3GPP turbo decoder, it is important to study the convergence speed and find out the minimum number of decoding iterations needed for the LDPC decoder without significant performance degradation. The performances of both SBP and LBP are studied as a function of iteration. The check node computation uses the ideal kernel that may be implemented using the hyperbolic tangent or other equivalent methods.

The simulation study uses the LDPC codes defined in [3] as an example. All four code rates, {1/2, 2/3, 3/4, 5/6}, are studied. Three codeword sizes, n ({576, 1152, 2304}, were simulated for each code rate.

Figure 1 shows the performance of the SBP and LBP for different number of maximum iterations in AWGN channel with BPSK modulation. The additional SNR required to achieve an FER of 1% at the four different rates is plotted versus the codeword size. Note that the baseline reference is the performance achieved for that particular code-rate/block size using SBP with 50 iterations. Similarly, Figure 2 plots the performance of the SBP and LBP for different number of maximum iterations in Rayleigh fading channel with BPSK modulation.

Both the AWGN and the Rayleigh fading simulation shows that

· Codes with higher rates need fewer iterations to converge;

· LBP converges approximately two times as fast as the SBP at all code rates and block sizes;

· LBP with 15 iterations achieves decoding performance within 0.15 dB of the SBP with 50 iterations at all code rates and block sizes;

In conclusion, it is sufficient to use a maximum of 15~20 iterations and the layered BP algorithm in the LDPC decoder.

[image: image31.wmf]
Figure 1. Comparison of LBP vs SBP in AWGN channel.
[image: image32.wmf]
Figure 2. Comparison of LBP vs SBP in Rayleigh fading channel.

APPENDIX II. Performance comparison of LDPC codes and 3GPP Turbo Codes
The performances of LDPC codes and 3GPP Turbo codes used in the complexity analysis of section 3 are depicted in the Figure 3, 4, and 5. Table 11 shows the specific simulation environment. The performance gain of LDPC codes over 3GPP TC at the operating point of the BLER of 10-2 is shown in Table 12.
Table 11. Summary of simulation environment
	
	LDPC Codes
	3GPP Turbo Codes

	Code Description
	Structured LDPC code

1/3 : dv,max = 12, dv = 3.3750

1/2 : dv,max = 12, dv = 3.7292

3/4 : dv,max = 10, dv = 3.9375
	PCCC in 3GPP TS25.212

with Rate Matching

	Code word Length (N)
	2304

	Code Rate (R)
	1/3, 2/3, and 3/4

	Modulation
	QPSK

	Channel
	AWGN

	Decoding Algorithm
	Optimal
	Sub-optimal
	Optimal
	Sub-optimal

	
	LBP+ideal kernel
	LBP+Min-Sum+Offset
	Log Map
	Max Log Map + extrinsic scaling

	Offset/

Scaling Factor
	N/A
	1/3 : 0.3

1/2 : 0.5

3/4 : 0.5
	N/A
	1 and 0.75

	Iteration
	20
	8

[image: image33.jpg]
Figure 3. The performance comparison of LDPC codes and 3GPP Turbo Codes at code rate 1/3

[image: image34.jpg]
Figure 4. The performance comparison of LDPC codes and 3GPP Turbo Codes at code rate 1/2

[image: image35.jpg]
Figure 5. The performance comparison of LDPC codes and 3GPP Turbo Codes at code rate 3/4

Table 12.. Performance gain of LDPC codes over 3GPP TC at the operating point of the BLER of 10-2
	Code Rate
	Optimal Decoding
	Sub-Optimal Decoding
	Sub-Optimal Decoding with SF

	1/3
	- 0.10 dB
	0.06 dB
	-0.21 dB

	1/2
	0.09 dB
	0.23 dB
	0.02 dB

	3/4
	0.42 dB
	0.50 dB
	0.40 dB

 Page 2 of 13

_1204432586.unknown

_1204457319.unknown

_1204457362.unknown

_1204457381.unknown

_1204457391.unknown

_1204457398.unknown

_1204457371.unknown

_1204457341.unknown

_1204457350.unknown

_1204457329.unknown

_1204457282.unknown

_1204457291.unknown

_1204432790.unknown

_1204435412.unknown

_1204432675.unknown

_1192200642.unknown

_1192200712.unknown

_1204427995.unknown

_1204431829.unknown

_1204432083.unknown

_1204431442.unknown

_1203513693.unknown

_1204391750.unknown

_1192200682.unknown

_1192200552.unknown

_1192200620.unknown

_1192200522.unknown

