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1. Introduction

In the RAN1 #43 meeting, several advanced channel coding schemes were proposed. Those schemes can be classified as: the enhanced Turbo coding and LDPC coding. Two kinds of LDPC codes, Structured LDPC codes and Concatenated Zigzag codes, were discussed. In this proposal, we briefly compare the performance of LDPC codes with Turbo codes, and further compare Structured LDPC codes with Concatenated Zigzag codes in terms of error rates performance and H/W complexity.
2. Advanced coding for 3G LTE system
In the 3G LTE system, various technologies are needed to achieve high system throughput for high data rate support. For example, some technologies, such as MIMO systems, guarantee high spectral efficiency and so we can support high data rate services. Although this kind of feature can enhance possibly system throughput in the link level, some issues in the receiver side technology should be considered. To support high data rate transmission, it is important not only to enhance link performance, but also to decrease processing complexity. From these viewpoints, parallel decoding algorithms for channel coding have been investigated and some channel coding techniques such as LDPC codes with parallel decoding algorithm are considered as a good candidate of the advanced coding scheme for the future system.
The requirements for the coding scheme of the 3G LTE system are as follows:
· High decoder throughput;
· Performance enhancement for high code rate & high-order modulation;
· Simple implementation.
According to the proposals in the last meeting, the comparison results showed that LDPC codes have an advantage over Turbo codes in terms of complexity, especially, decoder throughput. Moreover, LDPC codes have a comparable performance to Turbo codes, as will be discussed below.
In order to compare LDPC codes with Turbo codes, we set the simulation conditions in the following:
	
	Turbo code (3GPP)
	LDPC code

	Info. bit size
	1152 bits

	Modulation
	BPSK

	Channel model
	AWGN Channel

	Decoding algorithm
	Log-MAP

(Iter = 8)
	Sum-product,

(Parallel decoding)
(Iter = 50)


Table 1. Simulation conditions for Turbo codes and LDPC codes
Figure 1 shows the block-error rate (BLER) performance of rate-1/3 Turbo codes and LDPC codes. Turbo codes have slightly better performance than LDPC codes within 0.1 dB gap and so they have comparable performance.
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Fig. 1. Performance of rate-1/3 Turbo codes and LDPC codes.
Figure 2 shows the BLER performance of rate-1/2 Turbo codes and LDPC codes. LDPC codes have almost the same performance as Turbo codes.
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Fig. 2. Performance of rate-1/2 Turbo codes and LDPC codes.
Figure 3 shows the BLER performance of rate-2/3 Turbo codes and LDPC codes. LDPC codes show better performance than Turbo codes. In general, LDPC codes have better performance than Turbo codes in the high code rate case.
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Fig 3. Performance of rate-2/3 Turbo codes and LDPC codes.
Figure 4 shows the BLER performance of rate-3/4 Turbo codes and LDPC codes. 
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Fig. 4. Performance of rate-3/4 Turbo codes and LDPC codes.
In summary, LDPC codes give better performance than Turbo codes in the cases of high code rates, as shown from simulation results.

	
	Turbo code (3GPP)

(8 iterations)
	LDPC code
(50 iterations)

	bits / clock (R=5/6)
	1
	Relatively 7.35 times 

	Gate size (Enc & Dec)
	The same gate size is used

	bits / clock (R=5/6)
	The same decoder throughput is used

	Gate size (Enc & Dec)
	Relatively 7.35 times
	1


Table 2. Hardware complexity of turbo codes and LDPC codes
Table 2 shows hardware complexity of turbo codes and LDPC codes. The throughput of LDPC decoder is approximately 7.35 times higher than that of turbo decoder. Alternatively, to support the same data throughput, the hardware size of an LDPC code can be significantly reduced compared to the corresponding turbo code. Note that in this case, the performance of the turbo code with 8 iterations is comparable to the performance of the LDPC code with 50 iterations. In addition, as proposed in 3GPP RAN1 #43 [1], [3], LDPC codes are also a good candidate to further increase the decoder throughput by employing parallel decoding algorithms.
3. LDPC codes

Currently, two types of LDPC codes have been proposed: Structured LDPC codes and Zigzag codes. Before comparing Structured LDPC codes with Zigzag codes, we present an LDPC coding scheme in this section. Since the concept of Zigzag codes was already introduced in detail in [2], we describe only the concept of Structured LDPC codes here.
3.1. Structured LDPC codes
A Structured LDPC code is defined by a parity-check matrix consisting of small square blocks which are the zero matrix or a right-shifted identity matrix. Let 
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Note that 
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where 
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regardless of its block length 
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One advantage of Structured LDPC codes is to obtain Structured LDPC codes of larger length by increasing the size of circulant permutation matrices in 
[image: image27.wmf]H

. Also, it is straightforward to get Structured LDPC codes of smaller length by decreasing the size of the corresponding circulant permutation matrices. 
An example of a parity-check matrix for a 
[image: image28.wmf](

)

8,4

zz

 Structured LDPC code with 
[image: image29.wmf]8

n

=

 and 
[image: image30.wmf]4

m

=

 is given by 


[image: image31.wmf]0010

1400

26200

3530

éù

êú

êú

êú

êú

êú

ëû

P00PPP00

0PP00PP0

H=

0P0PP0PP

P0P0P00P

                                                       (4)

where 
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 zero matrix and 
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3.2. Encoding of Structured LDPC codes
For efficient encoding of a Structured LDPC code, its parity-check matrix H is divided into six subblocks in the following:
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As an example, consider the parity-check matrix in (4). Then 
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As a result, the encoding procedure of Structured LDPC codes can be summarized below:  

Step 1) Compute 
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Based on the above encoding procedure, the block diagram of the encoder structure can be sketched as shown in Fig. 5.
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Fig. 5. Block diagram of the encoder for a Structured LDPC code.
4. Comparison between LDPC codes and concatenated Zigzag codes
Zigzag codes and concatenated Zigzag codes were first proposed in [4]. It has been shown [4] that Zigzag codes can employ low-complexity soft-in soft-out decoding algorithms and can yield good error rate performance. A concatenated Zigzag code is one of potential competitors of LDPC codes. In the following, the decoding complexity and error rate of LDPC codes and Zigzag codes are compared.

We will compare the Structured LDPC codes and Zigzag codes with the following consideration:

· Decoding complexity

· Operational complexity

· Latency problem

· Parallel decoding for high decoder throughput 
· Performance issue.
4.1. Decoding complexity

Due to the bipartite tree structure of Tanner graph of the LDPC codes, Pearl’s Belief Propagation algorithm in Bayesian Networks field can be used to compute a-posteriori probability (APP) of bit nodes. Iterative BP algorithm includes iterative check note update and bit note update (both updates are also called local computations).

Similarly, a Zigzag code can also be represented in a graph with a simple structure [4] and can be decoded with an iterative decoding algorithm. 

In general, complexity of iterative decoding includes: complexity of local computations, complexity of passing information during each iteration, and the number of iterations. In the following only the complexity of local computations of LDPC codes and Zigzag codes is evaluated, which is in terms of simple operations (SO) (e.g., operations of additions, subtractions, comparisons, and calculation of absolute values, etc.). Analysis of complexity of interconnection between the simple local structures is omitted. For a fair comparison, assume that the decoding of LDPC codes and Zigzag codes uses equivalent number of iterations. 

4.1.1. LDPC codes
BP algorithm is an optimal algorithm when there is no cycle in the graph. This algorithm includes two procedures: check node update and bit node update.
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Fig. 6. Illustration of iterative Belief-Propagation (BP) algorithm
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Table 2. Bipartite graph updating rules for bit notes and check nodes
Where 
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To decrease the complexity of BP algorithm, a sub-optimal algorithm, Min-Sum algorithm (MSA), is proposed by avoiding any call to non-linear function such as 
[image: image96.wmf](

)

x

F

. This simplified algorithm for LDPC codes is similar to the Max-Log-MAP decoding algorithm used for turbo codes.
In MSA, the following approximation is critical in the complexity reduction of the algorithm:
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However, Min-Sum algorithm results in relatively large performance degradation compared with LLR-BP. It has been shown [5] that in Min-Sum algorithm the reliabilities are overestimated, i.e., 
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. Therefore, in [5] the corrected Min-Sum algorithm is proposed by introducing some correction parameters such as a scaling factor 
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Decoding complexity based on the corrected Min-Sum algorithm is evaluated below. Let 
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 be the average degree of variable notes and the average degree of check notes in an LDPC code, respectively. Also let N and K be the code block length and the block length of information bits (IB), respectively. Assume that the corrected Min-Sum algorithm with only the offset 
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 is used in an LDPC decoder.
A. Bit node update

a) APP Processing
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The total number of operations is 
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Based on the analysis in a) and c) above, each bit node requires 
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 SO. Table 3 summarizes the analysis for the complexity of the bit node update.
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	Bit Node Update
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Table 3. Bit Node Update complexity
B. Check node update
In the corrected Min-Sum algorithm, there exist some operations independent of the operations for the offset process. Table 4 summarizes these operations.
	
	Simple Operations (SO)
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Table 4. The complexity of bit node update without the offset process
Now we consider the operations for the offset process.
a) 
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Based on a) and b) above, there are totally 4 SO for the offset process. Table 5 summarizes the overall complexity of bit node update.
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Table 5. Overall complexity of bit node update 
The complexity of local computations includes: 
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 SO for each check node update. Therefore, the overall complexity of local computations of an LDPC code is: 
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4.1.2. Concatenated Zigzag codes
The graph representation of encoding of a Zigzag code is shown in Fig. 1 of [4] where 
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Decoding of Zigzag codes in this proposal is mainly based on the Max-Log-APP (MLA) algorithm presented in [6]. To obtain better performance, the calculation of log-likelihood ratio of n statistically independent random variables in original MLA is modified as (similar to LDPC codes this modified algorithm is also called the corrected Min-Sum algorithm):
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Assume that the received noisy symbols at the receiver are 
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. The complexity of a single Zigzag code is analyzed as follows.
1) Calculation of forward Max-Log-APP of the parity bits


[image: image149.wmf][()]()([(1)],(,1),(,2),,(,))

FpipiWFpidididiJ

=+-

%%%

%

K

, 
[image: image150.wmf]1,,

iI

=

K

.

This calculation includes: J comparisons, 1 addition, operations for J + 1 absolute values, J SO for signs, 2 SO for correction.

The overall operations of this calculation for each segment of J bits are: 3J + 4 SO.
2) Calculation of backward Max-Log-APP of the parity bits
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This calculation includes: 1 comparison, 1 addition, operation for 1 absolute value, 1 SO for signs, and 2 SO for correction.
The overall operations of this calculation for each segment of J bits are: 6 SO.

3) Determination of Max-Log-APP of the information bits
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Finding the minimal absolute value and the second minimal absolute value in the following calculation 
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 needs J + 1 comparisons. For each segment, 
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 is only evaluated once and there are no further operations for evaluation of absolute values. Also for each segment, the calculation also includes J + 1 SO for signs, J additions, and 2J SO for correction. 

The overall operations of this calculation for each segment of J bits are: 5J + 2 SO.

With consideration of calculations in 1) – 3), the overall complexity of a single Zigzag modified Max-log-APP decoder is: 8 + 12/J SO/IB.                          

4) Extension to concatenated Zigzag codes

In the following, concatenated Zigzag codes are considered.

The block diagram of a concatenated Zigzag encoder is shown in Fig. 6. For a concatenated Zigzag code with U Zigzag component codes, the encoder consists of U interleavers 
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) and U Zigzag encoders. The input of the uth Zigzag encoder is an interleaved version of information bit matrix D obtained through interleaver 
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 and the output of this encoder is the parity check bit vector 
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. Parity check bits are generated through very simple modulo-2 operations of several bits during Zigzag encoding and multiplexed with information bits. 

Let D be an I ( J array. Assume that for generation of each parity check bit, there are J information bits involved. Therefore, the size of each parity check vector is I. 
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Fig. 6 Block diagram of a concatenated Zigzag encoder.
To better understand the decoding process of concatenated Zigzag codes, Fig. 7 shows the block diagram of a concatenated Zigzag decoder for the mth iteration. The decoding structure of a concatenated Zigzag code is equivalent to the corresponding concatenated single parity check code discussed in details in [7]. In concatenated Zigzag decoding, the uth Zigzag decoder (
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) has three input vectors and outputs one vector of a posteriori values 
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 represents the extrinsic information vector of the uth decoder generated during the (m-1)th iteration. 

Fig. 8 shows the block diagram of the uth Zigzag decoder during the mth iteration. This figure demonstrates that there is one SO required for each information bit to generate the input of MLA for each Zigzag decoder. Combining the analysis of decoding complexity above with discussion 1) – 3) yields that the overall decoding complexity of concatenated Zigzag codes is: U((9 + 12/J) SO/IB/Iteration.
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Fig. 7 Block diagram of a concatenated Zigzag decoder during the mth iteration.
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Fig. 8 Block diagram of the uth Zigzag decoder during the mth iteration.

4.1.3. Examples
Table I presents the decoding complexity (in terms of SO/IB/Iteration) of LDPC codes and concatenated Zigzag codes with various code rates. Both LDPC code and concatenated Zigzag code have information block size of 1152 bits and use the modified Min-Sum decoding algorithm. The coding parameters 
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, U, and J are as defined above. This table demonstrates that for the cases of relatively low code rates, concatenated Zigzag codes have lower number of SO/IB/Iteration than the LDPC codes of the same rate. Note that concatenated Zigzag decoding includes several interleaving/deinterleaving operations during each iteration (as described in Fig. 8) and LDPC decoding does not need such operations indicating that an LDPC decoder has the comparable decoding complexity to a concatenated Zigzag decoder. Alternatively, for the cases of relatively high code rates, LDPC codes shows an advantage in decoding complexity compared to the concatenated Zigzag codes of the same rate. 
	
	Rate 1/3
	Rate 1/2
	Rate 2/3
	Rate 3/4

	Code
	LDPC
	Con. ZZ
	LDPC
	Con. ZZ
	LDPC
	Con. ZZ
	LDPC
	Con. ZZ

	Coding parameters
	dv=3.3750
	U=4
	dv=3.7292
	U=4
	dv=3.8542
	U=4
	dv=3.9375
	U=4

	
	dc=5.0625
	J=2
	dc=7.4583
	J=4
	dc=11.5625
	J=8
	dc=15.7500
	J=12

	SO/IB/Iter.
	70.88
	60
	52.21
	48
	40.47
	42
	36.75
	40


Table 6. Comparison of decoding complexity between LDPC codes and concatenated Zigzag codes.
4.1.4. Decoding latency of concatenated Zigzag codes
As demonstrated in Fig. 8, in concatenated Zigzag decoding, each Zigzag component decoder needs one interleaver and one deinterleaver to obtain one input vector from the previous component decoder. These interleaving/deinterleaving operations will result in decoding latency. The larger the dimension of concatenated Zigzag codes (the number of component Zigzag codes) and the larger the interleaver/deinterleaver, the longer the decoding latency of concatenated Zigzag codes.

On the other hand, a LDPC decoder does not need interleaving/deinterleaving operations and can yield high decoder throughput.
4.2. Performance Simulation

Figs. 9 – 12 compare the simulated block error rate (BLER) of LDPC codes and concatenated Zigzag codes of rate 1/3, 1/2, 2/3, and 3/4, respectively. All simulation results are obtained with the additive white Gaussian noise (AWGN) channel and QPSK modulation, and are based on the information block size of 1152 bits, the modified Min-Sum decoding algorithm, and 20 iterations.

	
	CZZ  codes
	LDPC codes

	Info. bit size
	1152 bits

	Modulation
	QPSK

	Channel model
	AWGN Channel

	Decoding algorithm
	Modified Min-Sum

Two-way scheduling

(Iter = 20)
	Modified Min-Sum
Horizontal shuffle scheduling

 (Iter = 20)


Table 7. Simulation conditions for Structured LDPC codes and concatenated Zigzag code.
Figs. 9 – 12 demonstrates that the LDPC codes yield better BLER performance than the corresponding concatenated Zigzag codes of the same rate for all code rates considered (from 1/3 to 3/4) and that the lower the code rate, the larger gain obtained by LDPC codes. Fig. 9 shows that with the code rate of 1/3 and 3/4 the LDPC code has an approximate 0.2 dB and 0.1 dB gain in Eb/No, respectively, when BLER equals 10-2.
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Fig. 9. Performance of rate-1/3 Structured LDPC codes and concatenated Zigzag code.
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Channel coding performance: AWGN, QPSK, K=1152 bits, R=1/2
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Fig. 10. Performance of rate-1/2 Structured LDPC codes and concatenated Zigzag code.
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Channel coding performance: AWGN, QPSK, K=1152 bits, R=2/3
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Fig. 11. Performance of rate-2/3 Structured LDPC codes and concatenated Zigzag code.
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Channel coding performance: AWGN, QPSK, K=1152 bits, R=3/4
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Fig. 12. Performance of rate-3/4 Structured LDPC codes and concatenated Zigzag code.
4.3. Parallel decoding

As described in [1], [3], Structured LDPC codes can be inherently decoded in parallel. We can increase the decoder throughput by using larger parallel factors. Throughput of LDPC decoder is as follows:
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 is code rate, 
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 is clock frequency of decoder, and 
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 is the average number of iterations. Therefore, the decoder of Structured LDPC codes has flexibility for trade-off between decoder throughput and complexity. However, decoding of Zigzag codes is based on forward-backward algorithm like turbo decoding [2], in which a posteriori probability of bits is calculated in serial. 

5. Conclusion
Based on the analysis results in this proposal, we can conclude the followings :
1. Advanced coding scheme should be considered for 3G LTE system. Moreover, LDPC codes can be a good candidate in terms of the requirements for advanced coding scheme..
· LDPC codes have better performance than Turbo codes in high code rate

· LDPC codes support high decoder throughput 

2. Comparing Structured LDPC codes with Zigzag codes, Structured LDPC codes have several advantages over Zigzag codes
· Structured LDPC codes have better performance than Zigzag codes
· Structured LDPC codes have comparable complexity with Zigzag codes
· Zigzag codes requires high latency over LDPC codes
· The decoder of Structured LDPC codes has flexibility for trade-off between decoder throughput and complexity
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