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1 Introduction

In the initial acquisition process, timing and cell identification should be obtained such that eventually the UE could obtain further cell- or system specific information from, e.g., a broadcast channel (BCH). Several different proposals for the E-UTRA synchronization channel (SCH), intended for use in the cell search procedure are proposed in RAN1 until now [1]-[6]. Compared to the solution existing in WCDMA standard, proposals [1] and [6] make a step forward towards concurrent initial synchronization acquisition and cell identification, where the same signal can be used for synchronization as well as for carrying cell-specific data. Thus, this non-hierarchical cell search procedure may result in a shorter duration of the complete timing and frequency acquisition and cell identification.
According to these proposals, the synchronization channel consists of several cell-specific concatenated identical OFDM waveforms obtained by IFFT of GCL sequences. Such repetitive SCH structure is designed to support the initial timing acquisition by using blind differential correlation detection in the receiver [7],[8], and offer some degree of frequency offset estimation. The differential decoding of the OFDM demodulated data samples are performed in order to mitigate the phase variations introduced by propagation channel. Based on the specific structure of GCL sequences, the cell identification can be performed after the initial timing acquisition and differential decoding of demodulated data, by implementing the bank of orthogonal correlators using an IDFT. In [6], it was suggested to further reduce the sequence length to obtain 4 repetitions within the OFDM symbol. This would give a narrower correlation peak than [1]. In [1], the sequence length was 38 and in [6], the sequence length was 17, per one OFDM symbol.

Although the above solution for the synchronization channel seems rather promising in terms of reduced overall cell search time, still its timing acquisition is very sensitive to noise/interference due to the broad triangular shape of the differential correlation function. A broad peak may be problematic even if several synchronization symbols are averaged for the timing detection. Thereby, additional procedures may need to be taken for obtaining a fine timing acquisition. In [9], we proposed centrally symmetric cell-specific OFDM synchronization signals, such that a reverse differential correlation [10] could be used.  This gave an impulse like correlation peak which resulted in significant improvement of the timing acquisition, while still permitting the cell identification from a single synchronization signal, thus, supporting non-hierarchical cell search. In this contribution we shall further evaluate such signals, in terms of joint probability of correct timing detection and correct cell-ID detection after timing acquisition. Besides, we compare the respective performances of the repetitive synchronization signals from [1] and [6].
Section 2 describes centrally symmetric synchronization signals and the corresponding blind reverse differential correlation. Section 3 contains description of OFDM SCH based on inner products of a Golay complementary sequence with the set of differentially encoded Hadamard orthogonal sequences.  Besides, performance evaluation results are presented in this section. Finally, Section 4 contains some conclusions.
2 Centrally symmetric signals and reverse differential correlation 

In order to achieve an impulse-like differential correlation function, as many as possible different products of samples should be involved in the summations corresponding to the different delays. In that way, and in contrast to [1] and [6], the differential correlation values corresponding to different out-of-synchronization delays will be randomized. Hence, the correlator would provide low side lobes and narrow peaks on the locations of the dominant channel taps.
One way to achieve the randomized out-of-sync differential correlation values is to reverse the order of samples in one of the blocks of samples. We shall define so-called reverse differential correlation D(p) as 

D(p)=
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where p denotes the delay of the first sample in the block of N received samples with respect to the true position of the first sample of the synchronization signal, and 
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 denotes the ceiling function of x, i.e. the smallest integer greater than or equal to x.

To obtain the maximum possible correlation value (1) at p=0, equal to the energy of the signal in the correlation window of 
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 samples, the synchronization signal s(k), k=0,1,…,N-1, should be centrally symmetric, i.e. such that 
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where N is arbitrary positive integer, and where we assumed that the signal energy is equally distributed between the first and second block of 
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From (1) and (2) it follows that the reverse differential correlation Ds(p) of the synchronization signal s(k) exists only for p=
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, and is given by 

Ds(p)= Ds*(-p)=
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The formula (3) resembles very much to the aperiodic autocorrelation function R(p) of the synchronization signal s(k), defined as

 













R(p)= R*(-p)= 
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As it can be seen, the only difference between Ds(p) and R(p) is in a reduced number of summation elements. Thus if the s(k) has an impulse-like aperiodic autocorrelation function, its reverse differential correlation function has very good chances to be impulse-like as well. The equation (4) shows that, in general, the non-repetitive, but centrally symmetric pseudo-random signals produce lower correlation sidelobes than the repetitive signals. 
An alternative to centrally symmetrical synchronization signals defined by (2) are such satisfying
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in which case the reverse differential correlation has to be re-defined as 

D(p)=
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(6)
3 OFDM synchronization signals based on Golay complementary sequences
As was shown in [9], the reason for bad timing performance of the differential correlation [1] lies in the existence of a plateau, which makes highly probable that the noise will produce a correlation peak at the delay within the correlation plateau less than the zero (correct) delay. Thus, the probability of correct timing converges very slowly to the value 1 with an increase of SNR. In a multi-path channel, the timing should preferably be within the ISI-free part of the cyclic prefix. Hence, the timing error tolerance decreases by an increased channel delay spread.  
The previous section introduced the signal design for obtaining narrow correlation peaks. If we use the bits of a cell-specific binary sequence from a set of binary pseudo-noise sequences as the Fourier coefficients, the resulting OFDM synchronization signal s(k) is similar to (5) and has the property 
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Such a signal can be detected by a modified reversed differential correlation (6), as 

  




 D(p)=
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 Moreover, it is readily seen that the magnitudes of the reversed differential correlation (8) remain unchanged under arbitrary frequency error df in the signal, i.e.
 D(p)=
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 fs is sampling frequency.
 The set of pseudo-noise sequences used to generate the cell-specific OFDM synchronization signals could be the set of orthogonal Golay (binary) complementary sequences [7]
. Such signals are considered in [9]. If the elements of such a Golay sequence c(l), l=0, 1,…, L-1, are mapped as the Fourier coefficients of the equidistant consecutive sub-carriers, for example as
H(n)=
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it can be verified that the resulting OFDM signal, i.e., the IDFT of (9),  has the peak-to-average power ratio less than 3dB [12]. After receiving the signal and demodulating the data from the OFDM signal, the specific sequence can be identified by differential decoding of demodulated data and correlating with all sequences from the set of differentially decoded orthogonal Golay sequences. However, the differentially decoded set of sequences is not orthogonal, so the detection performances would be deteriorated compared those obtained by orthogonal codes.

Thus in this paper we consider the OFDM signals obtained by mapping the sequences obtained by the inner products of a Golay sequence (e.g. of length 64) and differentially encoded Hadamard sequences of the same length. Although the resulting OFDM signals have higher PAPR than the OFDM signals obtained from true Golay sequences, they still exhibit quite low PAPR, in the same range of values as for the GCL sequences, i.e. in the range 2.98-5.77 dB.
 The additional benefit of such signals is that the specific sequence can be identified by correlating the demodulated and differentially decoded data with an orthogonal set of sequences, obtained as the inner products of a differentially decoded Golay sequence and the set of orthogonal Hadamard sequences of the same length. Such a bank of correlators can be efficiently implemented, for example, by using the fast Hadamard transformation, which is of the same complexity as the DFT detector used in [1].

Once the exact timing is obtained, the cyclic prefix of the OFDM synchronization signal can be used for frequency error estimation, as well as cyclic prefixes of other OFDM symbols to improve the estimate of the frequency error. Besides, a modification of the frequency error estimation method described in [13] could be applied as well.
3.1 Timing acquisition performance of OFDM-Golay signals
The three types of SCH are evaluated: a) OFDM-Golay signals obtained from the inner product of a Golay sequence of length L=64 and differentially encoded Hadamard sequences;  b) OFDM signals with 2 periods, obtained from GCL sequences of length 38 [1]; and c) OFDM signals with 4 periods, obtained from GCL sequences of length 17 [6]. All OFDM signals were of the same length N=128 samples.

The SCH has a bandwidth of 1.25 MHz. The SCHs b) and c) are detected by using the differential correlators as defined in [7] and [8]. As in [1], 5 synchronization symbols are used for the timing detection, whereas the cell ID is decoded from one synchronization symbol only. The timing error tolerance zone is set to 2 samples. Since the correlation plateau is on negative delays for [7], its error tolerance zone is [-2,0]. The correlation peak of [8] is symmetric, thus its error tolerance zone is set to [-1,1]. The reverse differential correlator has enough resolution for detecting the channel taps, thus its timing estimates will often be for positive delays. Hence, its error tolerance zone is set to [0,2]. 
The timing acquisition performances on AWGN channel are shown in Fig.1. 
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Fig.1. Probabilities of correct timing acquisition on AWGN channel, error tolerance zone is 2 samples.  
From Fig. 1, it can be seen that the reverse differential correlator offers the highest timing detection probability, for probabilities above 0.5. Moreover, its higher resolution also makes it possible to directly distinguish the timing of the dominant channel taps. In an asynchronous system the fine resolution of the peaks would allow easier cell identification of multiple cells.

In Fig. 2, the probability of correct timing is depicted for a TU channel at 3 km/h.  It is known that in a multi-path channel, the timing plateau of [1],[7], decreases, yet Fig. 2 shows that the correct timing  detection probability still is far better than for the two other schemes.
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Fig. 2. Probabilities of correct timing acquisition on a TU3 channel, error tolerance zone is 2 samples.
In Figs. 3 and 4, the probabilities of correct cell-ID, assuming perfect synchronization, are shown. 
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Fig. 3. Probability of correct cell identification on an AWGN channel with perfect synchronization.

[image: image23.emf]-15 -10 -5 0 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

Probability of cellid detection

Golay L=64

GCL L=38

GCL L=17


Fig. 4. Probability of correct cell identification on a TU3 channel with perfect synchronization.

As all different evaluated OFDM synchronization signals have the same average transmitted power, the shorter sequences will effectively decode the cell ID at a larger SNR per subcarrier. On the other hand, a longer sequence length implies higher coherent integration gain of the correlator. Moreover, since the GCL sequence of length 17 is mapped on every fourth subcarrier, it will experience somewhat less channel cancellation in the differential decoding. All this explains the why in Figs 3 and 4 at lower SNRs the detection probabilities are inversely proportional to the lengths of sequences, while the performances of different signals converge quickly with increase of SNR. For low SNRs, the curves will converge to the inverse of the sequence length.

Figs. 5 and 6 show the joint probability of correct timing detection and correct cell-ID detection after timing acquisition. We can see that also here, the relation among the curves is maintained.
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Fig. 5. Probability of finding timing within the error tolerance zone and detecting the cellid, in an AWGN channel.
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Fig. 6. Probability of finding timing within the error tolerance zone and detecting the cellid, in a TU3 channel.
4 Conclusions 
The results presented in this contribution demonstrate that the concept of the non-hierarchical cell search based on cell-specific synchronization channel has the potential both for accurate synchronization acquisition and fast cell identification in E-UTRA. 
The cell-specific OFDM synchronization signals obtained from the inner products of a Golay sequence of length L=64 and differentially encoded Hadamard sequences, detected by the reverse differential correlation algorithm, can result in significant improvements of the correct timing acquisition and cell identification probabilities.

The text proposal at the end of this paper has two goals: to outline the basic classification of the possible cell search structures, and then, to give the main general features of one of these structures, the non-hierarchical cell search structure.
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Text Proposal
---------------------------------------------- Start of text ------------------------------------------------

7.1.2.4. Cell search

The two principal structures of the cell search might be identified: hierarchical cell search and non-hierarchical cell search. Both structures should be studied and compared.

7.1.2.4.1. Hierarchical cell search

……
7.1.2.4.2. Non-hierarchical cell search

In the non-hierarchical cell-search structure, a set of cell-specific OFDM waveforms, all characterized by a (centrally) symmetric shape of their magnitudes, is used both for initial synchronization and cell identification in the UE. Each cell-specific OFDM waveform is obtained by IDFT of a cell-specific pseudo-noise sequence, whose elements are used as the Fourier coefficients at the occupied sub-carrier frequencies. The different pseudo-noise sequences are labelled by the different cell IDs. Each OFDM waveform is preceded by a cyclic prefix.
-----------------------------------------------End of text ------------------------------------------------






































































































































































































� The pairs of complementary Golay sequences exist for even sequence lengths L, and are characterized by the property that the sum of the aperiodic autocorrelation functions of the sequences equals zero for all non-zero delays. A set of orthogonal Golay sequences of length L can be obtained by the bit-wise multiplication of a single Golay complementary sequence of length L with all L Hadamard sequences of length L [7]. The sequences within such a set can be grouped into L/2 different complementary pairs. 
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