Page 1
Draft prETS 300 ???: Month YYYY

3GPP TSG-RAN WG1 Meeting #43

R1-051409
Seoul, Korea, 07-11 November, 2005
Source:
Nokia
Title:
Low complexity channel coding with concatenated ZigZag codes

Agenda Item:
8.6
Document for:
Discussion and decision
1 Introduction

With the increased data rates required for E-UTRA, the decoding complexity of turbo codes becomes a serious issue. The complexity of an efficient turbo decoder implementation is in the order of 2 clock cycles/bit/iteration and with data rates of up to 100 Mbps parallel processing using multiple decoders is required. Due to this high complexity it is worthwhile to investigate alternative channel coding schemes providing lower complexity. Low density parity codes (LDPC) have already been presented in the RAN1 LTE discussions[1,2]. In this contribution we propose to study a variant of LDPC called ZigZag codes. Zig Zag codes have the potential for comparable or lower complexity than LDPC with good properties for generating flexible code rates by rate compatible puncturing, which is beneficial for HARQ and Incremental Redundancy schemes. ZigZag codes were first introduced in [3].

2 Code definition

2.1 Encoding

As with turbo codes, concatenated ZigZag codes uses a very simple base code and by concatenating several of these with different interleaving of the input data and using an iterative decoding process is very good performance is achieved. The base rate J/(J+1) ZigZag code is constructed as shown in Figure 1 by constructing a matrix of dimension IxJ=K where K is the number of information bits and bits are filled in order row by row.

[image: image1.emf]D

1

P

1

J

I

d(1,3)

d(1,2)

p(1)

d(2,1)

d(2,2)

p(2)

p(3)

d(1,1)

d(2,3)

d(3,3)

d(3,2)

d(3,1)

d(I,3)

d(I,2)

d(I,1)

p(I-1)

p(I)

Figure 1 Base ZigZag code

The parity bits are computed over the data bits in each row and the parity bit of the previous row. Thus every parity bit is the sum of all previous information bits. Mathematically, the encoding can be represented by the following calculation over GF(2):

[image: image2.wmf](

)

(

)

(

)

,

,

1

1

å

=

+

-

=

J

j

j

i

d

i

p

i

p

[image: image3.wmf]I

i

,...,

3

,

2

,

1

,

Note that the parity bits can be generating by doing the accumulation over the entire code word and outputting the partial results after every J’th bit, yielding a very simple encoder.

The parallel concatenation for ZigZag codes are generated in a similar way as parallel concatenated convolutional codes in which multiple parity streams are generated by interleaving the input before each constituent encoder as shown in Figure 2.

[image: image4.emf]ZigZag

encoder

ZigZag

encoder

ZigZag

encoder

Interleaver 1

Interleaver 2

Input bitsSystematic bits

Parity 1 bits

Parity 2 bits

Parity 3 bits

Figure 2 Parallel concatenated ZigZag codes

Variable code rates can be generated by varying parameters J and M, where M is the number of parallel ZigZag codes. The base code rate is J/(J+M) or in block code notation (N,K)=(IJ+IM,IJ).

2.2 Decoding

Decoding of ZigZag codes is also similar to turbo decoding and the log-APP or the somewhat inferior Max-log-APP (MLA) algorithms can be used. The main difference between turbo decoding and ZigZag decoding is that due to the single parity check property of the ZigZag code, the weighting function is also very simple:

[image: image5.wmf](

)

(

)

[

]

j

j

j

n

j

n

z

z

z

z

z

W

min

sign

,.....,

,

1

2

1

×

P

=

=

In the decoding algorithms, the log likelihood ratios (LLR) are calculated through one forward and one backward recursion the, before being combined. Let
[image: image6.wmf])

,

(

~

j

i

d

 and
[image: image7.wmf])

(

~

i

p

 represent the received data and parity symbols respectively. The MLA algorithm is then defined as follows:

Forward recursion:

[image: image8.wmf](

)

[

]

(

)

(

)

[

]

(

)

(

)

(

)

(

)

J

i

d

i

d

i

d

i

p

F

W

i

p

i

p

F

,

~

,....,

2

,

~

,

1

,

~

,

1

~

-

+

=

, for
[image: image9.wmf]I

i

,....,

2

,

1

=

 and with
[image: image10.wmf](

)

[

]

+¥

=

0

p

F

Backward recursion:

[image: image11.wmf](

)

[

]

(

)

(

)

(

)

(

)

(

)

[

]

(

)

,

,

,

~

,....,

2

,

~

,

1

,

~

1

~

1

i

p

B

J

i

d

i

d

i

d

W

i

p

i

p

B

+

-

=

-

, for
[image: image12.wmf]2

,....,

1

,

-

=

I

I

i

 and with
[image: image13.wmf](

)

[

]

(

)

I

p

I

p

B

~

=

The final LLR is then calculated as:

[image: image14.wmf](

)

[

]

(

)

(

)

[

]

(

)

(

)

(

)

(

)

(

)

(

)

[

]

(

)

i

p

B

J

i

d

j

i

d

j

i

d

i

d

i

d

i

p

F

W

j

i

d

j

i

d

L

,

,

~

,....,

1

,

~

,

1

,

~

,....,

2

,

~

,

1

,

~

,

1

,

~

,

+

-

-

+

=

Iterative decoding is also analog to turbo decoding where the LLR from one stage is passed on to the next stage. This is shown in Figure 3.

[image: image15.emf])(

~

3

ip)(

~

2

ip)(

~

1

ip

),(

~

jid

ZigZag

decoder

-

+

ZigZag

decoder

Int 1Deint 1

-

+

ZigZag

decoder

Int 2Deint 2

-

+

-

-

-

+

+

+

)(

1

k

D

E

)(

2

k

D

E

)(

3

k

D

E

)1(

3

k

D

L

)(

1

k

D

L

)(

2

k

D

L

Figure 3 Iterative decoding for ZigZag codes.

2.3 Support for Incremental Redundancy

The selected channel code needs to support HARQ with incremental redundancy (IR). IR requires the base code rate to be low, so that the number of parity bits that is available for retransmissions is large. This means that the base code must perform well when punctured, i.e. the performance when the code is punctured to rate R should be similar to the performance of a base code with rate R. As shown in section 3, concatenated ZigZag codes perform well in this case.

3 Performance

As an indication of the performance of concatenated ZigZag codes, Figure 4 and Figure 5 shows comparisons between turbo codes and ZigZag codes for different code rates and different combinations of M and J to generate the ZigZag code rates in AWGN and flat Rayleigh fading channels. For each code rate, we compare the turbo code performance to three different ZigZag codes:

1. ZigZag code (M=4) with the same code rate as the target code rate

2. ZigZag code (M=4,R=1/5) punctured to the target code rate

3. ZigZag code (M=3,R=1/4) punctured to the target code rate

Both regular and irregular puncturing have been tried with no significant performance difference. The performance convergence is slower for ZigZag codes than for turbo codes, so 20 iterations have been used for ZigZag codes compared to 8 iterations for turbo codes.

The results show that ZigZag codes performance is not as good as the turbo code performance. The difference is larger (~0.75 dB) for low code rates and is reduced and marginal (~0.1 dB) for high code rates.

The results also show that ZigZag codes are robust against puncturing and therefore well suited for use in a HARQ scheme.

Improvements in performance can be achieved by using the Log-APP algorithm for decoding instead of the Max-log-APP.
In order to make relevant comparison between different coding schemes, the performance of ZigZag codes and other coding schemes must be analyzed with both OFDMA and SC-FDMA signal structures, including HARQ, and with realistic channel models.

[image: image16]

 SHAPE * MERGEFORMAT
[image: image17]

[image: image18]

 SHAPE * MERGEFORMAT
[image: image19]
Figure 4 Performance comparison between turbo codes and ZigZag codes in AWGN.

[image: image20]

 SHAPE * MERGEFORMAT
[image: image21]
Figure 5 Performance comparison between turbo codes and ZigZag codes in flat fading Rayleigh channel.

4 Decoding Complexity

The main motivation for introducing a new channel code for E-UTRA is to decrease the complexity compared to having the current PCCC. A simple complexity comparison to turbo codes is done here.

Number of Operations

The number of addition equivalent operations (AOB) required for ZigZag codes are shown in Table 1. For ZigZag codes M=4 and J=1 for code rate 1/5 and J=2 for code rate 1/3. As the simulations results show, more iterations are needed for ZigZag codes than for turbo codes increasing the number of operations required.

Table 1 Complexity comparison between turbo codes and ZigZag codes
	Coding scheme
	Iterations needed
	AOB/bit/iteration
	AOB/bit
	AOB for 5000 bit block
	Relative to turbo codes

	Turbo codes
	8
	325
	2600
	13e6
	100%

	ZigZag(R=1/5)
	20
	32
	640
	3.2e6
	25%

	ZigZag(R=1/3)
	20
	24
	480
	2.4e6
	18%

Clearly, the number of operations needed for decoding of ZigZag code is lower than for turbo codes. However, the difference in complexity is not necessarily the same in an efficient implementation. By doing parallel processing, the decoding time for turbo codes can, as earlier mentioned, come close to 2 cycles/iteration/bit. This means higher HW complexity, but the number of computational gates in the turbo decoder is still relatively small. Further parallelization can be achieved by having code block segmentation allowing for parallel decoders. Code block segmentation is anyway useful for both coding schemes, as limiting the size of the interleaver(s) saves memory. A more thorough study of the complexity of the potential candidates is therefore needed before a decision on the channel coding scheme for E-UTRA is made.

Memory size

Due to the similarity of the decoding algorithms, the number of memory words required will be in the same range, with the exception that extra memory is needed for the extra interleaver(s) for ZigZag codes. The actual size of the memory is dependent on the word lengths needed in the different processing steps and needs further studying.

5 Conclusion

In this contribution, we have introduced concatenated ZigZag codes as potential candidate for channel coding in E-UTRA. Even though the performance of the ZigZag codes is somewhat inferior to that of turbo codes, the potential savings in decoding complexity makes them an attractive coding scheme candidate in order to have reasonable UE decoding complexity for high data rates. Therefore, it is proposed to study ZigZag codes further for E-UTRA. A text proposal for the channel coding sections of TR 25.814 is included.
6 Text proposal

---------------------------------- Start of text proposal ------------------------------------

7.1.1.3
Channel coding and physical channel mapping
Current assumption for the study-item evaluations should be that channel coding for “normal” data [Layer 3 information] is based on UTRA release 6 Turbo coding, possibly extended to lower rates by extension with additional code polynomials, extended longer code blocks, and modified by the removal of the tail. However, the use of alternative FEC encoding schemes could also be considered, especially if significant benefits in terms of complexity and/or performance can be shown. One such alternative encoding to be studied is concatenated ZigZag codes.
To achieve high processing gain, repetition coding can be used as a complement to FEC.

Channel coding for lower-layer control signaling is TBD.

---------------------------------- End of text proposal ------------------------------------

---------------------------------- Start of text proposal ------------------------------------

9.1.1.3
Channel coding and physical channel mapping
Similar to the downlink, the current assumption is that uplink channel coding for Layer 3 information is based on current UTRA release 6 Turbo coding, possibly extended to lower rates by the extension of additional code polynomials, extended to longer code blocks, and modified by the removal of the tail. However, also similar to the downlink, the use of alternative FEC encoding schemes could be considered if significant benefits in terms of complexity and performance could be shown. One such alternative encoding to be studied is concatenated ZigZag codes.
To achieve high processing gain, repetition coding can be used as a complement to FEC.

Uplink channel coding for lower-layer control signaling is TBD.
---------------------------------- End of text proposal ------------------------------------

References:

[1] R1-051070, “Comparison of structured vector LDPC Codes and 3GPP Turbo codes”, ZTE, CATT, RITT, Huawei.

[2] R1-051167, “Rate-Compatible LDPC codes with low complexity encoder & decoder”, Mitsubishi Electric Corporation

[3] Li Ping, X. Huang and N. Phamdo, "Zigzag Codes and Concatenated Zigzag Codes", IEEE Trans. Information Theory, vol. 47, pp. 800–807, Feb. 2001.

[image: image22.emf]00.511.522.533.54

10

-4

10

-3

10

-2

10

-1

10

0

AWGN Channel; BL=1024, ECR=1/3

Frame Error Rate

SNR [dB]

zigzag: R=1/4,J=1,M=3,Iter=20

zigzag: R=1/5,J=1,M=4,Iter=20

zigzag: R=1/3,J=2,M=4,Iter=20

turbo: R=1/3,Iter=8

[image: image23.emf]00.511.522.533.54

10

-4

10

-3

10

-2

10

-1

10

0

AWGN Channel; BL=1024, ECR=1/2

Frame Error Rate

SNR [dB]

zigzag: R=1/4,J=1,M=3,Iter=20

zigzag: R=1/5,J=1,M=4,Iter=20

zigzag: R=1/2,J=4,M=4,Iter=20

turbo: R=1/3,Iter=8

[image: image24.emf]00.511.522.533.54

10

-4

10

-3

10

-2

10

-1

10

0

AWGN Channel; BL=1024, ECR=2/3

Frame Error Rate

SNR [dB]

zigzag: R=1/4,J=1,M=3,Iter=20

zigzag: R=1/5,J=1,M=4,Iter=20

zigzag: R=2/3,J=8,M=4,Iter=20

turbo: R=1/3,Iter=8

[image: image25.emf]00.511.522.533.54

10

-4

10

-3

10

-2

10

-1

10

0

AWGN Channel; BL=1024, ECR=4/5

Frame Error Rate

SNR [dB]

zigzag: R=1/4,J=1,M=3,Iter=20

zigzag: R=1/5,J=1,M=4,Iter=20

zigzag: R=4/5,J=16,M=4,Iter=20

turbo: R=1/3,Iter=8

[image: image26.emf]012345678910

10

-4

10

-3

10

-2

10

-1

10

0

Flat I.I.D. Rayleigh Channel; BL=1024, ECR=1/2

Frame Error Rate

SNR [dB]

zigzag: R=1/4,J=1,M=3,Iter=20

zigzag: R=1/5,J=1,M=4,Iter=20

zigzag: R=1/2,J=4,M=4,Iter=20

turbo: R=1/3,Iter=8

[image: image27.emf]012345678910

10

-4

10

-3

10

-2

10

-1

10

0

Flat I.I.D. Rayleigh Channel; BL=1024, ECR=2/3

Frame Error Rate

SNR [dB]

zigzag: R=1/4,J=1,M=3,Iter=20

zigzag: R=1/5,J=1,M=4,Iter=20

zigzag: R=2/3,J=8,M=4,Iter=20

turbo: R=1/3,Iter=8

_1191859514.unknown

_1191859772.unknown

_1191859781.unknown

_1191859963.unknown

_1191859629.unknown

_1191859763.unknown

_1191859583.unknown

_1191855032.unknown

_1191859410.unknown

_1191859487.unknown

_1191859374.unknown

_1191757069.unknown

