3GPP TSG RAN WG1 #43
 R1- 051383
Seoul, Korea, Nov 7th – Nov 11th, 2005

Source:
Mitsubishi Electric Corporation, NTT DoCoMo
Title:
Rate-compatible LDPC codes with low complexity encoder & decoder
Agenda Item:
8.6
Document for:
Discussion/Decision
1. Introduction

The LTE system should support an instantaneous downlink peak data rate of 100 Mbps and an instantaneous uplink peak data rate of 50 Mbps according to TR25.913. We analyze the complexity and throughput of turbo codes and LDPC codes. Subsequently, 3GPP turbo codes with one decoder would be impossible to achieve 100 Mbps. Practically, under the condition of 100 MHz as the clock frequency of hardware, the throughput of turbo codes would be less than 10 Mbps. However, LDPC codes could well do easily achieve over 100 Mbps throughput due to parallel operation. In view of this, the possibility of using LDPC codes for LTE system should be considered.
 In this contribution, we evaluate the complexity, throughput, and performance comparison with LDPC codes and 3GPP turbo codes under practical decoding condition. Furthermore, we present Rate-Compatible (RC)-LDPC codes to recover the disadvantage with respect to flexibility of code rate against turbo codes.
Our RC-LDPC codes and decoding algorithm have some characteristics as follows;

(1)Code construction & Encoder
 ・World-class performance.

 ・Rate-compatible codes with only one parity check matrix applicable to Rate matching.

 ・Very simple circuit for encoder.
(2)Decoder (for reference)
　・Simple and high performance decoding algorithm with vastly reduction of memory size.
 (Cyclic approximated
[image: image253.png]-Min algorithm)
2. The comparison result of LDPC codes and turbo codes

The comparison of complexity, throughput, and performance of turbo codes and LDPC codes is done in this contribution. The assumption for the comparison is to use practical decoders in terms of high throughput. The cyclic approximated
[image: image2.wmf]d

-Min algorithm and the Max-Log-Map algorithm are used for LDPC codes and turbo codes, respectively. The comparison results are shown in table 1.
From the aspect of throughput, turbo codes with one decoder would be impossible to achieve over 100 Mbps. It is fundamental problem for LTE system.

LDPC codes have better performance than the turbo codes at least 570 information bits under the practical decoder condition as shown in the Figure 1. In other words, if the BER performance of turbo and LDPC codes is required as same level, LDPC codes have a great advantage in throughput and complexity in comparison with turbo codes. Furthermore, our proposed RC-LDPC codes (refer to appendix A) can easily adjust code rate, and achieve good performance at several code rate as shown in figure 2. So it is possible to be adopted to rate-matching function for LTE.
	
	
	LDPC
	3GPP turbo

	Comparison

results
	Throughput (clock=100MHz,

 one decoder)
	128 Mbps~5.1 Gbps
	5.34 Mbps ~ 6.25 Mbps

	
	Performance

(rate=1/2)
	LDPC codes > 3GPP tubo codes
(at least more than 570 information bits)

	
	Flexibility of code rate
	Enough

(from less than 1/6
 to more than 8/9)
	Enough

(1/3 to 8/9)

	Preconditions
	Memory size
	Equivalent
 (cyclic approx.
[image: image3.wmf]d

-min vs. Max-log-MAP:SW)

	
	Complexity
	

[image: image4.emf]1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.60.811.21.41.61.822.22.4

Eb/N0

Error Rate

LDPC570 BER

turbo570 BER

LDPC570 BLER

turbo570 BLER

Figure 1. Performance comparison of turbo codes (MAX-Log-MAP w SW, ite=8) and RC-LDPC codes (Cyclic approx.
[image: image5.wmf]d

-min, ite=28), K =570, BPSK, AWGN.
[image: image6.emf]100 iteration

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

-101234

Eb/N0

BER

rate=1/3

rate=1/2

rate=2/3

rate=4/5

Shannon Limit 1/3

Shannon Limit 1/2

Shannon Limit 2/3

Shannon Limit 4/5

Figure 2. the BER Performance of RC-LDPC codes with code rates 1/3,1/2,2/3,4/5, Sum-product, iteration=100, K =1476, BPSK, AWGN.
3. Detail of comparison results
3.1 Decode method description of LDPC codes

In [2][3], decoding method has been given, and the decoding structure is very simple , for various code rate , RC-LDPC codes of different code sizes will use a uniform hardware structure.
This proposed algorithm can be applied to most of BP-based algorithm such that UMP BP-based (Min-Sum) algorithm, normalized BP-based algorithm or
[image: image7.wmf]d

-min algorithm.

This algorithm only needs real additions and comparisons, and is universal as it does not need any knowledge about the channel characteristics and code construction. Furthermore, This scheme can shrink the memory of
[image: image8.wmf]mn

b

 and the number of comparisons to "
[image: image9.wmf])

 weight

row

(

k

”of general BP (sum-product) and BP-based algorithm.
In the following, we assume BPSK modulation, which maps a codeword
[image: image10.wmf](

)

N

v

v

v

L

2

1

=

v

 into a transmitted sequences
[image: image11.wmf](

)

N

s

s

s

L

2

1

=

s

, according to
[image: image12.wmf]1

2

-

=

n

n

v

s

 for
[image: image13.wmf].

,...,

2

,

1

N

n

=

 Then
[image: image14.wmf]s

 is transmitted over a channel corrupted by additive white Gaussian noise (AWGN). The received value correspond to
[image: image15.wmf]n

s

 after the modulator is
[image: image16.wmf],

n

n

n

s

y

n

+

=

 where
[image: image17.wmf]n

n

 is a random variable with zero mean and variance
[image: image18.wmf].

2

/

0

N

 We assume an LDPC code with parity-check matrix
[image: image19.wmf][

]

mn

H

=

H

 is used for error correction. We denote the set of bits that participate in check
[image: image20.wmf]m

 by
[image: image21.wmf]}.

1

:

{

)

(

=

=

mn

H

n

m

N

 Similarly, we define the set of checks in which bit
[image: image22.wmf]n

 participates as
[image: image23.wmf]}.

1

:

{

)

(

=

=

mn

H

m

n

M

 We also denote
[image: image24.wmf]n

m

N

\

)

(

 as the set
[image: image25.wmf])

(

m

N

 with bit
[image: image26.wmf]n

 excluded, and
[image: image27.wmf]m

n

M

\

)

(

 as the set
[image: image28.wmf])

(

n

M

 with check
[image: image29.wmf]m

 excluded.

We assume all the messages passing between bit and check nodes are in the form of log-likelihood ratios (LLR’s). For
[image: image30.wmf]l

th iteration, we define the following notation.

[image: image31.wmf]:

)

(

l

mn

a

 The LLR of bit
[image: image32.wmf]n

 sent from the check node
[image: image33.wmf]m

 to the bit node
[image: image34.wmf]n

.

[image: image35.wmf]:

)

(

l

mn

b

 The LLR of bit
[image: image36.wmf]n

 sent from the bit node
[image: image37.wmf]n

 to the bit node
[image: image38.wmf]m

.

[image: image39.wmf]:

)

(

l

n

b

 The a posteriori LLR of bit
[image: image40.wmf]n

.

We show the cyclic approximated
[image: image41.wmf]d

-min algorithm as follows;

Step 1: Initial Step

For each
[image: image42.wmf]m

n

,

and minimal
[image: image43.wmf]k

[image: image44.wmf]s

mn

b

, set
[image: image45.wmf]n

n

mn

y

)

/

2

(

2

)

0

(

s

l

b

=

=

, and let
[image: image46.wmf]i

n

be indeces of minimal
[image: image47.wmf]k

[image: image48.wmf]s

mn

b

 such that

[image: image49.wmf]{

}

[

]

},

,...,

,

{

)

(

,

min

arg

2

1

,...,

,

\

)

(

1

2

1

k

k

n

n

n

n

m

N

n

i

n

n

n

m

N

n

i

=

=

-

Î

l

where
[image: image50.wmf]f

=

0

n

[image: image51.wmf]{

}

[

]

[

]

k

i

B

n

n

n

n

m

N

n

mn

mn

i

i

i

,

1

,

min

1

2

1

,...,

,

\

)

(

)

0

(

Î

"

=

=

-

Î

l

b

[image: image52.wmf](

)

,

sgn

)

(

Õ

Î

=

m

N

n

n

m

S

l

For the
[image: image53.wmf]i

iteration, the Cyclic approximated min algorithm includes three steps as follows.
Step 2 : Horizontal step (processing in check nodes)
 For
[image: image54.wmf]N

n

£

£

1

 and each
[image: image55.wmf]),

(

n

M

m

Î

[image: image56.wmf](

)

(

)

[

]

(

)

[

]

[

]

,

sgn

sgn

sgn

\

)

(

\

)

(

)

1

(

\

)

(

\

)

(

)

1

(

\

)

(

)

(

)

(

n

m

n

m

N

n

m

n

m

n

m

N

n

l

mn

m

n

m

n

m

N

n

n

n

n

m

N

n

l

n

m

n

n

n

m

N

n

l

n

m

l

mn

B

S

B

S

B

k

k

k

¢

Î

¢

¢

Î

¢

-

¢

Î

¢

>

¢

Î

¢

-

¢

<

¢

Î

¢

¢

Å

×

¢

=

Å

×

×

=

Å

×

×

=

Õ

Õ

b

b

b

a

where

[image: image57.wmf](

)

[

]

(

)

(

)

)

0

,

2

/

|

|

9

.

0

max(

,

0

,

,

min

max

,

,

sgn

1

1

0

)

1

(

b

a

b

a

b

a

A

i

A

i

l

mn

m

m

I

I

I

I

I

I

I

I

I

I

S

S

-

-

=

D

D

-

=

Å

Å

Å

Å

=

Å

b

×

=

¢

-

Î

-

L

,

Step 3: Vertical step (processing in bit nodes)
For each
[image: image58.wmf]m

and
[image: image59.wmf]n

, update
[image: image60.wmf])

(

l

mn

b

,

[image: image61.wmf](

)

{

}

[

]

{

}

[

]

[

]

.

,

1

,

,

min

,

,

min

arg

sgn

)

(

,

,...,

,

\

)

(

)

(

,

,...,

,

\

)

(

)

(

\

)

(

)

(

)

(

1

2

1

1

2

1

k

i

B

B

B

n

S

S

l

mn

n

m

n

n

n

n

m

N

n

mn

l

mn

n

m

n

n

n

n

m

N

n

i

l

mn

m

m

m

n

M

m

l

n

m

n

l

mn

i

k

i

i

k

Î

"

=

=

×

¢

=

+

=

¢

Î

¢

¢

Î

¢

Î

¢

¢

-

-

å

b

b

b

a

l

b

For each
[image: image62.wmf]n

, update
[image: image63.wmf])

(

l

n

b

,

[image: image64.wmf].

)

(

)

(

)

(

å

Î

¢

+

=

n

M

m

l

n

n

l

n

a

l

b

Step 4: Hard decision and stopping criterion test
I. Create
[image: image65.wmf][

]

n

c

ˆ

ˆ

=

c

 such that
[image: image66.wmf]1

ˆ

=

n

c

 if
[image: image67.wmf]0

)

(

>

l

n

b

, and
[image: image68.wmf]0

ˆ

=

n

c

 if
[image: image69.wmf]0

)

(

£

l

n

b

II. If
[image: image70.wmf]0

c

H

=

ˆ

 is considered as a valid decoded word and the decoding process ends; if the number of iterations exceeds some maximum number and
[image: image71.wmf]c

ˆ

 is not a valid codeword, a failure is declared and the decoding process ends; otherwise the decoding repeats from Step 2.
According to the above algorithm, we show a hardware design example for RC-LDPC codes in the Figure 3.
[image: image1.wmf]d

Figure 3 overall hardware structure of the decoder of RC-LDPC codes

3.2 Decode method description in detail to evaluate its complexity
We consider in general that the analysis of complexity for sum-product & Log-MAP algorithm are appropriate in [1]. From a practical perspective, we analyze the simple decoder with small degradation in the subsection 3.5.
In [2][3], low complexity and memory reduced decoding method named “Cyclic Approximated
[image: image72.wmf]d

-min algorithm” has been given. The method calculates with only r’(= k in the previous subsection : example r’=3) minimal value of LLRs from check nodes to variable nodes. On this scheme, we memorize only r’ LLRs per a row, and we can reduce the iteration numbers from general LDPC decoding algorithm.

 Figure B1(appendix B) gives the overall hardware structure of Cyclic Approximated
[image: image73.wmf]d

-min decoder. Cyclic Approximated
[image: image74.wmf]d

-min decoder is mainly structured by two update function unit CNFU(check node function unit) and VNFU(variable node function unit) and 4 memories for k minimal LLRs, sign of all nodes, received data and syndrome.

 Figure B2(appendix B) gives the construction of CNFU. CNFU performs check node update using r’(example r’ = 3) minimal LLRs and column number. In Figure B2(appendix B), “sel” selects 2 minimal LLRs except its own information, and computes update information based on
[image: image75.wmf]d

-min decoding algorithm. (“c” is a constant factor.)

Figure B3(appendix B) gives the construction of VNFU. VNFU performs variable node update using LLRs from CNFU and sign information. In Figure B3(appendix B), r’ minimal LLRs select unit MINU update r’ minimal LLRs and access to r’ minimal LLRs memory. Figure B4(appendix B)gives the construction of MINU. MINU compares updated LLRs with memorized LLRs without its own node and access to r’ minimal LLRs memory.
3.3 Comparison of low complexity LDPC decoding and Max-Log-MAP decoding

 We compare the memory size and complexity of two low complexity decoding method. As we show the performance in Figure 4 and 6, fixed point Cyclic Approximation
[image: image76.wmf]d

-min decoding for LDPC Codes has good performance with small quantization bit. And Max-log-MAP based on Sliding Window decoding can reduce the memory requirements. In the following, we show the memory size and complexity to simulate the performance shown in Figure 4 and 6.
For LDPC Codes, N : code block length, c : column weight, r : row weight, and r’ : the number of memorized LLRs for Cyclic Approximated min decoding algorithm. The complexity of Cyclic Approximation
[image: image77.wmf]d

-min is shown as following.
Memory

Received value : x (bit) * N
Sign information : 1(bit) * r * M

Syndrome : 1(bit) * M

Minimal LLRs : y(bits) * r’ * M

Minimal indexes : z(bits) * r’ * M

Decoded data : 1(bit) * N

Mask Matrix for Codes : 1296(bits)

Total (x + 1)N + [r + 1 + (y + z) * r’]M + 1296
Operations for 1 iteration
Add : (5c - 1)N
cN : sum all node information for variable node update

(c - 1)N : exclusion of its own information for variable node update

2cN : compute of correcting value for check node update

cN : compute of minimal value for check node update
Compare : (r’ - 1)cN
(r’ – 1)cN : memory of r’ minimal values when variable node update

1 bit ExOr : 2cN
cN : compute of syndrome for variable node update

cN : compute of sign for variable node update

Total : ((6 + r’)c - 1)N
For Turbo Codes, M : information bit length + tail bits, k : memory order, and sliding window width is 256, sliding margin is 32. The complexity of Max-Log-MAP based on Sliding Window algorithm is shown as following.
Memory

Received value : x(bits) * (2*M + 12)
Extrinsic value : y (bits) * M

Metrics : z(bits) *
[image: image78.wmf]1

2

-

k

 * 256

Decoded date : 1(bit) * M

PIL table : w(bits) * M

Total : (2x + y + w + 1)M + z *
[image: image79.wmf]1

2

-

k

 * 256

Operations for 0.5 iteration

Add : (8 *
[image: image80.wmf]1

2

-

k

 + 6)M’ + (2*
[image: image81.wmf]1

2

-

k

32 + 3)
[image: image82.wmf]ë

û

256

/

'

M

)

3M’ : compute gamma

3 * (
[image: image83.wmf]ë

û

256

/

'

M

) : sliding window margin for gamma computation

2 *
[image: image84.wmf]1

2

-

k

 * M’ : compute alpha

2 *
[image: image85.wmf]1

2

-

k

 * 32 *
[image: image86.wmf]ë

û

256

/

'

M

) : sliding window margin for alpha computation

2 *
[image: image87.wmf]1

2

-

k

 * M’ : compute beta

(4*
[image: image88.wmf]1

2

-

k

 + 1) * M’ : compute lamda

2M’ : compute extrinsic value

Compare Operation : (4*
[image: image89.wmf]1

2

-

k

-2)*M’ + (
[image: image90.wmf]1

2

-

k

32)(
[image: image91.wmf]ë

û

256

/

'

M

)

[image: image92.wmf]1

2

-

k

 * M’ : compute alpha

[image: image93.wmf]1

2

-

k

 * 32 * (
[image: image94.wmf]ë

û

256

/

'

M

) : sliding window margin for alpha computation

[image: image95.wmf]1

2

-

k

 * M’ : compute beta

2 * (
[image: image96.wmf]1

2

-

k

-1) * M : compute lamda

Total : (12*
[image: image97.wmf]1

2

-

k

 + 4) M’ + (
[image: image98.wmf]1

2

-

k

32 + 1) 3 * (
[image: image99.wmf]ë

û

256

/

'

M

)

　Table 2 and 3 compare the memory size and complexity to simulate Figure B2. For LDPC Codes, (N, M, r, c) = (2952, 1476, 8, 3.4), r’ = 3, and x = 4 (including 1 sign bit), y = 5, z = 3. For Turbo Codes, (M, k) = (1476, 4), M’ = M + 3(for tail bits), and x = 6 (including 1 sign bit), y = 6, z = 10. w = 11.
Table 2 The comparison of memory size

	[LDPC] Cyclic Approximated
[image: image100.wmf]d

-min
	[Turbo] Max-Log-MAP based on SW

	
	bit size
	requirement
	
	bit size
	requirement

	received value
	4
	2952
	received value
	6
	2*1476+12

	Sign information
	1
	8* 1476
	extrinsic value
	6
	1476

	syndrome
	1
	1476
	Metrics
	10
	8*256

	minimal LLRs
	5
	3*1476
	decode bits
	1
	1476

	minimal indexes
	3
	3*1476
	PIL Table
	11
	1476

	decoded bits
	1
	2952
	
	
	

	Mask Matrix
	1296
	1
	
	
	

	Total
	64764 bits
	Total
	64832 bits

Table 3 The comparison of complexity
	[LDPC] Cyclic Approximated
[image: image101.wmf]d

-min
	[Turbo] Max-Log-MAP based on SW

	add
	(5c – 1)N
	47822
	add
	(8 *
[image: image102.wmf]1

2

-

k

 + 6)M’ + (2*
[image: image103.wmf]1

2

-

k

*32 + 3)

*(
[image: image104.wmf]ë

û

256

/

'

M

)
	106105

	compare
	(r’ – 1)cN
	20310
	compare
	(4*
[image: image105.wmf]1

2

-

k

-2)*M’ + (
[image: image106.wmf]1

2

-

k

32)(
[image: image107.wmf]ë

û

256

/

'

M

)
	45650

	1bit ExOr
	2cN
	20310
	

	Total
	88432 for 1 iteration
	Total
	151755 for 0.5 iteration

The ratio of complexity for one iteration is Cyclic Approximated
[image: image108.wmf]d

-min : Max-Log-MAP based on Sliding Window = 88432 : 151755 * 2 = 1 : 3.43. When Turbo decoder iterate 8, LDPC decoder can iterate 28.
 We show the effects of parallel operation in table 4,5,6.
 Table 4. The number of calculation for the cyclic approx.
[image: image109.wmf]d

-min & MAX-log-MAP:SW
	

	The number of calc. (per 1 iteration)

	LDPC codes (Cyclic approx.
[image: image110.wmf]d

-min)
	88432

	Turbo codes (MAX-log-MAP:SW)
	303510

 Table 5. The number of iteration for the cyclic approx.
[image: image111.wmf]d

-min & MAX-log-MAP:SW
	
	The number of Iter.

	LDPC codes (Cyclic approx.
[image: image112.wmf]d

-min)
	28

	Turbo codes (MAX-log-MAP:SW)
	8

 Table 6. Effects on throughput by parallel operation
	The number of parallel operation
	1
	10
	MAX=N

	Throughput ratio against turbo decoder
	1 times

(Nearly equal without parallel operation.)
	10 times

	N times

	
	
	(Increase in proportion to the number of parallel operation.)

As we all know, the new coming LTE PHY layer needs very high throughput. Actually it is almost impossible for turbo codes to support such a high throughput due to their bit-by-bit decoding algorithm [1]. However the proposed RC-LDPC codes encoder & decoder can easily satisfy the throughput requirement of the future system as shown in the table 6.
3.4 Throughput analysis of LDPC codes and turbo codes
 According to [1], the information data throughput of turbo decoders without sliding window has been calculated as following:

[image: image113.wmf])

(

25

.

6

16

100

2

1

)

2

(

int

int

Mbps

NI

F

K

NI

K

F

F

dec

=

=

×

»

+

×

×

×

=

,
where
[image: image114.wmf]NI

is the number of iteration,
[image: image115.wmf]K

 is the information block size, and
[image: image116.wmf]int

F

 is the clock frequency.
[image: image117.wmf]NI

,
[image: image118.wmf]K

, and
[image: image119.wmf]int

F

 are assumed 8, 1476, and 100, respectively.
And the information data throughput of turbo decoders with sliding window has been calculated as following:

[image: image120.wmf])

(

33

.

5

1

)

250

1476

(

2

8

1476

100

1

)

(

2

int

Mbps

L

K

NI

K

F

F

dec

=

+

+

×

×

×

=

+

+

×

×

×

=

,
where
[image: image121.wmf]L

 is the sliding block length.
[image: image122.wmf]L

 is assumed 256.
 The information data throughput of LDPC decoders has been calculated as following:

[image: image123.wmf])

(

1

)

/

(

28

1476

100

1

)

/

(

int

Mbps

l

p

l

p

NI

K

F

F

dec

+

×

=

+

×

×

=

,
where
[image: image124.wmf]p

l

l

£

£

1

,

 is the parallel number per a circulant permutation matrix.

 The minimum
[image: image125.wmf]dec

F

 is 128Mbps, the maximum
[image: image126.wmf]dec

F

 is 5.1Gbps.

We show the comparison table as follows.

 　　　　　　　　　Table 7. The comparison of throughput
	
	Throughput (Fdec=100 MHz, one decoder)

	
	MIN
	MAX

	Turbo codes
	5.33 Mbps
	6.25 Mbps

	LDPC codes
	128 Mbps
	5.1 Gbps

3.5 Performance comparison of RC-LDPC codes and 3GPP turbo codes

Simulations have been performed using RC-LDPC codes of length N=570 and N=1476 with Rate=0.5. Each codes performance are evaluated under the condition of ideal decoding algorithms (Sum-product & log-MAP based on floating point) and practical decoding algorithms (Cyclic approximated
[image: image127.wmf]d

-min & Max-Log-Map based on fixed point).
Figure 3 compares the performance of a RC-LDPC code and a 3GPP Turbo code with N=570. For RC-LDPC Codes, Sum-product algorithm (floating point) is used. And for the 3GPP Turbo Code, Log-MAP algorithm (floating point) is used. The maximum number of iterations for LDPC Codes is 100, and the maximum number of iterations of Turbo Codes is 8. The code rate is 1/2.
Figure 4 compares the performance of a RC-LDPC code and a 3GPP Turbo code with N=570. For RC-LDPC Codes, Cyclic Approximated
[image: image128.wmf]d

- min algorithm (fixed point according to table 1) is used. And for the 3GPP Turbo Code, Max-log-MAP based on Sliding Window (fixed point according to table 1) is used. The maximum number of iterations for LDPC Codes is 28, and the maximum number of iterations of Turbo Codes is 8. The code rate is 1/2.
Figure 5 compares the performance of a RC-LDPC code and a 3GPP Turbo code with N=1476. For RC-LDPC Codes, Sum-product algorithm (floating point) is used. And for the 3GPP Turbo Code, Log-MAP algorithm (floating point) is used. The maximum number of iterations for LDPC Codes is 100, and the maximum number of iterations of Turbo Codes is 8. The code rate is 1/2.
Figure 6 compares the performance of a RC-LDPC code and a 3GPP Turbo code with N=1476. For RC-LDPC Codes, Cyclic Approximated
[image: image129.wmf]d

-min algorithm (fixed point according to table 1) is used. And for the 3GPP Turbo Code, Max-log-MAP based on Sliding Window (fixed point according to table 1) is used. The maximum number of iterations for LDPC Codes is 28, and the maximum number of iterations of Turbo Codes is 8. The code rate is 1/2.
 As shown in the Figure 3, 5, under the condition of ideal decoding algorithms, the RC-LDPC code and the 3GPP Turbo code with N=570 are similar, and the RC-LDPC code with N=1476 is better performance than the 3GPP Turbo code with N=1476. As we all know, the larger the codeword length is, the better the performance of LDPC codes is in comparison with turbo codes.

In Figure 4, 6, under the condition of practical decoding algorithms, we can find that the performance of RC-LDPC codes is about 0.2dB and 0.35dB better than the performance of 3GPP Turbo codes at a BER 10-4 when N=570 and N=1476, respectively.
As expected, the cyclic approximated
[image: image130.wmf]d

-min algorithm and the sum-product algorithm are similar performance as shown in figure 3, 4 and 5, 6. The degradation of the cyclic approximated
[image: image131.wmf]d

-min algorithm (fixed point, ite=28) from the sum-product algorithm (floating point, ite=100) is only less than 0.15dB.
These results show that the RC-LDPC codes with more than 570 information bits would be better performance than the 3GPP Turbo codes under ideal and practical decoding algorithm at rate 1/2.
 In other words, if the performance of turbo and LDPC codes is required as same level, LDPC codes have a great advantage in throughput and complexity in comparison with turbo codes, else if the complexity of turbo and LDPC codes is required as same level, the performance of LDPC codes is prior to turbo codes.

[image: image132.emf]1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.40.60.811.21.41.61.822.22.4

Eb/N0

Error Rate

LDPC570 BER

turbo570 BER

LDPC570 BLER

turbo570 BLER

Figure 3. Performance comparison of turbo codes (Log-MAP, ite=8) and LDPC codes (Sum-product, ite=100), K =570, BPSK, AWGN.
[image: image133.emf]1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.60.811.21.41.61.822.22.4

Eb/N0

Error Rate

LDPC570 BER

turbo570 BER

LDPC570 BLER

turbo570 BLER

Figure 4. Performance comparison of turbo codes (MAX-Log-MAP w SW, ite=8) and LDPC codes (Cyclic approx.
[image: image134.wmf]d

-min, ite=28), K =570, BPSK, AWGN.
[image: image135.emf]1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.60.811.21.41.61.8

Eb/N0

Error Rate

LDPC1476 BER

turbo1476 BER

LDPC1476 BLER

turbo1476 BLER

Figure 5. Performance comparison of turbo codes (Log-MAP, ite=8) and LDPC codes (Sum-product, ite=100), K =1476, BPSK, AWGN.
[image: image136.emf]1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.60.811.21.41.61.82

Eb/N0

Error Rate

LDPC1476 BER

LDPC1476 BLER

turbo1476 BER

turbo1476 BLER

Figure 6. Performance comparison of turbo codes (MAX-Log-MAP w SW, ite=8) and LDPC codes (Cyclic approx.
[image: image137.wmf]d

-min, ite=28), K =1476, BPSK, AWGN.
4. Various code rate BER performance of RC-LDPC codes
Here, for code rate 1/3, 1/2, 3/4, and 4/5, the RC-LDPC codes with N=1476 have been performed simulations. Figure 7 shows the BER performance with BPSK modulation on AWGN. The RC-LDPC codes can achieve very good BER performance within 1.5dB from the corresponded Shannon limits as shown in Figure 7.
[image: image138.emf]100 iteration

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

-101234

Eb/N0

BER

rate=1/3

rate=1/2

rate=2/3

rate=4/5

Shannon Limit 1/3

Shannon Limit 1/2

Shannon Limit 2/3

Shannon Limit 4/5

Figure 7. the BER Performance of RC-LDPC codes with code rates 1/3,1/2,2/3,4/5, Sum-product, iteration=100, K =1476, BPSK, AWGN.
5. Conclusion
We analyze complexity, throughput, and performance of turbo codes and LDPC codes under practical conditions. To analyze LDPC codes, we proposed the RC-LDPC codes which are simple structure, good performance and can be applicable to the rate matching function for LTE systems.
Subsequently, under the condition of 100 MHz as the clock frequency of hardware, the throughput of turbo codes would be less than 10Mbps. However, LDPC codes could well do easily achieve over 100 Mbps throughput due to parallel operation and can achieve better than and equal to 3GPP turbo codes with respect to performance, memory size, complexity, and flexibility of code rate. In view of these results, the possibility of using LDPC codes for LTE system should be considered. A text proposal is prepared in next page.
Furthermore, LDPC codes have advantage of error correction over unequal error probability channel such as fading channels and M-QAM modulation. The property can be derived that LDPC codes could be applicable to some AMC schemes with several unequal channels. The simulation results for fading channels, M-QAM modulation, and AMC schemes will be presented as well as basic simulations over AWGN for various code rate and various codeword length in the near future.

Text Proposal
--------------------------------------- Start of Text Proposal --------------------------------------
7.1.1.3
Channel coding and physical channel mapping
7.1.1.3.1 Coding performance/complexity evaluation
Current assumption for the study-item evaluations should be that channel coding for “normal” data [Layer 3 information] is based on UTRA release 6 Turbo coding, possibly extended to lower rates by extension with additional code polynomials, extended longer code blocks, and modified by the removal of the tail. However, the use of alternative FEC encoding schemes could also be considered, especially if significant benefits in terms of complexity and/or performance can be shown. One possible coding scheme is LDPC coding. This coding scheme has a potential for obtaining better performance and/or lower complexity and memory size than Turbo coding.
To achieve high processing gain, repetition coding can be used as a complement to FEC.

Channel coding for lower-layer control signaling is TBD.
9.1.1.3
Channel coding and physical channel mapping
9.1.1.3.1 Coding performance/complexity evaluation
Similar to the downlink, the current assumption is that uplink channel coding for Layer 3 information is based on current UTRA release 6 Turbo coding, possibly extended to lower rates by the extension of additional code polynomials, extended to longer code blocks, and modified by the removal of the tail. However, also similar to the downlink, the use of alternative FEC encoding schemes could be considered if significant benefits in terms of complexity and performance could be shown. One possible coding scheme is LDPC coding. This coding scheme has a potential for obtaining better performance and/or lower complexity and memory size than Turbo coding.
To achieve high processing gain, repetition coding can be used as a complement to FEC.

Uplink channel coding for lower-layer control signaling is TBD.
--------------------------------------- End of Text Proposal --------------------------------------
Reference

[1] ZTE, CATT, RITT, Huawei “Comparison of structured LDPC Codes and 3GPP Turbo codes”, 3GPP TSG RAN WG1 #42 R1-050840 London, UK, Aug 29th– Sept 2nd, 2005

[2]W. Matsumoto, R. Sakai, H. Yoshida, “Cyclic Approximated Min Algorithm”, pp1-6, RCS2005-40(2005-7) Okayama, Japan, July, 2005.
[3]R. Sakai, W. Matsumoto, H. Yoshida, “Low Complexity Decoding Algorithm for LDPC Codes and Its Discretized Density Evolution”, pp13-18, RCS2005-42(2005-7) Okayama, Japan, July, 2005.

Appendix A. Basic Scheme Of RC-LDPC codes

A.1 Code structure and code description

 　In this subsection we introduce the basic construction of the proposed RC-LDPC codes. Let
[image: image139.wmf]p

 be an odd prime number. The base parity-check matrix over
[image: image140.wmf])

2

(

GF

 with LDGM (Low-Density Generation Matrix) structure is defined by a matrix
[image: image141.wmf]B

H

 of size
[image: image142.wmf])

(

)

(

pJ

pL

pJ

N

M

+

´

=

´

such that

[image: image143.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

-

-

-

-

-

-

-

-

-

-

)

0

(

)

0

(

)

(

)

(

)

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

(

)

(

)

(

)

0

(

)

0

(

)

(

)

(

)

(

)

0

(

)

(

)

(

)

(

:

1

,

1

2

,

1

0

,

1

1

,

1

2

/

2

,

1

2

/

0

,

1

2

/

1

,

1

2

,

1

0

,

1

1

,

0

1

,

0

0

,

0

I

I

p

I

p

I

p

I

I

I

I

I

I

I

p

I

p

I

p

I

I

I

p

I

p

I

p

I

I

p

I

p

I

p

I

L

J

J

J

L

J

J

J

L

L

B

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

H

L

L

L

O

O

O

O

O

O

M

M

M

M

M

M

O

O

O

M

M

M

M

M

O

L

M

M

M

M

M

O

O

O

M

L

M

O

O

O

O

O

O

M

M

M

M

M

O

O

O

O

L

L

L

L

L

L

L

, where for
[image: image144.wmf]

1

,

1

1

L

l

J

j

£

£

-

£

£

,
[image: image145.wmf])

(

,

l

j

p

I

 represents the circulant permutation matrix with a one at column-
[image: image146.wmf])

1

(0

,

mod

)

(

,

-

£

£

+

p

r

p

p

r

l

j

for row-
[image: image147.wmf])

1

(0

,

-

£

£

p

r

r

, and zero elsewhere. It follows that
[image: image148.wmf])

0

(

I

represents the
[image: image149.wmf]p

p

´

identity matrix. And
[image: image150.wmf]

0

is zero matrices of size
[image: image151.wmf]p

p

´

.
For example,
[image: image152.wmf])

1

(

I

 is as follows,

[image: image153.wmf].

0

0

0

1

1

0

0

0

0

1

0

0

0

0

1

0

)

1

(

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

L

L

L

L

L

L

L

L

L

I

Let
[image: image154.wmf]BL

H

 be a
[image: image155.wmf](

)

M

N

M

-

´

 submatrix of left hand side of
[image: image156.wmf]B

H

 such that

[image: image157.wmf](

)

(

)

(

)

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

-

-

-

-

-

-

1

,

1

1

,

1

0

,

1

1

,

1

1

,

1

0

,

1

1

,

0

1

,

0

0

,

0

)

(

)

(

)

(

)

(

)

(

)

(

:

L

J

J

J

L

L

BL

p

I

p

I

p

I

p

I

p

I

p

I

p

I

p

I

p

I

L

M

O

M

M

L

L

H

,

where
[image: image158.wmf].

mod

)

1

(

,

p

l

j

p

l

j

+

=

And let [image: image159.wmf][

]

l

j

z

,

=

Z

be a
[image: image160.wmf](

)

M

N

M

-

´

 over
[image: image161.wmf])

2

(

GF

. We define the following product of
[image: image162.wmf]Z

 and
[image: image163.wmf]BL

H

:

[image: image164.wmf](

)

(

)

(

)

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

Ä

=

-

-

-

-

-

-

-

-

-

-

-

-

1

,

1

1

,

1

1

,

1

1

,

1

0

,

1

0

,

1

1

,

1

1

,

1

1

,

1

1

,

1

0

,

1

0

,

1

1

,

0

1

,

0

1

,

0

1

,

0

0

,

0

0

,

0

)

(

)

(

)

(

)

(

)

(

)

(

L

J

L

J

J

J

J

J

L

L

L

L

BL

p

I

z

p

I

z

p

I

z

p

I

z

p

I

z

p

I

z

p

I

z

p

I

z

p

I

z

L

M

O

M

M

L

L

H

Z

M

,

where

[image: image165.wmf]î

í

ì

=

=

=

.

0

for

,

1

for

)

(

)

(

,

,

,

,

,

l

j

l

j

l

j

l

j

l

j

z

z

p

I

p

I

z

0

This product defines a masking operation for which a set of permutation matrices in
[image: image166.wmf]BL

H

 is masked by zero-entries of
[image: image167.wmf]Z

. The distribution of the permutation matrices in
[image: image168.wmf]M

 is the same as the distribution of 1-entries of
[image: image169.wmf]Z

.

Our proposed RC-LDPC code
[image: image170.wmf]C

is defined as the null space of a parity-check matrix
[image: image171.wmf]M

H

 such that:

[image: image172.wmf][

]

T

M

H

M

H

=

:

,
where

[image: image173.wmf].

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

:

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

I

I

I

I

I

I

I

I

I

I

I

T

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

H

L

L

O

O

O

O

O

O

M

M

O

O

O

M

O

L

M

O

O

O

M

M

O

O

O

O

O

O

M

O

O

O

O

L

L

L

L

L

Hence, we can give a parity check matrix
[image: image174.wmf]M

 for a LDPC code
[image: image175.wmf]C

by designing only a masking matrix
[image: image176.wmf]Z

.
As we can see, the information block size K = N-M and N is the codeword block size. Through changing
[image: image177.wmf]p

, a LDPC set of variable information length for various code rates can be obtained.
 The parity check matrix of LDPC codes can be fully described by only small parameters of
[image: image178.wmf]Z

.
[image: image179.wmf]Z

 will be prepared two sets, one is based binary a 36 x 36 matrix for over 1000 bits information length and another is based a 15 x 15 matrix for less than and equal to 1000 bits information length.
 The masking matrix
[image: image180.wmf]Z

’s are designed to be avoided short cycles according to an appropriate degree distribution.

 We show an example of　a masking matrix
[image: image181.wmf]1

Z

for over 1000 bits information length as follows;

[image: image182.wmf](

)

ú

ú

û

ù

ê

ê

ë

é

=

´

24

36

1

1

1

13

:

2

,

36

:

1

0

Z

Z

Z

A

A

,
where

[image: image183.emf]101010000100000000100000000001000000

101001000000000100000000000100000010

010011000100000000000100000000001000

100101000000100000000000010000000000

011000100000000001000000001000000000

011001000000000100001000000000000000

001011000001000000000001000000100000

100010001100000000000000100000000010

010011000010000000000000001000000001

010100000000000100000000010000000100

000010000000000010000100000100010000

000100001000010000010000000000010000

000110000000001000000010000000010000

001010000000000001000010000000000000

000011000100000000010000000000100000

101000000000000010000010000000000000

101001000000000010100000000000001000

Z

1

A

=

011000010000000010000000100001000000

001100000001000000010000000000000001

010000001000100000000001000000000000

000010000001000000000000000010000100

010100010000010000000000010000000000

100100000000100000000000000010100000

010011000010000000000000000010000000

101001000000000001000000100000000000

100100100000100000000100000000000000

100010010010000000010000000000000000

001100100000001000001000000001000000

010101000000001000100000000000000000

101000001000000100100000000000000000

100100100001000000000000001000001000

100100000000010000001000000000000100

011000010000000001001000000000000010

100010000000001000000000000100000000

010010000010000000000100000000010000

000001000000010000000001000000000001

,
[image: image184.wmf](

)

13

:

2

,

36

:

1

1

A

Z

 is a submatrix of
[image: image185.wmf]A

1

Z

 formed by from 1st row to 36th row and from 2nd

column to 13th column, and
[image: image186.wmf]24

36

´

0

 is a 36 x 24 zero matrix.
An example of masking matrix
[image: image187.wmf]2

Z

for less than and equal to 1000 bits information length is as follows;

[image: image188.wmf](

)

ú

ú

û

ù

ê

ê

ë

é

=

´

10

15

2

2

2

6

:

2

,

15

:

1

0

Z

Z

Z

A

A

,
where

[image: image189.emf]110100010000001

001110100010000

111000110000010

101000000110100

110010000000100

111010001000000

Z

2

A

=

111011010001000

001000011010001

111000000011010

111001000000010

111101000100000

010001101000100

111000001101000

111100000001001

111000100000001

,
[image: image190.wmf](

)

6

:

2

,

15

:

1

2

A

Z

 is a submatrix of
[image: image191.wmf]A

2

Z

 formed by from 1st row to 15th row and from 2nd

column to 6th column, and
[image: image192.wmf]24

36

´

0

 is a 36 x 24 zero matrix.
Let
[image: image193.wmf]1

M

H

 and
[image: image194.wmf]2

M

H

 be a parity check matrix
[image: image195.wmf][

]

[

]

T

BL

T

M

H

H

Z

H

M

H

Ä

=

=

1

1

:

1

 for long LDPC codes
[image: image196.wmf]1

C

and a parity check matrix
[image: image197.wmf][

]

[

]

T

BL

T

M

H

H

Z

H

M

H

Ä

=

=

2

2

:

2

 for short LDPC codes
[image: image198.wmf]2

C

, respectively.

The information block sizes of long LDPC codes
[image: image199.wmf]1

C

 is
[image: image200.wmf]p

p

L

K

´

=

´

=

36

 ,
[image: image201.wmf]29

³

p

 and the information block sizes of short LDPC codes
[image: image202.wmf]2

C

 is
[image: image203.wmf]p

p

L

K

´

=

´

=

15

 ,
[image: image204.wmf]67

£

p

, where each
[image: image205.wmf]p

 is odd prime number. If
[image: image206.wmf]K

 is not equal to the required information length,
[image: image207.wmf]p

 of
[image: image208.wmf]p

L

K

´

=

 is set at more than (the required information length)/
[image: image209.wmf]p

 and overflow bits is padded 0’s.
A.2 Encode method of RC-LDPC codes
The encoding method for our proposed RC-LDPC codes is basically same as the method of the contribution [1]. For various code rates, RC-LDPC codes of different code sizes will use a uniform hardware structure. Here we have suggested effective encode method.

Let
[image: image210.wmf]u

 and
[image: image211.wmf]r

 be information bits as
[image: image212.wmf](

)

K

u

u

u

L

2

1

=

u

 and parity bits as
[image: image213.wmf](

)

M

r

r

r

L

2

1

=

r

, respectively. And Let
[image: image214.wmf]v

 be a systematic codeword such that:

[image: image215.wmf](

)

.

:

2

1

2

1

M

K

r

r

r

u

u

u

L

L

=

v

For
[image: image216.wmf]]

[

,

j

i

M

h

=

H

, the syndrome equation
[image: image217.wmf]0

v

H

=

×

T

M

1

 results in the fast-encoding equation (1) and (2). Equation (1) and (2) show that the parity elements of the codeword are determined from the original sparse parity-check matrix without any need to computing the dense generator matrix.

[image: image218.wmf]å

=

K

i

i

i

h

u

r

,

1

1

 (1)

[image: image219.wmf]M

m

h

u

r

r

K

i

i

m

i

m

m

£

£

+

=

å

=

-

2

,

1

,

1

 (2)
Practically, we show the circuit block example as follows.

[image: image220]
 Figure A1. an encoder circuit block (ex.p=5)

As shown in figure A1. Only the operations of add and shift are needed to perform the encode process of RC-LDPC codes.
A.3 RC-LDPC codes for various code rates
 A RC-LDPC encoder consists of a common LDPC encoder and a puncturing device. The decoder for RC-LDPC codes is the same as an ordinary LDPC decoding algorithm with received LLR=0 for puncturing bits.

 The mother code rate for
[image: image221.wmf]M

H

 is
[image: image222.wmf]3

/

1

0

=

R

. (this code rate can be decrease by re-designing
[image: image223.wmf]M

H

)
A set of code rates and a puncturing bits set
[image: image224.wmf]r

ˆ

 for RC-LDPC codes can be represented by:

For a code rate
[image: image225.wmf],...

2

,

1

)},

1

/(

2

/{

=

+

+

=

l

l

K

K

K

R

l

[image: image226.wmf]{

}

)

2

:

2

:

1

(

\

ˆ

)

1

(

K

l

-

=

r

r

r

,

 where
[image: image227.wmf]{

}

)

2

:

2

:

1

(

)

1

(

K

l

-

r

 means elements from 1st element to 2Kth element at
[image: image228.wmf])

1

(

2

-

l

 step of
[image: image229.wmf]r

, and
[image: image230.wmf]{

}

)

2

:

2

:

1

(

\

ˆ

)

1

(

K

l

-

=

r

r

r

 is the set
[image: image231.wmf]r

 with the set
[image: image232.wmf]{

}

)

2

:

2

:

1

(

)

1

(

K

l

-

r

 excluded.
 This procedure can make RC-LDPC codes for code rates 1/3, 1/2, 2/3, 4/5,8/9,….

Of course, RC-LDPC codes with smaller step code rates can be made easily as similar schemes.
Appendix B. Circuit blocks for the cyclic approx.
[image: image233.wmf]d

-min algorithm

[image: image234]
Figure B1 overall hardware structure

[image: image235]
Figure B2 construction of CNFU

[image: image236]
Figure B3　construction of VNFU

[image: image237]
Figure B4　construction of MEMU

P = 5

0

1

1

0

0

1

1

0

0

1

D3

1

0

1

0

1

0

1

1

0

0

1

0

0

0

0

Inner product

Select

1

1

0

0

1

D2

D1

selector

Col. counter

Row counter

P = 5

register

P = 5

P = 5

0

Zj,i = 0

P = 5

D2

P = 5

� EMBED Equation.3 ���

� EMBED Equation.3 ���

0

1

1

0

0

0

1

1

0

0

0

1

1

0

0

1

0

0

0

0

1

0

1

0

1

Information bits

P = 5

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

[image: image238.wmf]u

[image: image239.wmf]j

p

p

,

[image: image240.wmf]r

[image: image241.wmf]u

[image: image242.wmf][image: image243.wmf]u

[image: image244.png][image: image245.wmf]u

[image: image246.png][image: image247.png][image: image248.wmf]j

p

p

,

[image: image249.wmf]r

[image: image250.wmf][image: image251.wmf]u

[image: image252.png]_1189423690.unknown

_1189585873.unknown

_1189586687.unknown

_1189590484.unknown

_1191996357.unknown

_1192035765.unknown

_1192256437.unknown

_1189794241.unknown

_1189794464.unknown

_1189796602.unknown

_1189870263.unknown

_1189860119.unknown

_1189796082.unknown

_1189794316.unknown

_1189590705.unknown

_1189592038.unknown

_1189590644.unknown

_1189589945.unknown

_1189590002.unknown

_1189590367.unknown

_1189589979.unknown

_1189589883.unknown

_1189589912.unknown

_1189589869.unknown

_1189586301.unknown

_1189586470.unknown

_1189586631.unknown

_1189586409.unknown

_1189586036.unknown

_1189586219.unknown

_1189585982.unknown

_1189496064.unknown

_1189585338.unknown

_1189585764.unknown

_1189585819.unknown

_1189585604.unknown

_1189585681.unknown

_1189497812.unknown

_1189497828.unknown

_1189497339.unknown

_1189497416.unknown

_1189497454.unknown

_1189497608.unknown

_1189497779.unknown

_1189497543.unknown

_1189497440.unknown

_1189497378.unknown

_1189496726.unknown

_1189497030.unknown

_1189496626.unknown

_1189496655.unknown

_1189437672.unknown

_1189491841.unknown

_1189494535.unknown

_1189494639.unknown

_1189491966.unknown

_1189492111.unknown

_1189491609.unknown

_1189491785.unknown

_1189437759.unknown

_1189491579.unknown

_1189437777.unknown

_1189437681.unknown

_1189424466.unknown

_1189434727.unknown

_1189435145.unknown

_1189437259.unknown

_1189437340.unknown

_1189436906.unknown

_1189435000.unknown

_1189425784.unknown

_1189427313.unknown

_1189427698.unknown

_1189427272.unknown

_1189425783.unknown

_1189423943.unknown

_1189424235.unknown

_1189423802.unknown

_1189090744.unknown

_1189358367.unknown

_1189359385.unknown

_1189361246.unknown

_1189361264.unknown

_1189422324.unknown

_1189422390.unknown

_1189422452.unknown

_1189421966.unknown

_1189422295.unknown

_1189421657.unknown

_1189361254.unknown

_1189360167.unknown

_1189360749.unknown

_1189360249.unknown

_1189359831.unknown

_1189359945.unknown

_1189359446.unknown

_1189358963.unknown

_1189359069.unknown

_1189358924.unknown

_1189333653.unknown

_1189356070.unknown

_1189357513.unknown

_1189357701.unknown

_1189357721.unknown

_1189356081.unknown

_1189356248.unknown

_1189337790.unknown

_1189355029.unknown

_1189339292.unknown

_1189334350.unknown

_1189107642.unknown

_1189115097.unknown

_1189107326.unknown

_1184767034.unknown

_1188821626.unknown

_1188830691.unknown

_1188830703.unknown

_1188834014.unknown

_1188833178.unknown

_1188833713.unknown

_1188832925.unknown

_1188831557.unknown

_1188832465.unknown

_1188825151.unknown

_1188830240.unknown

_1188830663.unknown

_1188826886.unknown

_1188822301.unknown

_1187024471.unknown

_1187024992.unknown

_1187025032.unknown

_1187025549.unknown

_1187024821.unknown

_1186380673.unknown

_1187024398.unknown

_1185541217.unknown

_1179837986.unknown

_1184766870.unknown

_1184766120.unknown

_1179747468.unknown

_1179749466.unknown

_1179746937.unknown

_1179661335.unknown

