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1. Introduction

The LTE system should support an instantaneous downlink peak data rate of 100 Mbps and an instantaneous uplink peak data rate of 50 Mbps according to TR25.913. We analyze the complexity and throughput of turbo codes and LDPC codes. Subsequently, 3GPP turbo codes with one decoder would be impossible to achieve 100 Mbps.  Practically, under the condition of 100 MHz as the clock frequency of hardware, the throughput of turbo codes would be less than 10 Mbps. However, LDPC codes could well do easily achieve over 100 Mbps throughput due to parallel operation. In view of this, the possibility of using LDPC codes for LTE system should be considered.
     In this contribution, we evaluate the complexity, throughput, and performance comparison with LDPC codes and 3GPP turbo codes under practical decoding condition. Furthermore, we present Rate-Compatible (RC)-LDPC codes to recover the disadvantage with respect to flexibility of code rate against turbo codes.   
Our RC-LDPC codes and decoding algorithm have some characteristics as follows;

(1)Code construction & Encoder
  ・World-class performance. 

  ・Rate-compatible codes with only one parity check matrix applicable to Rate matching.

  ・Very simple circuit for encoder.
(2)Decoder (for reference)
　・Simple and high performance decoding algorithm with vastly reduction of memory size.
    (Cyclic approximated 
[image: image253.png]-Min algorithm)
2. The comparison result of LDPC codes and turbo codes 

The comparison of complexity, throughput, and performance of turbo codes and LDPC codes is done in this contribution. The assumption for the comparison is to use practical decoders in terms of high throughput. The cyclic approximated
[image: image2.wmf]d

-Min algorithm and the Max-Log-Map algorithm are used for LDPC codes and turbo codes, respectively. The comparison results are shown in table 1. 
From the aspect of throughput, turbo codes with one decoder would be impossible to achieve over 100 Mbps. It is fundamental problem for LTE system. 

LDPC codes have better performance than the turbo codes at least 570 information bits under the practical decoder condition as shown in the Figure 1. In other words, if the BER performance of turbo and LDPC codes is required as same level, LDPC codes have a great advantage in throughput and complexity in comparison with turbo codes. Furthermore, our proposed RC-LDPC codes (refer to appendix A) can easily adjust code rate, and achieve good performance at several code rate as shown in figure 2.  So it is possible to be adopted to rate-matching function for LTE.
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Figure 1. Performance comparison of turbo codes (MAX-Log-MAP w SW, ite=8) and RC-LDPC codes (Cyclic approx. 
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-min, ite=28),  K =570, BPSK, AWGN.
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Figure 2. the BER Performance of RC-LDPC codes with code rates 1/3,1/2,2/3,4/5,  Sum-product, iteration=100, K =1476, BPSK, AWGN.
3. Detail of comparison results
3.1 Decode method description of LDPC codes

In [2][3], decoding method has been given, and the decoding structure is very simple , for various code rate , RC-LDPC codes of different code sizes will use a uniform hardware structure.
This proposed algorithm can be applied to most of BP-based algorithm such that UMP BP-based (Min-Sum) algorithm, normalized BP-based algorithm or 
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-min algorithm. 

This algorithm only needs real additions and comparisons, and is universal as it does not need any knowledge about the channel characteristics and code construction. Furthermore, This scheme can shrink the memory of 
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In the following, we assume BPSK modulation, which maps a codeword 
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We assume all the messages passing between bit and check nodes are in the form of log-likelihood ratios (LLR’s). For 
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th iteration, we define the following notation.
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We show the cyclic approximated 
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-min algorithm as follows;

Step 1: Initial Step

For each 
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For the 
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iteration, the Cyclic approximated min algorithm includes three steps as follows. 
Step 2 : Horizontal step (processing in check nodes)
   For 
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Step 3: Vertical step (processing in bit nodes)
For each 
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For each 
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Step 4: Hard decision and stopping criterion test
I. Create 
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 is considered as a valid decoded word and the decoding process ends; if the number of iterations exceeds some maximum number and 
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 is not a valid codeword, a failure is declared and the decoding process ends; otherwise the decoding repeats from Step 2.
According to the above algorithm, we show a hardware design example for RC-LDPC codes in the Figure 3.
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Figure 3 overall hardware structure of the decoder of RC-LDPC codes

3.2 Decode method description in detail to evaluate its complexity
We consider in general that the analysis of complexity for sum-product & Log-MAP algorithm are appropriate in [1]. From a practical perspective, we analyze the simple decoder with small degradation in the subsection 3.5. 
In [2][3], low complexity and memory reduced decoding method named “Cyclic Approximated 
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-min algorithm” has been given. The method calculates with only r’(= k in the previous subsection : example r’=3) minimal value of LLRs from check nodes to variable nodes. On this scheme, we memorize only r’ LLRs per a row, and we can reduce the iteration numbers from general LDPC decoding algorithm. 

  Figure B1(appendix B) gives the overall hardware structure of Cyclic Approximated 
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-min decoder. Cyclic Approximated 
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-min decoder is mainly structured by two update function unit CNFU(check node function unit) and VNFU(variable node function unit) and 4 memories for k minimal LLRs, sign of all nodes, received data and syndrome. 

    Figure B2(appendix B) gives the construction of CNFU. CNFU performs check node update using r’(example r’ = 3) minimal LLRs and column number. In Figure B2(appendix B), “sel” selects 2 minimal LLRs except its own information, and computes update information based on 
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-min decoding algorithm. (“c” is a constant factor.) 

Figure B3(appendix B) gives the construction of VNFU. VNFU performs variable node update using LLRs from CNFU and sign information. In Figure B3(appendix B), r’ minimal LLRs select unit MINU update r’ minimal LLRs and access to r’ minimal LLRs memory. Figure B4(appendix B)gives the construction of MINU. MINU compares updated LLRs with memorized LLRs without its own node and access to r’ minimal LLRs memory.
3.3 Comparison of low complexity LDPC decoding and Max-Log-MAP decoding

 We compare the memory size and complexity of two low complexity decoding method. As we show the performance in Figure 4 and 6, fixed point Cyclic Approximation 
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-min decoding for LDPC Codes has good performance with small quantization bit. And Max-log-MAP based on Sliding Window decoding can reduce the memory requirements. In the following, we show the memory size and complexity to simulate the performance shown in Figure 4 and 6.
For LDPC Codes, N : code block length, c : column weight, r : row weight, and r’ : the number of memorized LLRs for Cyclic Approximated min decoding algorithm. The complexity of Cyclic Approximation 
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-min is shown as following. 
Memory

Received value : x (bit) * N
Sign information : 1(bit) * r * M

Syndrome : 1(bit) * M

Minimal LLRs : y(bits) * r’ * M

Minimal indexes : z(bits) * r’ * M

Decoded data : 1(bit) * N

Mask Matrix for Codes : 1296(bits)

Total (x + 1)N + [ r + 1 + (y + z) * r’ ]M + 1296
Operations for 1 iteration
Add : ( 5c - 1)N
cN : sum all node information for variable node update

( c - 1 )N : exclusion of its own information for variable node update

2cN : compute of correcting value for check node update

cN : compute of minimal value for check node update
Compare : ( r’ - 1 )cN
( r’ – 1 )cN : memory of r’ minimal values when variable node update

1 bit ExOr : 2cN
cN : compute of syndrome for variable node update

cN : compute of sign for variable node update

Total : ( ( 6 + r’ )c - 1 )N
For Turbo Codes, M : information bit length + tail bits, k : memory order, and sliding window width is 256, sliding margin is 32. The complexity of Max-Log-MAP based on Sliding Window algorithm is shown as following.
Memory

Received value : x(bits) * (2*M + 12)
Extrinsic value : y (bits) * M

Metrics : z(bits) * 
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Decoded date : 1(bit) * M

PIL table : w(bits) * M

Total : (2x + y + w + 1)M + z * 
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Operations for 0.5 iteration

Add : ( 8 *
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(4*
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2M’ : compute extrinsic value

Compare Operation : ( 4*
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　Table 2 and 3 compare the memory size and complexity to simulate Figure B2. For LDPC Codes, (N, M, r, c) = (2952, 1476, 8, 3.4), r’ = 3, and x = 4 ( including 1 sign bit), y = 5, z = 3. For Turbo Codes, (M, k) = (1476, 4), M’ = M + 3(for tail bits), and x = 6 ( including 1 sign bit), y = 6, z = 10. w = 11.
Table 2  The comparison of memory size

	[LDPC] Cyclic Approximated 
[image: image100.wmf]d

-min
	[Turbo] Max-Log-MAP based on SW

	
	bit size
	requirement
	
	bit size
	requirement

	received value
	4
	2952
	received value
	6
	2*1476+12

	Sign information
	1
	8* 1476
	extrinsic value
	6
	1476

	syndrome
	1
	1476
	Metrics
	10
	8*256

	minimal LLRs
	5
	3*1476
	decode bits
	1
	1476

	minimal indexes
	3
	3*1476
	PIL Table
	11
	1476

	decoded bits
	1
	2952
	
	
	

	Mask Matrix
	1296
	1
	
	
	

	Total
	64764 bits
	Total
	64832 bits


Table 3  The comparison of complexity
	[LDPC] Cyclic Approximated 
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-min
	[Turbo] Max-Log-MAP based on SW

	add
	(5c – 1)N
	47822
	add
	( 8 *
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	(r’ – 1)cN
	20310
	compare
	( 4*
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	2cN
	20310
	

	Total
	88432 for 1 iteration
	Total
	151755 for 0.5 iteration


The ratio of complexity for one iteration is Cyclic Approximated 
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-min : Max-Log-MAP based on Sliding Window = 88432 : 151755 * 2 = 1 : 3.43. When Turbo decoder iterate 8, LDPC decoder can iterate 28.
  We show the effects of parallel operation in table 4,5,6.
   Table 4. The number of calculation for the cyclic approx. 
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-min & MAX-log-MAP:SW
	

	The number of calc. (per 1 iteration)

	LDPC codes (Cyclic approx. 
[image: image110.wmf]d

-min)
	88432

	Turbo codes (MAX-log-MAP:SW)
	303510


   Table 5. The number of iteration for the cyclic approx. 
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-min & MAX-log-MAP:SW 
	
	The number of Iter.

	LDPC codes (Cyclic approx. 
[image: image112.wmf]d

-min)
	28

	Turbo codes (MAX-log-MAP:SW)
	8


 Table 6. Effects on throughput by parallel operation
	The number of parallel operation
	1
	10
	MAX=N

	Throughput ratio against turbo decoder
	1 times

(Nearly equal without parallel operation.)
	10 times


	N times

	
	
	(Increase in proportion to the number of parallel operation.)


As we all know, the new coming LTE PHY layer needs very high throughput. Actually it is almost impossible for turbo codes to support such a high throughput due to their bit-by-bit decoding algorithm [1]. However the proposed RC-LDPC codes encoder & decoder can easily satisfy the throughput requirement of the future system as shown in the table 6.
3.4 Throughput analysis of LDPC codes and turbo codes
  According to [1], the information data throughput of turbo decoders without sliding window  has been calculated as following:
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 are assumed 8, 1476, and 100, respectively.
And the information data throughput of turbo decoders with sliding window has been calculated as following:
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 is the sliding block length. 
[image: image122.wmf]L

 is assumed 256.
    The information data throughput of LDPC decoders has been calculated as following:
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 is the parallel number per a circulant permutation matrix. 

 The minimum 
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 is 128Mbps, the maximum 
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 is 5.1Gbps.

We show the comparison table as follows.

    　　　　　　　　　Table 7. The comparison of throughput
	
	Throughput (Fdec=100 MHz, one decoder)

	
	MIN
	MAX

	Turbo codes
	5.33 Mbps
	6.25 Mbps

	LDPC codes
	128 Mbps
	5.1 Gbps


3.5 Performance comparison of RC-LDPC codes and 3GPP turbo codes

Simulations have been performed using RC-LDPC codes of length N=570 and N=1476 with Rate=0.5.  Each codes performance are evaluated under the condition of ideal decoding algorithms (Sum-product & log-MAP based on floating point) and practical decoding algorithms (Cyclic approximated 
[image: image127.wmf]d

-min & Max-Log-Map based on fixed point).
Figure 3 compares the performance of a RC-LDPC code and a 3GPP Turbo code with N=570. For RC-LDPC Codes, Sum-product algorithm (floating point) is used. And for the 3GPP Turbo Code, Log-MAP algorithm (floating point) is used. The maximum number of iterations for LDPC Codes is 100, and the maximum number of iterations of Turbo Codes is 8. The code rate is 1/2.
Figure 4 compares the performance of a RC-LDPC code and a 3GPP Turbo code with N=570. For RC-LDPC Codes, Cyclic Approximated 
[image: image128.wmf]d

- min algorithm (fixed point according to table 1) is used. And for the 3GPP Turbo Code, Max-log-MAP based on Sliding Window (fixed point according to table 1) is used. The maximum number of iterations for LDPC Codes is 28, and the maximum number of iterations of Turbo Codes is 8. The code rate is 1/2.
Figure 5 compares the performance of a RC-LDPC code and a 3GPP Turbo code with N=1476. For RC-LDPC Codes, Sum-product algorithm (floating point) is used. And for the 3GPP Turbo Code, Log-MAP algorithm (floating point) is used. The maximum number of iterations for LDPC Codes is 100, and the maximum number of iterations of Turbo Codes is 8. The code rate is 1/2.
Figure 6 compares the performance of a RC-LDPC code and a 3GPP Turbo code with N=1476. For RC-LDPC Codes, Cyclic Approximated 
[image: image129.wmf]d

-min algorithm (fixed point according to table 1) is used. And for the 3GPP Turbo Code, Max-log-MAP based on Sliding Window (fixed point according to table 1) is used. The maximum number of iterations for LDPC Codes is 28, and the maximum number of iterations of Turbo Codes is 8. The code rate is 1/2.
 As shown in the Figure 3, 5, under the condition of ideal decoding algorithms, the RC-LDPC code and the 3GPP Turbo code with N=570 are similar, and the RC-LDPC code with N=1476 is better performance than the 3GPP Turbo code with N=1476. As we all know, the larger the codeword length is, the better the performance of LDPC codes is in comparison with turbo codes. 

In Figure 4, 6, under the condition of practical decoding algorithms, we can find that the performance of RC-LDPC codes is about 0.2dB and 0.35dB better than the performance of 3GPP Turbo codes at a BER 10-4 when N=570 and N=1476, respectively.
As expected, the cyclic approximated 
[image: image130.wmf]d

-min algorithm and the sum-product algorithm are similar performance as shown in figure 3, 4 and 5, 6. The degradation of the cyclic approximated 
[image: image131.wmf]d

-min algorithm (fixed point, ite=28) from the sum-product algorithm (floating point, ite=100) is only less than 0.15dB.
These results show that the RC-LDPC codes with more than 570 information bits would be better performance than the 3GPP Turbo codes under ideal and practical decoding algorithm at rate 1/2. 
 In other words, if the performance of turbo and LDPC codes is required as same level, LDPC codes have a great advantage in throughput and complexity in comparison with turbo codes, else if the complexity of turbo and LDPC codes is required as same level, the performance of LDPC codes is prior to turbo codes.  
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Figure 3. Performance comparison of turbo codes (Log-MAP, ite=8) and LDPC codes (Sum-product, ite=100),  K =570, BPSK, AWGN.
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Figure 4. Performance comparison of turbo codes (MAX-Log-MAP w SW, ite=8) and LDPC codes (Cyclic approx. 
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-min, ite=28),  K =570, BPSK, AWGN.
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Figure 5. Performance comparison of turbo codes (Log-MAP, ite=8) and LDPC codes (Sum-product, ite=100),  K =1476, BPSK, AWGN.
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Figure 6. Performance comparison of turbo codes (MAX-Log-MAP w SW, ite=8) and LDPC codes (Cyclic approx. 
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-min, ite=28),  K =1476, BPSK, AWGN.
4. Various code rate BER performance of RC-LDPC codes 
Here, for code rate 1/3, 1/2, 3/4, and 4/5, the RC-LDPC codes with N=1476 have been performed simulations. Figure 7 shows the BER performance with BPSK modulation on AWGN. The RC-LDPC codes can achieve very good BER performance within 1.5dB from the corresponded Shannon limits as shown in Figure 7. 
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Figure 7. the BER Performance of RC-LDPC codes with code rates 1/3,1/2,2/3,4/5,  Sum-product, iteration=100, K =1476, BPSK, AWGN.
5. Conclusion
We analyze complexity, throughput, and performance of turbo codes and LDPC codes under practical conditions. To analyze LDPC codes, we proposed the RC-LDPC codes which are simple structure, good performance and can be applicable to the rate matching function for LTE systems.
Subsequently, under the condition of 100 MHz as the clock frequency of hardware, the throughput of turbo codes would be less than 10Mbps. However, LDPC codes could well do easily achieve over 100 Mbps throughput due to parallel operation and can achieve better than and equal to 3GPP turbo codes with respect to performance, memory size, complexity, and flexibility of code rate. In view of these results, the possibility of using LDPC codes for LTE system should be considered. A text proposal is prepared in next page.
Furthermore, LDPC codes have advantage of error correction over unequal error probability channel such as fading channels and M-QAM modulation. The property can be derived that LDPC codes could be applicable to some AMC schemes with several unequal channels. The simulation results for fading channels, M-QAM modulation, and AMC schemes will be presented as well as basic simulations over AWGN for various code rate and various codeword length in the near future. 

Text Proposal
--------------------------------------- Start of Text Proposal  --------------------------------------
7.1.1.3
Channel coding and physical channel mapping
7.1.1.3.1 Coding performance/complexity evaluation
Current assumption for the study-item evaluations should be that channel coding for “normal” data [Layer 3 information] is based on UTRA release 6 Turbo coding, possibly extended to lower rates by extension with additional code polynomials, extended longer code blocks, and modified by the removal of the tail. However, the use of alternative FEC encoding schemes could also be considered, especially if significant benefits in terms of complexity and/or performance can be shown. One possible coding scheme is LDPC coding. This coding scheme has a potential for obtaining better performance and/or lower complexity and memory size than Turbo coding.
To achieve high processing gain, repetition coding can be used as a complement to FEC.

Channel coding for lower-layer control signaling is TBD.
9.1.1.3
Channel coding and physical channel mapping
9.1.1.3.1 Coding performance/complexity evaluation
Similar to the downlink, the current assumption is that uplink channel coding for Layer 3 information is based on current UTRA release 6 Turbo coding, possibly extended to lower rates by the extension of additional code polynomials, extended to longer code blocks, and modified by the removal of the tail. However, also similar to the downlink, the use of alternative FEC encoding schemes could be considered if significant benefits in terms of complexity and performance could be shown. One possible coding scheme is LDPC coding. This coding scheme has a potential for obtaining better performance and/or lower complexity and memory size than Turbo coding.
To achieve high processing gain, repetition coding can be used as a complement to FEC.

Uplink channel coding for lower-layer control signaling is TBD.
--------------------------------------- End of Text Proposal  --------------------------------------
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Appendix A. Basic Scheme Of RC-LDPC codes 

A.1 Code structure and code description

 　In this subsection we introduce the basic construction of the proposed RC-LDPC codes. Let 
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 be an odd prime number. The base parity-check matrix over 
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This product defines a masking operation for which a set of permutation matrices in 
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 is masked by zero-entries of 
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. The distribution of the permutation matrices in 
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Our proposed RC-LDPC code 
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is defined as the null space of a parity-check matrix 
[image: image171.wmf]M

H

 such that: 

[image: image172.wmf][

]

T

M

H

M

H

=

:

, 
where

[image: image173.wmf].

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

)

0

(

:

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

I

I

I

I

I

I

I

I

I

I

I

T

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

H

L

L

O

O

O

O

O

O

M

M

O

O

O

M

O

L

M

O

O

O

M

M

O

O

O

O

O

O

M

O

O

O

O

L

L

L

L

L


Hence, we can give a parity check matrix 
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 for a LDPC code 
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by designing only a masking matrix 
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. 
As we can see, the information block size K = N-M and N is the codeword block size. Through changing 
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, a LDPC set of variable information length for various code rates can be obtained.
   The parity check matrix of LDPC codes can be fully described by only small parameters of 
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 will be prepared two sets, one is based binary a 36 x 36 matrix for over 1000 bits information length and another is based a 15 x 15 matrix for less than and equal to 1000 bits information length.
  The masking matrix 
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  We show an example of　a masking matrix 
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for over 1000 bits information length as follows; 
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An example of masking matrix 
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for less than and equal to 1000 bits information length is as follows;
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Let 
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 for long LDPC codes 
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The information block sizes of long LDPC codes 
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A.2 Encode method of RC-LDPC codes
The encoding method for our proposed RC-LDPC codes is basically same as the method of the contribution [1]. For various code rates, RC-LDPC codes of different code sizes will use a uniform hardware structure. Here we have suggested effective encode method.
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 results in the fast-encoding equation (1) and (2). Equation (1) and (2) show that the parity elements of the codeword are determined from the original sparse parity-check matrix without any need to computing the dense generator matrix.
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Practically, we show the circuit block example as follows.
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               Figure A1. an encoder circuit block (ex.p=5)

As shown in figure A1. Only the operations of add and shift are needed to perform the encode process of RC-LDPC codes.
A.3 RC-LDPC codes for various code rates
 A RC-LDPC encoder consists of a common LDPC encoder and a puncturing device. The decoder for RC-LDPC codes is the same as an ordinary LDPC decoding algorithm with received LLR=0 for puncturing bits.
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A set of code rates and a puncturing bits set 
[image: image224.wmf]r

ˆ

 for RC-LDPC codes can be represented by:

For a code rate
[image: image225.wmf],...

2

,

1

   

)},

1

/(

2

/{

=

+

+

=

l

l

K

K

K

R

l


  
[image: image226.wmf]{

}

)

2

:

2

:

1

(

\

ˆ

)

1

(

K

l

-

=

r

r

r

,

  where 
[image: image227.wmf]{

}

)

2

:

2

:

1

(

)

1

(

K

l

-

r

 means elements from 1st element to 2Kth element at 
[image: image228.wmf])

1

(

2

-

l

 step of 
[image: image229.wmf]r

, and 
[image: image230.wmf]{

}

)

2

:

2

:

1

(

\

ˆ

)

1

(

K

l

-

=

r

r

r

 is the set 
[image: image231.wmf]r

 with the set 
[image: image232.wmf]{

}

)

2

:

2

:

1

(

)

1

(

K

l

-

r

 excluded.
 This procedure can make RC-LDPC codes for code rates 1/3, 1/2, 2/3, 4/5,8/9,….

Of course, RC-LDPC codes with smaller step code rates can be made easily as similar schemes.
Appendix B. Circuit blocks for the cyclic approx. 
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-min algorithm
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Figure B1 overall hardware structure
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Figure B2  construction of CNFU
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Figure B3　construction of VNFU
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Figure B4　construction of MEMU
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