3GPP TSG RAN WG1 #42bis
 R1-051070
San Diego, USA, Oct 10th– Oct 14th, 2005

Source:
ZTE, CATT, RITT, Huawei
Title:
Comparison of structured LDPC Codes and 3GPP Turbo codes

Agenda Item:
8.7
Document for:
Discussion and Decision
1. Introduction

According to TR25.913 [19], the system should support an instantaneous downlink peak data rate of 100Mb/s within a 20 MHz downlink spectrum allocation (5 bps/Hz) and an instantaneous uplink peak data rate of 50Mb/s (2.5 bps/Hz) within a 20MHz uplink spectrum allocation. According to the analysis of this article, if only one decoder is used in base-band processing, it is almost impossible for 3GPP turbo codes to achieve such a high throughput, however LDPC codes can easily satisfy the throughput requirement of LTE due to their parallel encoders/decoders. Furthermore, because of the perfect structure of LDPC codes, hardware cost can be easily adjusted according to the actual throughput. By the way, if more than one turbo decoders are used, high throughput may be reached, however, multiple independent decoders of turbo codes may make the chips prohibitive.

The next generation mobile communication system must find and support a new kernel application. The services, such as high quality MPEG pictures, real-time video and high speed Internet access, will bring the bright outlook to the future mobile system. However, to support these new services, there is a great challenge to the air interface of the future system. The newest technologies are needed to dramatically increase the real-time throughput of PHY layer. Actually, FEC codes are used to correct errors caused by a noisy channel, and play a critical role in the air interface of the future system.

LDPC codes, as the next generation coding scheme, have replaced turbo codes to become the newest research focus of correct codes worldwide. A special type of LDPC codes, namely structured-LDPC codes, leads to increased transmission distance, lower power requirements, and increased throughput in a wide array of communication systems, including wireless (mobile or fixed), satellite, optical fiber, storage, and wire line (cable, DSL). These efficiencies translate into less hardware, lower costs and increased performance. Therefore, the future mobile communication system should be with a good consideration on this coding technology.

2. Basic Scheme Of Structured LDPC codes

2.1 Code structure and code description

 The Parity check matrix of LDPC Codes is defined by a matrix H of size
[image: image178.png]exelicaly shiied
ey s

]
[

3mxSm

s
al others e 0

, which consists of blocks of circularly shifted identity matrices or zero matrices of size
[image: image2.wmf]z

z

´

, of the form as following:

[image: image3.wmf]b

b

b

n

b

m

b

b

m

b

b

m

b

b

m

b

b

n

b

b

b

b

b

n

b

b

b

H

h

h

h

h

h

h

h

h

h

h

h

h

P

P

P

P

P

P

P

P

P

P

P

P

P

H

=

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

L

L

L

L

L

L

L

L

2

1

0

1

12

11

10

0

02

01

00

If
[image: image4.wmf]1

-

=

b

ij

h

, we define that
[image: image5.wmf]0

=

b

ij

h

P

.

If
[image: image6.wmf]b

ij

h

 are non-negative integers, we define that
[image: image7.wmf]b

ij

b

ij

h

h

P

P

)

(

=

, and P is a
[image: image8.wmf]z

z

´

standard permutation matrix:

[image: image9.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

0

0

0

1

1

0

0

0

0

1

0

0

0

0

1

0

L

L

L

L

L

L

L

L

L

P

The size of H is
[image: image10.wmf]N

M

´

, here
[image: image11.wmf]z

m

M

z

n

N

b

b

´

=

´

=

,

. And
[image: image12.wmf]b

H

 of size
[image: image13.wmf]b

b

n

m

´

 is composed of
[image: image14.wmf]b

ij

h

, here
[image: image15.wmf]}

1

,...,

2

,

1

,

0

{

},

1

,

,

2

,

1

,

0

{

-

Î

-

Î

b

b

n

j

m

i

L

.

We define that H is the expand matrix of
[image: image16.wmf]b

H

, and
[image: image17.wmf]b

H

 is the base matrix of H, and z is the expand factor. As we can see, the information block size K = N-M and N is the codeword block size. Through changing the expand factor z, a LDPC set of variable information length and certain code rate can be obtained.

 For example, a matrix H is shown as following:

[image: image1.wmf])

(

)

(

z

n

z

m

b

b

´

´

´

We can use a base matrix Hb and an expand factor z to represent H.

 z = 3 and
[image: image18.wmf]b

H

＝
[image: image19.wmf]0101

2121

-

éù

êú

ëû

 Due to the structured characteristic of parity check matrix, the parity check matrix of LDPC codes can be fully described by small set parameters, which results in very low complexity implementations. Actually we need base matrix
[image: image20.wmf]b

H

, instead of parity check matrix H, to perform encoding and decoding. The encoding and decoding algorithms become the matrix calculation of size
[image: image21.wmf]b

b

n

m

´

, the basic structure of encoder and decoder only depends on the positions of the non-negative-one elements in base matrix
[image: image22.wmf]b

H

.

 As we can see, the base matrix of LDPC codes can decide the code rate and the degree distribution of LDPC codes. More accurately, the positions of non-negative-one elements of base matrix can decide the code rate and the degree distribution of LDPC codes. According to LDPC theory, short cycles make BP become a sub-optimized decoding algorithm, so in our design short cycles should be avoided.

 Just for the reason, in [1], to generate a LDPC code set of a certain code rate and various code sizes, we only need to construct a uniform base matrix for them. However, the uniform base matrix has to be modified to generate a new base matrix, which will really be used in the encoder/decoder of the LDPC code of certain code size. That is to say, for the LDPC codes of different code sizes and same code rate, the positions of non-negative-one elements of their base matrices is the same, and the values of non-negative-one elements of their base matrices need to be changed.

 Here is an example of rate 1/3 LDPC codes with different code sizes. A uniform base matrix constructed by us is used to describe the LDPC code set. The code rate of designed LDPC codes is 1/3, and the designed information block sizes is from 192 to 5120, and the step is 8, That is to say, K=192,192+8,192+2*8,192+3*8,…,5120. The size of base matrix is 16×24，namely,
[image: image23.wmf]16

=

b

m

and
[image: image24.wmf]24

=

b

n

. So expand factors z = 24, 25, 26, …, 640. The uniform base matrix of rate 1/3 LDPC code set is shown as following:

	 -1 -1 -1 -1 485 -1 273 92 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

	 -1 326 -1 -1 -1 -1 497 243 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

	 588 -1 -1 -1 -1 571 213 196 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

	 -1 -1 -1 -1 104 -1 432 369 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

	 -1 -1 236 -1 -1 -1 335 588 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

	 -1 -1 -1 196 -1 -1 52 78 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1

	 -1 351 -1 -1 -1 -1 82 402 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1

	 -1 -1 594 -1 -1 192 574 219 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1

	 -1 -1 -1 -1 -1 -1 160 513 476 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1

	 -1 -1 -1 354 -1 -1 618 414 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1

	 -1 -1 232 -1 -1 -1 283 322 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1

	 637 -1 -1 -1 -1 -1 583 47 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1

	 -1 -1 -1 -1 462 -1 635 483 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1

	 -1 -1 -1 60 -1 394 441 332 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1

	 -1 490 -1 -1 -1 -1 294 466 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0

	 177 -1 -1 -1 -1 -1 592 157 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0

For the LDPC code with certain code size, the uniform base matrix above has to be modified and then can be regarded as the base matrix
[image: image25.wmf]b

H

. H of the LDPC code can be obtained by expanding
[image: image26.wmf]b

H

 with a expand factor z. Modification rule is shown as follow:

 For each non-negative-one elements of the uniform base matrix above, the value
[image: image27.wmf]b

ij

h

should

be modified. Let
[image: image28.wmf]ified

b

ij

h

mod

）

（

represents the i-th row, j-th column element of modified base matrix,
[image: image29.wmf]uniform

b

ij

h

)

(

 represents the i-th row, j-th column element of the uniform base matrix given by us. Then

[image: image30.wmf]mod

max

()()

bb

ijifiedijuniform

z

hh

z

êú

=´

êú

ëû

[image: image31.wmf]max

z

is the largest expand factor, here equals to 640. And z is the currently used expand factor uniquely corresponding to the currently used code size.
[image: image32.wmf]ë

û

 represents the operation that rounds the elements in it to the nearest integers towards minus infinity.

For example, for K=192 LDPC codes of rate 1/3,
[image: image33.wmf]24

=

z

, and
[image: image34.wmf]960

max

=

z

.
[image: image35.wmf]

[image: image36.wmf]2,0mod2,0

max

24

()()58822

640

bb

ifieduniform

z

hh

z

êú

êú

=´=´=

êú

êú

ëû

ëû

2.2 Encode description of structured LDPC codes

2.2.1 Encode method Introduction

In [1], one encoding method has been given , the encoding structure is very simple. For certain code rate, LDPC codes of different code sizes will use a uniform hardware structure. Here we have suggested another more effective encode method in the first time.

Encoding is the process of determining the parity sequence
[image: image37.wmf]1

{}

iM

p

´

=

p

, given an information sequence
[image: image38.wmf]1

{}

iK

s

´

=

s

. To encode, the information block s is divided into
[image: image39.wmf]b

b

b

m

n

k

-

=

 groups of z bits. Let this grouped s be denoted u,

[image: image40.wmf][(0),(1),(2),,(1)],

b

uuuuk

=-

u

L

Where each element of u is a column vector as follows

[image: image41.wmf]T

z

i

iz

iz

iz

s

s

s

s

i

u

]

,

[

)

(

1

)

1

(

,

2

,

1

,

-

+

+

+

=

L

Using the modified base matrix
[image: image42.wmf],

{}

mn

bb

b

ij

h

´

=

b

H

, the parity sequence p is determined in groups of z. Let the grouped parity sequence p be denoted v,

[image: image43.wmf][(0),(1),(2),,(1)]

b

vvvvm

=-

v

L

Where each element of v is a column vector as follows

[image: image44.wmf]T

z

i

iz

iz

iz

p

p

p

p

i

v

]

,

[

)

(

1

)

1

(

,

2

,

1

,

-

+

+

+

=

L

Define the temporary block
[image: image45.wmf]λ

is divided into
[image: image46.wmf]b

m

groups of z bits. Let this grouped
[image: image47.wmf]λ

 be denoted

[image: image48.wmf][(0),(1),,(1)]

T

b

m

lll

=-

λ

L

where each element of
[image: image49.wmf]λ

 is a column vector whose size equals to z.

Encoding proceeds in four steps:

(1) Compute temporary block
[image: image50.wmf]λ

.

(2) Determines v(0) .

(3) Determines v(i+1) from v(i) ,here
[image: image51.wmf]0,1,,2

ix

=-

L

, and
[image: image52.wmf]x

 indicates the row number of the second element of three non-negative-one elements in the
[image: image53.wmf]b

k

-th column of base matrix
[image: image54.wmf]b

H

.

(4) Determines v(mb-1) from v(0), and determines v(i) from v(i-1) , here
[image: image55.wmf]1,2,,1

bb

immx

=---

L

.

First step, compute
[image: image56.wmf]λ

, each element of
[image: image57.wmf]λ

 can be calculated by the following formula,

[image: image58.wmf](,)

1

0

()()0,1,,1

b

b

ij

k

h

b

j

ijim

-

=

==-

å

λPu

L

[image: image59.wmf]λ

needs to be saved in the LDPC encoder, and the needed memory for saving
[image: image60.wmf]λ

 is only the maximum code size.

Second step, compute v(0) ,

[image: image61.wmf](,)

1

0

(0)()

b

b

xk

b

m

h

i

i

-

=

=

å

Pv

λ

.

So
[image: image62.wmf](,)

1

()mod

0

(0)()

b

b

xk

b

m

zhz

i

i

-

-

=

=

å

vP

λ

Third step, compute v(i+1), here
[image: image63.wmf]0,1,,1

ix

=-

L

.

[image: image64.wmf](1)()()

iii

+=+

vv

λ

Four step, compute v(i), here
[image: image65.wmf]1,2,,2

bb

immx

=--+

L

.

[image: image66.wmf](1)(0)(1)

bb

mm

-=+-

vv

λ

[image: image67.wmf](1)()(1)

iii

-=+-

vv

λ

[image: image68.wmf](,)

()

b

ij

h

j

Pu

means the operation that circularly shifts the values in the vector
[image: image69.wmf])

(

j

u

 by
[image: image70.wmf]b

j

i

h

)

,

(

 elements. Thus only the operations of add and shift are needed to perform the encode process of structured LDPC codes.

In the second step, parallel processing can be adopted. The third step and the fourth step

can be performed at the same time to improve the throughput of the encoder.
2.2.2 Encode complexity analysis

 One encode process can be performed based on the vector operation. The possible calculation operations include vector add operation and vector circle shift operation, here the size of vector always equals to the expand factor z.

 The other encode process can be performed based on bit operation. Then the structured characteristic of parity check matrix should be applied to the hardware implementation of encoder. The connectivity of LDPC encoder will only depend on base matrix Hb.

 According to the formula above, the encoder of structured LDPC codes needs N+M add operations and
[image: image71.wmf]1

b

k

+

 circle shift operation. For the first method, circle shift operations represent hardware connection or address access between calculation unit and memory blocks.
 In general, the complexity of structure LDPC encoder is not higher than that of 3GPP turbo encoder. Actually due to parallel structure, the throughput of LDPC encoder is higher than that of 3GPP turbo codes, which means lower power dissipation for mobile telephone.

2.3 Decode description of structured LDPC codes

2.3.1 Normal decoding algorithm introduction
Normal Log-BP algorithm for LDPC----Form 1

The message passing algorithm is a decoding technique in which messages are passed from node to node through the Tanner graph. The nodes act as independent processes, collecting incoming messages and producing outgoing messages. There is no global control over the timing or the content of the messages; instead, the bit and check nodes follow a common local rule: send a message as soon as all necessary incoming messages have been received. When the graph is cycle-free, the message passing algorithm is a recursive algorithm that always converges to the true a posteriori log-likelihood ratios after a finite number of messages have been passed. However, most (if not all) “good” codes have cycles in their Tanner graphs. When applied to codes with cycles, the message passing algorithm is no longer exact but approximate. Fortunately, even when the graph has cycles, the message passing algorithm performs remarkably well, and its complexity is extremely low.

The message-passing decoder for an irregular or regular LDPC code can be summarized concisely in terms of the index sets
[image: image72.wmf],

{:1}

nmn

MmH

==

and
[image: image73.wmf],

{:1}

mmn

NnH

==

, as follows.

Let
[image: image74.wmf]()

,

l

mn

u

denote an “upward” message form check-node to bit-node n during the l-th iteration, and let
[image: image75.wmf]()

l

n

l

denote an estimate of the n-th LLR after
[image: image76.wmf]l

 iterations. The message passing decoder is:

Pseudo-code Description of Log-Domain Decoding Algorithm
	1) Initialization

The variables
[image: image77.wmf]n

l

and
[image: image78.wmf]mn

u

 are initialized to

*
[image: image79.wmf]0

,

0

mn

u

=

, for all
[image: image80.wmf]{1,,}

mM

Î

L

 and
[image: image81.wmf]m

nN

Î

 *
[image: image82.wmf](0)2

(2/)

nn

r

ls

=

, for all
[image: image83.wmf]{1,,}

nN

Î

L

	2) Parity node updates----(Row Information update)

[image: image84.wmf](1)(1)

()1

''

'()\

0,...,1

()

2tanhtanh()

2

kk

k

nmn

mn

nNmn

formM

fornNm

u

u

l

--

-

Î

=-

Î

ìü

-+

=-

íý

îþ

Õ

	3) Bit node updates--------(Column Information update)

[image: image85.wmf]()(0)()

'

'()

0,...,1

kk

nnmn

mMn

fornN

u

ll

Î

=-

ìü

=+

íý

îþ

å

	4) Verify parity checks

[image: image86.wmf]0,...,1

ˆ

(0)0

ˆ

1

nn

n

fornN

ifx

elsex

l

=-

>=

=

	5) Iteration termination

[image: image87.wmf]max

ˆ

(0)()

2)

T

ifHxorllquit

elsegoto

==

Normal Log-BP algorithm for LDPC----Form 2

Let
[image: image88.wmf]()

,

l

mn

v

denote an “upward” message form check-node to bit-node n during the l-th iteration,

According to the principle, there is:
[image: image89.wmf]'

()()()()

,'

()\

llll

mnnmnmn

mMnm

vuu

l

Î

=-=

å

2) and 3) can be replaced by the following form.

	2’) Parity node updates----(Row Information update)

[image: image90.wmf](1)

()1

'

'()\

0,...,1

()

2tanhtanh()

2

k

k

mn

mn

nNmn

formM

fornNm

v

u

-

-

Î

=-

Î

ìü

-

=-

íý

îþ

Õ

	3’) Bit node updates--------(Column Information update)

[image: image91.wmf]()(0)()

'

'()\

0,...,1

kk

mnnmn

mMnm

fornN

vu

l

Î

=-

ìü

=+

íý

îþ

å

[image: image92.wmf]()(0)()

'

'()

0,...,1

kk

nnmn

mMn

fornN

u

ll

Î

=-

ìü

=+

íý

îþ

å

Look-up-table Log-BP algorithm

Actually, “step 2) Parity node updates” in normal Log-BP algorithm can be replaced by the following method.

	2’’) Parity node updates(look up table)

[image: image93.wmf]()

''

'()\

'()\

0,...,1

()

()(())

k

mnmnmn

nNMn

nNMn

formM

fornNm

u

ab

Î

Î

=-

Î

ìü

=-FF

íý

îþ

å

Õ

Where

[image: image94.wmf](1)(1)(1)

'

(1)(1)(1)

'

(1)(0)(1)

'

'()

()()

||||

kkk

mnnmnmn

kkk

mnnmnmn

kk

nnmn

nNm

signusignv

uv

u

al

bl

ll

--

Î

=-+=-

=-=

=+

å

Where we have defined

[image: image95.wmf]1

()log(tanh(/2))log

1

x

x

e

xx

e

+

F=-=

-

and used the fact that
[image: image96.wmf]1

()()

xx

-

F=F

. The function
[image: image97.wmf]()

x

F

 is fairly well behaved; it may be implemented via look-up table. In [2-6], when finite precision has been considered, 32 bit entries LUT is enough for LUT Log-BP.

APPROXIMATE-MIN* LUT BP algorithm

In the article [6], a new simplified BP algorithm has been suggested. In this article, Min* operation, like used in turbo codes, can be implemented by Look-up-table. The technique computes only two outgoing magnitudes at each check node and exhibits no measurable performance loss as compared to exact belief propagation which computes a unique magnitude for each belief propagation from a given check node. The technique eliminates the need for memory based table look-up in the check node processing and has been implemented using only shift, add, and comparison operations. Finite word length results for a ”worst-case” code indicate that 6 bit quantization yields performance that is similar to that provided by full floating point computation.

 Due to the merit of the approximate BP algorithm, this algorithm will be widely accepted and mainly applied in the hardware implementation of LDPC decoders in the future.
2.3.2 LUT Log-BP Hardware implementation of structure LDPC codes
In [2][3][4][5][6][7], decoding method has been given, and the decoding structure is very simple , for certain code rate ,LDPC codes of different code sizes will use a uniform hardware structure.

In [8][9][10][11], shortening and puncturing method has been introduced to change information block size and codeword block size , thus code rate can be inflexibly changed. Further research is needed to solve the problem on how to always ensure the best degree-distribution of LDPC codes after the operation of shortening and puncturing.

Decoders of structured LDPC codes

[6] has given a hardware design example for the structured LDPC codes, here we’ll show it.

[image: image173.png]

Figure 1 parity check matrix H of the structured LDPC codes

Figure 1 has given a structured LDPC code defined by parity check H. As we can see, the size of parity check matrix H is 3m×5m and m is the expand factor. So the size of base matrix
[image: image98.wmf]b

H

of the LDPC code is 3×5, and
[image: image99.wmf]5

,

3

=

=

b

b

n

m

。

[image: image174.png]senly)

Y
Ret
ra TSV - Le2
Rex eoSM - Les

Figure 2 overall hardware structure of the decoder of structured LDPC codes

Figure 2 has given the overall hardware structure of the decoder of the structured LDPC code. From the picture, we can find that the overall hardware only depends on
[image: image100.wmf]b

H

 instead of
[image: image101.wmf]H

.There are
[image: image102.wmf]b

b

n

m

´

 memory block, and m soft bits can be saved in one block.

[image: image175.png]

Figure3 Check Node Function Unit (CNFU)

For the parity check matrix here, we can update any one row information by the formula in Log-BP(form2) . Let us update the m-th row information (the m-th check node), then we can get the formula as following:

[image: image103.wmf]()(1)(1)

''

'()\

'()\

()

(())(())

kkk

mnmnmn

nNMn

nNMn

fornNm

usignvv

--

Î

Î

Î

ìü

=--FF

íý

îþ

å

Õ

 Let
[image: image104.wmf]()

Nm

= {j1, j2, j3, j4, j5}, thus the m-th check node update can be shown as following:

[image: image105.wmf]()(1)(1)(1)(1)

,1',1',1

'{1,2,3,4,5}

'{1,2,3,4,5}

(()())(()())

kkkkk

mjmnmjmnmj

njjjjj

njjjjj

usignvsignvvv

Î

Î

=-´FF-F

å

Õ

g

[image: image106.wmf]()(1)(1)(1)(1)

,2',2',2

'{1,2,3,4,5}

'{1,2,3,4,5}

(()())(()())

kkkkk

mjmnmjmnmj

njjjjj

njjjjj

usignvsignvvv

Î

Î

=-´FF-F

å

Õ

g

[image: image107.wmf]()(1)(1)(1)(1)

,3',3',3

'{1,2,3,4,5}

'{1,2,3,4,5}

(()())(()())

kkkkk

mjmnmjmnmj

njjjjj

njjjjj

usignvsignvvv

Î

Î

=-´FF-F

å

Õ

g

[image: image108.wmf]()(1)(1)(1)(1)

,4',4',4

'{1,2,3,4,5}

'{1,2,3,4,5}

(()())(()())

kkkkk

mjmnmjmnmj

njjjjj

njjjjj

usignvsignvvv

Î

Î

=-´FF-F

å

Õ

g

[image: image109.wmf]()(1)(1)(1)(1)

,5',5',5

'{1,2,3,4,5}

'{1,2,3,4,5}

(()())(()())

kkkkk

mjmnmjmnmj

njjjjj

njjjjj

usignvsignvvv

Î

Î

=-´FF-F

å

Õ

g

One CNFU calculation unit can finish the m-th check node update in one clock cycle. If we input
[image: image110.wmf](1)

,1

k

mj

v

-

,
[image: image111.wmf](1)

,2

k

mj

v

-

,
[image: image112.wmf](1)

,3

k

mj

v

-

,
[image: image113.wmf](1)

,4

k

mj

v

-

 EMBED Equation.DSMT4 [image: image114.wmf](1)

,5

k

mj

v

-

into one CNFU in Figure 3 ,
[image: image115.wmf]()

,1

k

mj

u

,
[image: image116.wmf]()

,2

k

mj

u

,
[image: image117.wmf]()

,3

k

mj

u

,
[image: image118.wmf]()

,4

k

mj

u

,
[image: image119.wmf]()

,5

k

mj

u

 can be obtained.

For a normal LDPC decoder with the similar hardware structure here, assume that there are
[image: image120.wmf]m

l

elements, and then there are
[image: image121.wmf]21

m

l

×-

 LUT and
[image: image122.wmf]42

m

l

×-

 Add. (Here, the complexity of AND operation is the same as Add operation, so we take AND operation as Add operation). For all CNFUs, the total calculation complexity is:
[image: image123.wmf](21)22

mm

mm

llc

×-»×=×

åå

 LUT and
[image: image124.wmf](42)44

mm

mm

llc

×-»×=×

åå

 Add. If there are c non-zero elements in parity check matrix H, the total calculation complexity of CNFUs approximately includes 2c LUT and 4c add.

[image: image176.png]wr SM-2's}-Rel
[e Y=
L R ETE
LT N et
LUT el mes

Figure 4 Variable Node Function Units (VNFU)

For the parity check matrix here, we can update any one row information by the formula in Log-BP(form2) . Let us update the n-th column information (the m-th bit node), then we can get the formula as following:

[image: image125.wmf]()(0)()

'

'()\

0,...,1

kk

mnnmn

mMnm

fornN

vu

l

Î

=-

ìü

=+

íý

îþ

å

Thus the n-th bit node update can be shown as following, let
[image: image126.wmf](){1,2,3}

Mniii

=

:

[image: image127.wmf]()(0)()()

1,'1,

'{1,2,3}

()(0)()()

2,'2,

'{1,2,3}

()(0)()()

3,'3,

'{1,2,3}

kkk

innmnin

miii

kkk

innmnin

miii

kkk

innmnin

miii

vuu

vuu

vuu

l

l

l

Î

Î

Î

=+-

=+-

=+-

å

å

å

One VNFU calculation unit can finish the n-th column information in one clock cycle. If
[image: image128.wmf]()

1,

k

in

u

,
[image: image129.wmf]()

2,

k

in

u

,
[image: image130.wmf]()

3,

k

in

u

 are input into one CNFU in Figure 4 ,
[image: image131.wmf]()

1,

k

in

v

,
[image: image132.wmf]()

2,

k

in

v

,
[image: image133.wmf]()

3,

k

in

v

can be obtained.

For a normal LDPC decoder with the similar hardware structure here, assume that there are
[image: image134.wmf]n

l

elements in the n-th column, and then there are
[image: image135.wmf]2

n

l

×

 add operation. For all VNFUs, the total calculation complexity is:
[image: image136.wmf]222

nn

nn

llc

×=×=×

åå

 Add. If there are c non-zero elements in parity check matrix H, the total calculation complexity of VNFUs includes 2c add.

According to Figure 2, CNFUs(check node function units) perform check node update in the process of iterative decoding. VNFUs(variable node function units) perform variable node update.

CNFUs/VNFUs are the main calculation units of the decoder. Each CNFU can finish a row information update of H in one clock cycle. Each VNFU can finish a column information update of H in one clock cycles. The offset of cyclically shifted identity matrix only affects on the connection or initial address access between CNFUs/VNFUs and memory blocks. In general, the hardware structure in [6] can be applied to the structured LDPC codes based on cyclically shifted identity matrices, such as the LDPC code set of rate 1/3 suggested by us.

Total Memory for structured LDPC codes

As we can see, the number of memory blocks depends on the number of non-negative-one element in base matrix Hb ，and each memory block can save z (the expand factor) soft bits, and each soft bits can be represented by 6 bits. These memory blocks are used to save node-to-node information. Another memory block is needed to save the initial log-likelihood of codeword. Define N is the codeword length; c is the number of non-zero elements in parity check matrix H. Here the previous iterative extrinsic information and the current iterative extrinsic information will use the same memory block [2-5], however memory address conflicts should be considered and avoided [6], which maybe affects the throughput of LDPC decoder.

 In an extreme situation, if the decoding of the maximum codeword length has been considered, the needed total memory of structured LDPC is
[image: image137.wmf]max

6()

Nc

+

bits.
 In the worse situation, we can use Memory-Aware Decoder Architecture of normal BP[23].

Only one copy of the total bit-to-check message
[image: image138.wmf]()

k

n

l

is maintained in a buffer for each bit holding this total sum, instead of multiple copies pertaining to different check nodes. The architecture need to store
[image: image139.wmf]max

6(2)

Nc

×+

bits. Let’s assume that
[image: image140.wmf]max

3.75,5114

cNN

==

 , thus the needed total memory of structured LDPC 176,433bits. In general, the memory size of LDPC decoders is not a problem.
2.4 Low power dissipation and high throughput of LDPC codes

 In the IEEE article “Parallel Decoding Architectures for Low Density Parity Check Codes”, C.howland and A.Blanksby has proposed a full parallel structure for LDPC decoding that achieves high coding again together with extremely low power dissipation, and high throughput. The feasibility implementation of a 1024 bit, rate 1/2,soft decision parallel LDPC decoder.

 Actuallly the information of the LDPC decoder is shown as following:

 Hardware: a 0.16um.1.5V CMOS process with 5 level of metal.

 Chip area: 7.5mm×7 mm

 Connectivity: the utilization of 50% was limited by routing congestion.

 A maximum clock frequency: 64MHz

Throughput: 1Gbps

 The average total power dissipation: 220mW

 Code row weight: 6 or 7

The comparison on power dissipation between LDPC codes and 3GPP turbo codes.
	 Channel coding comparison
	LDPC
	3GPP Turbo

	Throughput
	1Mbps
	1Mbps

	Power dissipation
	220uw average

500uw worst
	170mw

	The maximum iteration number
	64
	3

	Block size(code size)
	1024
	256

	Hardware resource

(line width)

	1.5V CMOS

0.16um
	3.3V CMOS

0.6um

 VOCAL had been developing LDPC coding products since 2000 in the area of DSL and OFDM systems, offering from full software to full hardware implementation. According to their claim, by using VOCAL LDPC Codes in the downlink and Turbo Codes in the uplink, WLAN system designers can increase the battery life of mobile units by a factor of 4. This use of LDPC Codes and Turbo codes shift the majority of the power requirements to the transmitter and receiver of the base unit. The same technique can also be used in satellite and cellular system, increasing battery life for satellite and cellar handsets. Flarion also had been developing LDPC coding products in the area of their flash-OFDM system, claim that their LDPC codes have lower power dissipation than turbo codes.

In conclusion, the full parallel architecture of LDPC codes can achieve extremely low power dissipation and high throughput when compared to turbo and block turbo decoders.

3. Comparison of Structured LDPC codes and 3GPP turbo codes

3.1 Throughput analysis and comparison of LDPC codes and turbo codes

As we all know, the new coming LTE PHY layer needs very high throughput. Actually it is almost impossible for turbo codes to support such a high throughput due to their bit-by-bit decoding algorithm. However it is vital that the current LDPC design can easily satisfy the throughput requirement of the future system.

According to [12], after the startup of turbo decoding, the maximum number of clock cycles
for decoding is (NI+1)(K+L+1)+1. Here, the number of half–iterations of turbo decoder is given by NI, K is the information block size, and L is the sliding block length used in Map decoder. So for one iteration, turbo codes need 2*(K+L+1) clock cycles. According to [20], for a convolutional codes, the maximum number of clock cycles for decoding is K. Actually, for turbo codes, K information bits need K trellis stages for half-iteration, and turbo decoder begins to process the next stage only when the decoding of the current stage finishes, so at least K clock cycles are needed for one half-iteration. Because there are two convolutional codes as component codes of turbo codes. , at least 2*K clock cycles are needed for one iteration.
 Tong Zhang, Keshab K.Parhi[2][3][4] [5]have researched the hardware implementation of the structured LDPC codes based on circularly shifted identity matrices. Partly parallel decoding structure has been introduced in these articles. In the design, L (the expand factor) can be changed to make the information block size become variable. The number of clock cycles for one iteration is 2*L. In one iteration, variable node update and check node update both need L clock cycles. Based on the above results, Yanni Chen, Keshab K.Parhi [6] has made improvement in the decoder. Based on the properties of structured LDPC codes, the two stages of belief propagation decoding algorithm, namely, check node update and variable node update could be overlapped and thus the overall decoding latency is reduced. To avoid the memory access conflict, the maximum concurrency of the two stages is explored by a novel scheduling algorithm. Consequently, the decoding throughput could be increased by about twice assuming dual-port memory is available. Thus the number of clock cycles for one iteration can be reduced to L. Here, the L in this paragraph is the expand factor z in this article.

 [image: image141.png]s s sl e [ows i)
KA o

@
CNFUS|CNFUS | * 0@

W VNFUS|VNFUS| o o
Istiteration |

[and iteration |

Figure 5. The overlap of check node update and variable node update
 In TongZhang and Yanni Chen’s design, one CNFU is a check node update processing unit that can perform one row information update of parity check matrix in one clock cycle. One VNFU is a variable node update processing unit that can perform one column information update of parity check matrix in one clock cycle. The number of VNFUs/CNFUs reflects the hardware cost of LDPC decoder.

Let the size of one base matrix
[image: image142.wmf]b

H

 is
[image: image143.wmf]b

b

n

m

´

, z is the expand factor, there are
[image: image144.wmf]b

m

CNFUs and
[image: image145.wmf]b

n

VNFUs. According to [7], if the number of CNFUs/ VNFUs increases, the throughput can be improved. For example, if there are
[image: image146.wmf]b

m

´

2

 CNFUs and
[image: image147.wmf]b

n

´

2

VNFUs, and when check nodes (or variable nodes) are updated, two soft bits of one z soft bits can be processed in one clock cycle. So when overlapped decoding method is used, only z/2 clock cycles are needed.

In the extreme situation of full parallel decoding structure, there are
[image: image148.wmf]b

m

z

M

´

=

CNFUs and
[image: image149.wmf]b

n

z

N

´

=

VNFUs , one clock cycle is needed for one iteration. [13] has given a full parallel decoder of 1024 bit, rate 1/2 LDPC codes, which operates at a maximum clock frequency of 64 MHz giving a throughput of 1 Gbps.

The great advantage of structured LDPC codes (or quai-cyclic LDPC codes) is that designers can easily change the throughput of decoder by adjusting hardware cost, namely the number of CNFUs/VNFUs. Actually the possible clock cycles of structured LDPC codes for one iteration are from 1 to z.

Thus, clock cycles for one iteration of turbo codes and structured LDPC codes have been shown as follow:

	Time for one iteration
	LDPC codes
	Turbo codes

	Cycle clocks
	1~z
	
[image: image150.wmf]K

×

2

Here z is the expand factor of structured LDPC codes, K is the information block size.

 The throughput of LDPC codes can be compared with that of Turbo codes under some typical situation. Their code rates both equal to 1/3, and the maximum clock frequencies of two decoders both are 100MHz, the maximum numbers of iteration for turbo codes is 8, and the maximum numbers of iterations for LDPC codes is 50. Assume that there are
[image: image151.wmf]b

m

l

´

CNFU and
[image: image152.wmf]b

n

l

´

VNFU. NI is the number of iterations,
[image: image153.wmf]int

F

 is internal clock rate.

 The information data throughput of turbo decoders has been calculated as following:

[image: image154.wmf])

(

25

.

6

16

100

2

1

)

2

(

int

int

Mbps

NI

F

K

NI

K

F

F

dec

=

=

×

»

+

×

×

×

=

Here we assume that the I/O operation needs 1 clock cycles. If sliding window algorithm, interleave and de-interleave have been considered,
[image: image155.wmf]dec

F

=5.88/1.2 = 5.2(Mbps).
 The information data throughput of LDPC decoders has been calculated as following:

[image: image156.wmf])

(

16)

~

15.686

(

)

/

(

50

8

100

/

50

)

(

1

)

/

(

int

int

Mbps

l

z

l

l

z

l

l

m

n

F

l

z

NI

K

F

F

b

b

dec

×

=

+

×

×

=

+

×

-

×

=

+

×

×

=

 The minimum
[image: image157.wmf]dec

F

 is 16Mbps, the maximum
[image: image158.wmf]dec

F

 is 8*100*639/51=10Gbps.

From the analysis above, according to the requirement of 50Mbps in UL and 100Mbps in DL [19], we conclude that the throughput of 3GPP turbo codes cannot satisfy the throughput requirement of LTE; however LDPC codes can easily satisfy the throughput requirement of LTE. If l=4, there are 64 CNFUs and 96 VNFUs, information rate
[image: image159.wmf]dec

F

can arrive at about 64MHz, which can satisfy the throughput requirement of UL. If l=7, information rate
[image: image160.wmf]dec

F

can arrive at about 112MHz, which can satisfy the throughput requirement of DL. Actually, when 15 iterations or 30 iterations have been suggested, the performance of LDPC codes also are still good, hardware cost can be greatly reduced.

3.2 complexity analysis and comparison of LDPC codes and 3GPP turbo codes

 In the application of LDPC codes and turbo codes, table look-up is used to design decoders [2-7]. So we compare the complexity of two codes based on LUT. Turbo codes will use Log-Map decoding method; LDPC codes will use Log-BP decoding method.
 The LDPC codes are based on eye matrix or its cycle shift matrices. Assume that the number of non-zero elements in parity check matrix is c. The computation complexity of LDPCC is shown as following:

 Sum Operation: 7c

2c: check node update: sum-up all node information, one c are used for abs computation, the other c are used for sign computation

2c: when check node is updated, each variable node needs to exclude its own information

c: variable node update: sum all node information

c: when variable node is updated, each check node needs to exclude its own information

c: parity check to terminate the iteration process

 Look up table operation: 2c

 The function
[image: image161.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

+

=

-

-

|

|

|

|

1

1

ln

)

(

x

x

e

e

x

y

 can be implemented by table look-up (LUT). In [2-5],

(LUT) operations and each LUT normally has 32 5-bit entries. According to [14], piece wise function approximation is similar to table look-up, which can produce very good results. In [15], finite precision effect has been considered, and 4 bits and 6 bits are adequate for representing the received data and extrinsic information. A non-uniform quantization scheme has been suggested in this article.

 In our matrix design, we always have the average column weight that equals to 3.75 for parity check matrix. So for our design, we have an assumption that c=3.75N [17][18].
 Circle shift operation: 5c/z

2c/z for check node update, 2c/z for variable node update, c/z for parity check. This operation can be implemented by hardware connection or address access. Therefore we can neglect this part.

 According to [16], the computation complexity of turbo codes has been analyzed as following:
For each component code of 3GPP turbo codes, memory size v equals to 3.

Max operation: 2K×(5×2v-2) = 76K,

Add operation: 2K×(15×2v+9) = 258K

Look up table operation: 2K×(5×2v-2) = 76K

Multiple by
[image: image162.wmf]1

±

operation: 2K×8 = 16K

Here, K is the information block size. N is the codeword block size. For one iteration, the complexity comparison of LDPC and Turbo is shown as following:

	Rate 1/3 codes for one iteration
	LDPC
	Turbo

	Max operation
	
	25.33N

	Look up table operation
	7.5N
	25.33N

	Add operation
	26.25N
	86N

	Multiple by
[image: image163.wmf]1

±

	
	5.33N

Assume the maximum number of iterations for LDPC codes is 50; the maximum number of iterations for Turbo codes is 8. The new comparison chart is shown as following:

	Rate 1/3 codes for the whole decode
	LDPC
	Turbo

	Max operation
	
	202.64N

	Look up table operation
	375N
	202.64N

	Add operation
	1312N
	688N

	Multiple by
[image: image164.wmf]1

±

	
	42.67N

For rate 1/2 codes, comparison is shown as following

	Rate 1/2 codes for the whole decode
	LDPC
	Turbo

	Max operation
	
	304N

	Look up table operation
	375N
	304N

	Add operation
	1312N
	1032N

	Multiple by
[image: image165.wmf]1

±

	
	64N

For rate 3/4 codes, comparison is shown as following

	Rate 3/4 codes for the whole decode
	LDPC
	Turbo

	Max operation
	
	456N

	Look up table operation
	375N
	456N

	Add operation
	1312N
	1548N

	Multiple by
[image: image166.wmf]1

±

	
	96N

For rate 5/6 codes, comparison is shown as following

	Rate 5/6 codes for the whole decode
	LDPC
	Turbo

	Max operation
	
	506.667N

	Look up table operation
	375N
	505.667N

	Add operation
	1312N
	1720N

	Multiple by
[image: image167.wmf]1

±

	
	106N

When code rate is low (such as 1/3), the complexity of LDPC codes is higher than that of turbo codes, but no more than twice. When code rate is high (such as 5/6), the complexity of turbo codes is much higher than LDPC codes. So as the whole consideration, the complexity of two

codes is similar.

3.3 performance comparison of LDPC codes and turbo codes

Here, for code rate 1/3, the performance of LDPC codes given by us has been compared with that of 3GPP turbo codes. Simulation will be performed to reflect the performance difference between them. BSPK modulation on AWGN is the first simulation condition because error correct codes mainly are used to eliminate the noise, interference and channel estimation errors, which normally has the similar statistical characteristic of gauss. We must emphasis that AWGN channel is the first test condition for error correct codes, which can be judged by IEE/IEEE articles about most correct codes.

The maximum number of iterations for LDPC codes is 50, and the maximum number of iteration of turbo codes is 8 and 16. For LDPC, vector Log-BP algorithm is used, base matrix has been introduced in 2. For 3GPP Turbo codes, Log-MAP algorithm is used, perfect halting has been adopted. VisSim Comm 5.0[21] is a software for communication simulation, which has the 3GPP turbo codes library. The performance of 3GPP turbo codes can be obtained through the simulation of the software. The performance obtained by this software is agreeable with the performance from [22].

Due to the 6 bits tail bits, if K bits are sent to the encoder of 3GPP turbo codes, the codeword block of size N=3*K+12 can be produced. Normally, because codeword block size affects performance, the performance comparison is performed under the condition that their code block sizes are the same or similar. Several typical codeword block sizes have been selected for the comparison.

[image: image168.emf]1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

10

-5

10

-4

10

-3

10

-2

10

-1

Eb/No(dB)

BER

K=192 N=3*K=576 MaxIter=50 LDPC

K=188 N=3*K+12=576 MaxIter=8 Turbo

K=188 N=3*K+12=576 MaxIter=16 Turbo

 Figure 6 Performance comparison of turbo codes and LDPC codes when N = 576.

In Figure 6, we can find that the performance of turbo codes (8 iterations) is about 0.2dB better than the performance of LDPC codes when BER=10^-3. However, when K
[image: image169.wmf]³

192, actually the performance of LDPC codes is good enough. Due to the limitation of the throughput of turbo codes, they always adopt 8 iterations as the maximum iteration number. In the real application, 6 and 4 iterations also are used as the maximum iteration number. In DVB and IEEE802.16e, 50 iterations have been suggested as the maximum iteration number.

[image: image170.emf]0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

Eb/No(dB)

BER

K=528 N=3*K=1584 MaxIter=50 LDPC

K=524 N=3*K+12=1584 MaxIter=8 Turbo

K=524 N=3*K+12=1584 MaxIter=16 Turbo

Figure 7 Performance comparison of turbo codes and LDPC codes when K is about 530.

In Figure 7, we can find that the performance of turbo codes (16 iterations) is about 0.1dB better than the performance of LDPC codes. More suitable comparison must be based on 8 iterations for turbo codes. The performance of turbo codes is similar with that of LDPC codes.

[image: image171.png]« R S S N S SN N A
0 01 0z 03 04 05 05 07 08 08 1
EbMNo(eB)

Figure 8 Performance comparison of turbo codes and LDPC codes when K is about 1060.

In Figure 8, we can find that the performance of turbo codes (16 iterations) is the same as the performance of LDPC codes. More suitable comparison must be based on 8 iterations for turbo codes. Then the performance of LDPC codes (50 iterations) is about 0.1dB better than that of turbo codes (8 iterations).

[image: image172.emf]0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

Eb/No(dB)

BER

K=1248 N=3*K=3744 MaxIter=50 LDPC

K=1244 N=3*K+12=3744 MaxIter=8 Turbo

K=1244 N=3*K+12=3744 MaxIter=16 Turbo

 Figure 9 Performance comparison of turbo codes and LDPC codes when N = 3744

In Figure 9，we can find that the performance of turbo codes (8 iterations) is about 0.1dB worse than the performance of LDPC codes when N=3744.

Actually, when information block is larger than 1000, the performance of LDPC codes is always better than Turbo codes. More simulation will be performed in the future.

For rate 1/3 codes, when code size is small, such as K<500, the performance of 3GPP turbo codes is better than that of LDPC codes. When code size is large, such as K>1000, the performance of LDPC codes is better than that of turbo codes. In general, their performance is similar. By the way, better design can obviously improve the performance of LDPC code in high SNR region.

4. Conclusion
Through performance simulation and throughput analysis, comparing with 3GPP turbo codes, the merits and shortcomings of LDPC codes and turbo codes have been described in detail.

	
	LDPC
	3GPP Turbo

	Decoder

Throughput
	If only one decoder for base-band chip is utilized , it can fully satisfy throughput requirement of UL/DL PHY of LTE (flexible, high)
	If only one decoder for base-band chip is utilized, it can cannot satisfy throughput requirement of UL/DL PHY of LTE (low)

	Decoder

Complexity
	In general, the complexity of two codes is similar. When code rate is low, the complexity of turbo codes is lower; When code rate is high, the complexity of LDPC is lower.

	Decoder

Performance

	In general,the performance of two codes is similar. When code size is small, the performance of turbo codes is better; When code size is large, the performance of LDPC codes is better.

	Interleave/

Deiterleave
	Not needed
	Needed

	Extra tail bits

(12 bits)
	Not needed
	Needed

	Extra

CRC bits
	Not needed
	Needed

	Power dissipation
	Low
	High

Actually from the throughput requirement, if only one decoder is utilized for base-band chip , it is impossible for turbo codes to be used in such high throughput condition .However; LDPC codes can easily satisfy the throughput requirement of LTE due to the flexible parallel characteristic, and because of the perfect structure of LDPC codes, hardware cost can be easily adjusted according to the actual throughput requirement. From coding theory, we find that turbo codes are only a special kind of LDPC codes, so they have many common characteristics, which can be seen in the table above.

As we all know, LDPC codes are the new coding scheme, so now it is difficult that LDPC codes are directly applied into 3GPP. If enough time, common cooperation and effort are provided, LDPC codes with flexible code rate and code sizes can be found and used in the future mobile communication system, especially when code sizes are large. We are glad to cooperate with other companies in 3GPP with regard to the application of LDPC codes. Any technical question can be sent to xu.jun2@zte.com.cn.
Text Proposal

--------------------------------------- Start of Text Proposal --------------------------------------
7.1.1.3
Channel coding and physical channel mapping
7.1.1.3.1 Coding performance/complexity evaluation
Expandability of R99 turbo code to E-UTRA should be studied. Criteria for selecting a coding scheme are based on data rate capacity and other related requirements. Coding and decoding complexity should be reasonable low while being capable of the maximal data rate as required. Parallel processing capability may provide a coding structure with better feasibility. To maximize the L3 throughput, alternative FEC coding should take same level performance as turbo code.
9.1.1.3
Channel coding and physical channel mapping
9.1.1.3.1 Coding performance/complexity evaluation
When designing coding scheme, UE side simplicity should be considered. Asymmetric complexity of coding/decoding would simplify UE. Power consumption of coding scheme should also be studied.

--------------------------------------- End of Text Proposal --------------------------------------
Reference

1 Brian Classon, Yufei Blankenship, “LDPC coding for OFDMA PHY”, .http://grouper.ieee.org/groups/802/16/tge/index.html
2 T. Zhang and K. K. Parhi, "A 54 Mbps (3,6)-Regular FPGA LDPC Decoder", IEEE Workshop on Signal Processing Systems (SiPS) 2002, San Diego, CA, Oct. 2002
3 T. Zhang and K. K. Parhi, "VLSI Implementation-Oriented (3,k)-Regular Low-Density Parity-Check Codes", IEEE Workshop on Signal Processing Systems (SiPS) 2001, Antwerp, Belgium, Sept. 2001
4 T. Zhang and K. K. Parhi, "Joint (3,k)-Regular LDPC Code and Decoder/Encoder Design", IEEE Transactions on Signal Processing vol. 52, no. 4, pp. 1065-1079, April, 2004
5 T. Zhang and K. K. Parhi, "An FPGA Implementation of (3,6)-Regular Low-Density Parity-Check Code Decoder", EURASIP Journal on Applied Signal Processing, special issue on Rapid Prototyping of DSP Systems vol. 2003, no. 6, pp. 530-542, May 2003
6 Yanni Chen, and Keshab K. Parhi,,” Overlapped Message Passing for Quasi-Cyclic. Low-Density Parity Check Codes”,IEEE TRASACTIONS ON CIRCUITS AND SYSTEMS-I:REGULAR PAPERS,VOL 51.NO6 JUNE 2004

7 Marjan Karkooti, Joseph R. Cavallaro,”Semi-Parallel Reconfigurable Architectures for Real-Time LDPC Decoding”. International Conference on Information Technology: Coding and Computing (ITCC'04),579-585.

8 Tao Tian, Chris Jones, and John D.Villasenor, ”Rate-Compatible Low-Density Parity-Check Codes”. ISIT 2004, Chicago, USA, Jun27-July 2.2004.

9 Hossein Pishro-Nik, and Faramarz Fekri, “ Results on Punctured LDPC codes”, ITW 2004, san Antonio, Texas , October 24-29,2004.

10 M. R. Yazdani and A. H. Banihashemi, ``On Construction of Rate-Compatible Low-Density Parity-Check Codes," IEEE Comm. Letters, vol. 8, no. 3, pp. 159 - 161, March 2004.
11 M. R. Yazdani and A.H. Banihashemi, ``Irregular rate-compatible LDPC codes for capacity approaching hybrid ARQ schemes," accepted for presentation at IEEE Canadian Conf. Elec. Comp. Engg., Niagra Falls, Canada, May 2 - 5, 2004.
12 Small World Communications ,”PCD03V 3GPP /3GPP2 Turbo and Viterbi”, http://www.sworld.com.au/pub/pcd03v.pdf.

13 A.J.Blanksby and C.J.Howland,”A 690-mW 1Gb/s 1024-b, rate 1/2 low density parity check code decoder”, IEEE J.Solid-State Circuits, vol.37.pp.404-412,2002.

14 Xiao-Yu Hu, E. Eleftheriou, D. M. Arnold, and A. Dholakia, “Efficient Implementations of the Sum -Product Algorithm for Decoding LDPC Codes”, Proc. 2001 IEEE GlobeCom Conf., Nov. 2001.

15 T. Zhang, Z. Wang and K. K. Parhi, "On Finite Precision Implementation of Low Density Parity Check Codes Decoder", Proc. of IEEE ISCAS'2001, Sydney, Australia, May 2001
16 IEEE Internat. Conf. on Communications (ICC `95), Seattle, June 1995. “A Comparison of Optimal and Sub-Optimal MAP Decoding Algorithms Operating in the Log Domain”, Authors: P. Robertson, E. Villebrun and P. Hoeher.
17 Robert Xu, David Yuan, Li Zeng, Liujun Hu,” Rate=5/6 LDPC Coding for OFDMA PHY”,

 .http://grouper.ieee.org/groups/802/16/tge/index.html
18 Robert Xu, David Yuan, Li Zeng, Liujun Hu,”High Girth LDPC Coding for OFDMA PHY”,

 .http://grouper.ieee.org/groups/802/16/tge/index.html
19 3GPP, TR25.913, “Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN)”
20 Altera Corporations, “Viterbi Compiler, High-Speed Parallel Decoder”, User Guide for IP core,

http://www.altera.com/products/ip/dsp/ipm-index.jsp

21 http://www.vissim.com/products/comm/TurboCodes.htm
22 M.C. Valenti and J. Sun, “Turbo codes,”(performance of 3-G Turbo Codes) Chapter 12 of in Handbook of RF and Wireless Technologies, Edited by F. Dowla Editor, Newnes Press, 2004, pp. 375-399.
� EMBED PBrush ���

[image: image177.png][l L1
e I R e e v o e
i i i e i
(fnru] | o) | e | v | [
miieis - .
b o e e e

_1186217789.unknown

_1189255392.unknown

_1189865405.unknown

_1366118107.unknown

_1366119446.unknown

_1366128490.unknown

_1366130139.unknown

_1366120669.unknown

_1366119358.unknown

_1189865704.unknown

_1189870693.unknown

_1366117893.unknown

_1189871107.unknown

_1366117824.unknown

_1189870988.unknown

_1189865716.unknown

_1189869333.unknown

_1189865710.unknown

_1189865687.unknown

_1189865696.unknown

_1189865564.unknown

_1189322184.unknown

_1189322315.unknown

_1189854272.unknown

_1189864363.unknown

_1189865350.unknown

_1189861273.unknown

_1189864175.unknown

_1189861373.unknown

_1189861262.unknown

_1189861163.unknown

_1189322600.unknown

_1189322629.unknown

_1189322811.unknown

_1189322862.unknown

_1189326695.unknown

_1189322635.unknown

_1189322622.unknown

_1189322572.unknown

_1189322592.unknown

_1189322394.unknown

_1189322290.unknown

_1189322292.unknown

_1189322293.unknown

_1189322291.unknown

_1189322202.unknown

_1189322288.unknown

_1189322289.unknown

_1189322287.unknown

_1189322194.unknown

_1189317929.unknown

_1189318568.unknown

_1189321853.unknown

_1189320570.unknown

_1189318424.unknown

_1189255781.unknown

_1189256355.unknown

_1189255420.unknown

_1186248921.unknown

_1189253329.unknown

_1189253711.unknown

_1189253789.unknown

_1189253871.unknown

_1189254600.unknown

_1189253738.unknown

_1189253473.unknown

_1189253661.unknown

_1189253435.unknown

_1186318765.unknown

_1189253183.unknown

_1189253223.unknown

_1186380673.unknown

_1186381376.unknown

_1186388489.unknown

_1186334376.unknown

_1186334405.unknown

_1186249129.unknown

_1186248971.unknown

_1186236104.unknown

_1186244152.unknown

_1186244970.unknown

_1186245209.unknown

_1186245252.unknown

_1186245052.unknown

_1186244226.unknown

_1186243847.unknown

_1186243899.unknown

_1186243777.unknown

_1186243824.unknown

_1186243718.unknown

_1186235804.unknown

_1186235979.unknown

_1186235048.unknown

_1186235463.unknown

_1185695810.unknown

_1185704981.unknown

_1185776662.unknown

_1185782351.unknown

_1185783072.unknown

_1185904697.unknown

_1185904976.unknown

_1185905792.unknown

_1185784019.unknown

_1185904646.unknown

_1185784041.unknown

_1185784000.unknown

_1185782461.unknown

_1185782701.unknown

_1185782425.unknown

_1185782291.unknown

_1185782331.unknown

_1185782248.unknown

_1185776019.unknown

_1185776547.unknown

_1185776622.unknown

_1185776144.unknown

_1185775629.unknown

_1185775980.unknown

_1185775706.unknown

_1185705583.unknown

_1185709081.unknown

_1185705294.unknown

_1185696422.unknown

_1185696682.unknown

_1185704669.unknown

_1185696545.unknown

_1185696590.unknown

_1185696456.unknown

_1185695969.unknown

_1185541574.unknown

_1185695411.unknown

_1185695617.unknown

_1185695688.unknown

_1185695532.unknown

_1185694333.unknown

_1185695326.unknown

_1185545596.unknown

_1185694102.unknown

_1185541583.unknown

_1167563307.unknown

_1185540234.unknown

_1185541217.unknown

_1185536961.unknown

_1167764783

_1150805304.unknown

_1167563306.unknown

_1150808351.unknown

_1150805282.unknown

