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1. Introduction

In this contribution we present and compare several antenna verification algorithms for the closed-loop STTD with multiple antennas (CL-4-Tx-STTD) [1], using ASTTD weighting. One of these algorithms will be recommended for use in realistic evaluations of CL-4-Tx-STTD, as part of comparative performance evaluation of studied concepts in TR25.869.

2. Overview of ASTTD weighting algorithm 

The closed-loop STTD is characterised by the ASTTD weights w1 and w2 that are applied to the respective outputs of STTD encoder [1]. Each weighted STTD encoded signal is fed to a number of transmit antennas, with a pseudo-random phase shift between the antennas with the same weight. Assuming that there are K propagation paths from each transmit antenna, the ASTTD weights are defined as  
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where k is the complex amplitude of propagation path of STTD encoded signal weighted by w1, while k is the complex amplitude of propagation path of STTD encoded signal weighted by w2. The parameters k and k are, in the case with 4 transmit antennas, defined as
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(3)

with h1k, h2k, h3k and h4k being the complex amplitude coefficients of the propagation paths from 4 transmit antennas, having the same propagation delay. The parameters  and  are the pseudo-random rotation phases. The FBI bit generation (encoding) in the UE is shown in Fig.1a, while the corresponding FBI decoding in the Node B is shown in Fig.1b.  
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 (a) FBI encoding
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(b) FBI decoding

Fig 1.  Predictive Feedback Quantization method.

The FBI decoder consists of a delay-line buffer for storing a number of most recently received FBI bits, and the ratio regenerator. The ratio regenerator is a look-up table, shown in Fig.2 for the FBI decoding length L=1. Once the power ratio is regenerated as R=Rq, where Rq=10Ratio(dB)/10, the weights w1 and w2 are calculated according to the equation (1).

[image: image8.wmf] 

          

Mapping Table for 

L

 = 1                        

 

FBI(k)

 

Ratio (dB)

 

1

 

6

 

0

 

-

6

 


Fig.2.  Power ratio regenerator of length 1.

3. Antenna verification algorithms for ASTTD

The outcome of antenna verification algorithm is the estimate Rq(est) of the quantized power ratio Rq used in the Node B’s FBI decoder. 

It is possible to define the two basic structures of the antenna verification algorithm. In the first structure, the hypotheses are defined in terms of the current power ratio Rq, and the estimations of Rq are made independently from slot to slot. If the FBI decoding length is greater than 1, there are more than two hypotheses in each slot. 

In the second structure, the hypotheses are defined in terms of the current FBI bit. Thus in each slot there are two hypothesises to choose among. The hypothesis H0 corresponds to the FBI=0, while the hypothesis H1 corresponds to FBI=1. Once the current FBI bit is estimated, the current quantized power ratio is straightforwardly obtained from the current and a number of previous FBI bits, by using a look-up table. 

The two proposed structures become equivalent in case of FBI decoding of length 1. In the sequel we shall derive antenna verification algorithms for this case.

3.1. Maximum a posteriori probability (MAP) algorithm

As both weighting coefficients contain the information about the same FBI bit, i.e. the same quantized power ratio Rq, the estimation of Rq used in the NodeB can be improved by combining the channel estimates for both transmit antennas. The channel coefficients k and k can be estimated in the UE receiver from the 4 orthogonal common pilot signals, by estimating the  h1k, h2k ej, h3k  and h4k ej. The 4 orthogonal dedicated pilot signals from the respective transmit antennas allow estimation of weighted channel coefficients w1k  and w2k .

The channel coefficient of i-th path estimated in the UE from the CPICH from transmit antenna 1 is denoted by 
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where 2=SNRdpcch pilot/SNRcpich, while vi( and vi( are independent and complex Gaussian distributed random variables with zero mean and variances (i2 and (2i+K  respectively. 
We shall use the maximum a posteriori probability (MAP) decision criterion to estimate the quantized power ratio (or FBI bit) in each slot. The posterior probability 
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 is the probability that the hypothesis Hm is true when the received signal (i.e. the observation vector) value is r. It can be expressed as
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where 
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 is the conditional probability density function (PDF) of the observed vector given Hm is true, 
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We shall choose the hypothesis H0 if 
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The observation vector r is given by

r=[
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Thus, we should choose hypothesis H0, i.e. Rq(est) =R0=4 if the following inequality is satisfied
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The a priori probabilities of both hypothesises in each slot can be determined on the basis of the previously issued FBI bit from the UE (taking also into account the FBI delay from the UE to the NodeB). If it is the FBI=0 that has been previously issued by the UE and used by the NodeB in the current slot after the delay known to the UE, then the a priori probability of the hypotheses H0 is P(H0)=1-pfbe, while P(H1)= pfbe, where pfbe is the feedback error rate. Typically the feedback error rate is assumed to be 4%, so an upper bound (e.g. of 10%) can be used. If there is no exact knowledge of the feedback delay, then the a priori probabilities of both hypothesises have to be assumed equal.

3.2. Moment-based algorithms

From (1) and (4), if the noise terms are neglected, it follows that the power ratio R can be estimated in the UE by using
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The sums in the above expression can be regarded as the second moments of random variables, so the above expression can be regarded as the method of moments estimator [2]. 

As the number of possible values of R2 is limited to 2, the above second-moment based estimator can be transformed into the detector with just 2 hypotheses: R2 >1 or R2 <1. Thus, the corresponding detector in the UE of the quantized power ratio Rq used in the Node B’s FBI decoder of length 1 is given by 

            

Rq(est) =
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Note that if noise is added to the estimated values of the channel coefficients 
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, then the estimator (9) is biased. This can be seen if we for example consider the K=1 case and write

R2=
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where vp,vd,zp and zd are noise terms, and then evaluate the expectation E{R2} which will differ from the true power ratio.

However, due to its simple implementation, it is interesting to compare the performance of this detector with the MAP detector. Furthermore, if the noise/interference is not Gaussian, as it might be the case on the UTRAN downlink multipath channel, the performance of moment-based algorithm might be better, since it makes no prior assumptions on the noise probability density function.

For the method of moments based estimator it is desirable to use the lowest possible order of moments, because the variance of the estimator generally increases with order. In that sense one might expect the first moment based estimator of the power ratio R, given as
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might perform better. However, it should be kept in mind that the observed random variables are complex, with random and independent phases, so the first moment can have very small magnitude, even if it corresponds to the strong propagation channel. 

This estimator is not possible to directly convert into a detector with hypotheses R >1 or R <1. The nominator and denominator in (11) are complex numbers, so to make a detector it is necessary to use the magnitudes of the first moments, i.e.

            


Rq(est) =
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As the magnitudes of sums in (12) are independent of the actual value of R, it is expected that the detector (12) will not perform well.

4. Comparison of algorithms by Monte-Carlo simulations
To compare the proposed antenna verification algorithms in a more realistic environment, the OCNS model [3] of multi-user transmission is simulated in the transmitter. Table 1 shows the setup for the simulations. The channel information for the antenna verification block is obtained as a simple average over the pilot bits, both on common pilot channel and dedicated pilot channel.

The comparison between the three algorithms is shown in Fig.3. It can be seen that the MAP algorithm has much better performance than any moment based algorithms, while the performance of the first order moment algorithm is the worst, as expected. 

It is interesting to note that although the MAP algorithm performance increases when the geometry factor increases from -3dB to 0dB (as expected), when the geometry factor increases from 0dB to 6dB the performances deteriorates, instead of continuing improving as in the cases of other two methods! 

The explanation lies in the AWGN assumption used in the derivation of MAP algorithm. On the multipath channel this assumption is satisfied only for the low values of geometry factor. This can be seen by considering the definition of the geometry factor, given as the ratio of the received power from the serving cell to the sum of AWGN and the received power from surrounding cells (also modelled as AWGN). For high values of geometry factor the received power from the serving cell is much higher than the sum of the received power from the other cells and the AWGN, so the non-Gaussian multi-user interference  (OCNS model) caused by the multipath propagation has a dominant effect.

Fig 4 illustrates the performances of the two versions of the MAP algorithm, depending on how the a priori probabilities of the hypotheses are set: in one case both the feedback delay and feedback error rate are assumed known  (MAP1), in the other they are unknown (MAP2). It can be seen that although the MAP2 has a bit worse performances at lower SNRs, at higher SNRs it will outperform MAP1. This behaviour is even more pronounced at higher geometry factor values (not shown here). The explanation for this behaviour might be the same as outlined above: the non-Gaussian multi-user interference  (OCNS model) caused by the multipath propagation.

[image: image55.png]Detection Error Rate

0.5+

0.01—

Comparison between Antenna Verification Algorithms, 20kmph, Vechicular A

Geometry factor

-12

2nd moment
method

“MAP-method

14

13
DPCH Ec/No (dB)

-15




Fig.3.  Comparison of antenna verification algorithms. 
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Fig.4.  Comparison between two versions of the MAP Algorithm.

Conclusions

In this contribution, the three different antenna verification algorithms for the ASTTD with multiple antennas are defined and evaluated. Numerical results show that the MAP algorithm, given by (8), has the best performance, thus it is recommended for use in the realistic evaluations of CL-4-Tx-STTD, as part of comparative performance evaluation of studied concepts in TR25.869.
5. Appendix I– Simulation Parameters

Table 1.  Parameters for Simulation

	Parameter
	Value
	Unit

	NodeB 
	Information bit rate
	12.2
	kbps

	
	Oversamples
	4
	

	
	Slot Format 
	Format 11 specified in TS25.211
	

	
	CPICH Power
	10% of Ior
	

	
	Multi-user Signal Model
	OCNS Model referring to TS25.101
	

	
	Geometry (Ior/Ioc)
	6/3/0/-3
	dB

	Mobile Channel
	Veh. A


	Power

Delay

Profile
	Path powers: [0 –1 –9 –10 –15 –20]
	dB

	
	
	
	Path delays: [0 0.31 0.71 1.09 1.73 2.51]
	s

	
	
	Carrier Frequency
	2G
	Hz

	
	
	Velocity
	20,40,60,80,100,120
	km/h

	UE
	Number of RAKE Fingers
	6
	

	
	Channel Estimator
	Simple Average over CPICH and Dedicated Pilot Channel respectively
	

	
	Feedback Delay
	1 
	Slot

	
	Antenna Verification
	Proposed 3 algorithms with 2 different assumptions
	

	
	Feedback Quantization
	Predictive Quantization with length L=1
	

	
	Feedback Bit Error Rate
	4%
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