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1 Introduction

This contribution is related to 2 documents on the OFDM/IOTA modulation presented at last meeting [1]

 REF _Ref30826924 \r \h 
[2]. Here we present a complete technical description of the OFDM/IOTA modulation.

2 Description of OFDM/OQAM

OFDM/OffsetQAM modulation is an alternative to classical OFDM modulation. Contrary to it, OFDM/OQAM modulation does not require a guard interval (also called cyclic prefix).

For this purpose, the prototype function modulating each sub-carrier must be very well localized in the time domain, to limit the inter-symbol interference. Moreover, it can be chosen very well localized in the frequency domain, to limit the inter-carrier interferences (due to Doppler effects, phase noise…). This function must also guarantee orthogonality between sub-carriers. Functions having these characteristics exist, but the optimally localized ones only guarantee orthogonality on real values. The corresponding multi-carrier modulation is an OFDM/OQAM.

Among these functions, the localization is optimal with the IOTA (Isotropic Orthogonal Transform Algorithm) function. The OFDM/OQAM transmitted signal is expressed:
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where am,n denotes the real information value (Offset QAM) sent on the mth sub-carrier at the nth symbol, M is the number of sub-carriers, 0 is the inter-carrier spacing, 0 is the OFDM/OQAM symbol duration, and g is the prototype function. The symbol duration 0 = Tu/2 where Tu represents the classical OFDM useful symbol duration and the inter-carrier spacing 0 and is equivalent to the f in classical OFDM.  

Orthogonality between shifted versions (in time and frequency) of prototype function is guaranteed if:
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Equation (2) is verified if g is even and if 
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 is the ambiguity function of g. This is verified by the IOTA function [2]. It is important to notice that the density of the time-frequency frame related to OFDM/OQAM equals 2, i.e. 00 = ½ (Cf. Figure 2). In other words, this modulation has the same spectral efficiency as classical OFDM without guard interval.

On Figure 1 we present the signal Generation Chain of an OFDM/OQAM signal.
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Figure 1: OFDM/OQAM Signal Generation Chain

The modulator generates N real valued symbols (which correspond to real and imaginary parts of QAM symbols) each 0 (where 0 = Tu / 2). The symbols are then dephased: they are multiplied by im+n before the IFFT as it is noted in (1).

The main difference between OFDM/OQAM and classical OFDM signal generation lays in the filtering by the prototype function g(t) after the IFFT.

Thanks to the Inverse Fourier Transform, the prototype function g(t) is implemented in his polyphase form, which reduces strongly the complexity of the filtering. Moreover the density 2 induces some more simplifications in the polyphase implementation (see section 4 for more details).
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Figure 2: OFDM/OQAM time and frequency lattices (compared to OFDM w/o guard interval)

3 Specificities of the IOTA function

Among the prototype functions g(t), the localization is quasi-optimal with the IOTA function. OFDM/OQAM using the IOTA filter is noted OFDM/IOTA.

The IOTA function is generated by applying the Isotropic Orthogonal Transform Algorithm to the Gaussian function. The idea is to othogonalize the Gaussian function, which is optimally localized in the time-frequency space but is not orthogonal to its shifted (in time or frequency) versions. The temporal orthogonalization of the gaussian function Gauss(f) is defined as follows:
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Similarly, the frequency orthogonalization of a function x(t) is defined as:
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The IOTA function is then defined as 
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Thus, the IOTA function has the following properties:

· it is identical to its Fourier Transform, so the OFDM/IOTA signal is affected similarly by the time and frequency spreading due to propagation conditions,

· the time-frequency localization is quasi optimal as the IOTA function does not differ a lot from the Gaussian function.
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Figures 3 and 4 show various representations of the IOTA function. On Figure 4, the frequency response of the IOTA function is compared to the rectangular function used in classical OFDM.
Figure 3: IOTA waveform and its Fourier transform

[image: image11.wmf]         [image: image12.wmf]
Figure 4: IOTA and Rectangular Function Fourier transforms

The constraints on link layer parameters such as the FFT size are similar to classical OFDM.  The conditions presented in [3] sections in 4.1.6 and 4.1.7 still remains relevant in OFDM/OQAM.

This gives the following conditions to satisfy:  
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4 Practical realization of a IOTA modem

The IOTA function 
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 is defined on ] –( , ( [ but practically, it is truncated to the interval    [–LL.]. Usually, to have both good performances and reduced complexity L = 4. This choice leads to a prototype function 
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 of length 4(N where N is the FFT size. The filtering is performed using polyphase filters. That is, with this length of prototype filter, we would have N polyphase of length 8.

For the practical realization, we generate the IOTA function in the case 0 = 0 = 
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with 
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and
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To perform the filtering, we compute 
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, equally spaced. Here N is the FFT length and M=N/2. The ideal IOTA filter would be infinite but at it vanishes rapidly; it can be truncated to a reduced number of coefficients
. They are denoted 
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As the IOTA function is even we have 
[image: image29.wmf]k

ML

k

-

-

Á

=

Á

1

2

.
Each of the M polyphase components of the filter has 2L coefficients. We use a circulating buffer as defined in Table 1.
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Table 1 – The IOTA filter polyphase buffer

For example, with L = 2 and M = 4  (that is with an FFT size of N=2M = 8), we would have the buffer represented in Table 2, the 
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 are computed as in (7)
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Table 2 – The buffer with L = 2 and M = 4  

If we denote 
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 the outputs of the IFFT where m is the sub-carrier index in [0…2M–1], an n the time index, we will have after the first outputs of the IFFT:
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Table 3 – The buffer after 1 symbol
At each 0 the M outputs of the buffer corresponds to its first column, then the columns of the buffer are shifted to the left.
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Table 4 – The buffer after 2 symbols

The general formula for the transmitted coefficients si is :
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(8)

At the receiver side, the same filter is applied to the signal before the FFT operation, but the algorithm is slightly different, we give the general formula in the below:
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for i in [0…2M –1] and j ( N.

With this simple example, we clearly see that with an FFT size of N, the number of complex samples in one OFDM/ IOTA symbols equals 
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, which illustrates that the OFDM/IOTA symbol duration 0 is twice shorter than in classical OFDM.

5 Conclusion

In this contribution, we recall the principles of OFDM/OQAM modulation and focus on the specifities of OFDM/IOTA. In particular, we explain in details the way the IOTA filter can be generated and the way the OFDM/IOTA signal is simply implemented, using a circulating buffer. 
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� In our simulations L = 4 , and precis = 5 
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