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1 Introduction

The Quasi-Static Method (QSM) was adopted for evaluating the success or failure of data transmissions, i.e., link error prediction, in downlink system simulations for HSDPA. In [2], QSM and the AVI method have been proposed for link error prediction for EUDCH simulations. However, the uplink differs from the downlink in the strength of the pilot and hence the effect of a weaker pilot on channel estimation and, thereby, on link performance needs to be accounted for in the link error prediction. 

In this document, we propose two simple methods for link error prediction for EUDCH system simulation. We demonstrate through simulation results the suitability and accuracy of the proposed methods in predicting EUDCH performance. The results also indicate that ignoring the effect of weak pilots results in overly optimistic prediction. 

2 Outline of Method 1: The “Delta-Theta Method”

The first method is outlined in Figure 1 below.
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Figure 1. Outline of Method 1.

The notations used in the figure above and in the sequel are explained in detail in Table 1.

Table 1. Notations used.

	N
	Number of information bits.

	
[image: image2.wmf]n


	Total number of slots spanned by the transmission.
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, where 
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 is the total number of unique parity bits – excluding systematic bits – transmitted so far.
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	Number of modulation symbols transmitted in slot i.
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	Transmit energy per modulation symbol in slot i.

	P
	Total number of resolvable paths of the channel.
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	Complex channel gain on path p in slot i, which equals 
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 is the magnitude of the channel gain, and 
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 is the channel phase.
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	Interference plus thermal noise power on path p in slot i.
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	Received modulation symbol SNR on path p in slot i of the traffic channel, achievable when demodulation is done with perfect channel estimates. It equals 
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	“SNR of the channel estimator.” See Appendix A.

	
[image: image16.wmf],

ˆ

ip

G


	Receiver’s estimate of the channel gain 
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	Error in the channel phase estimate at the receiver 
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	Multiplicative term used to combine copies of a symbol, which equals 
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. The significance of this term is discussed in Section 2 and Appendix C.
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	Effective Eb/No for the transmission, after H-ARQ combining, when applicable.
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	Puncturing penalty for a code of effective rate 
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	Doppler penalty for the given channel model.
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	Adjustment term, which will be called the Non-Gaussian gain. This is to account for the fact that the noise introduced due to demodulation using imperfect channel estimates in non-Gaussian.
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	FER for the mother code, when Eb/No equals x, on an AWGN channel.
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	FER for a code of effective rate 
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 when the short term Eb/No equals x on the given channel.
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Note that the effective code rate, by definition, is no smaller than the mother code rate – denoted 
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– and, in particular, remains unchanged in the case of Chase combining.

We remark that the slots spanned by the transmission include H-ARQ retransmissions, if any, and, therefore, need not be contiguous. 

One of the steps involved in the method is to generate the channel phase estimate 
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 in slot i, or equivalently, the error in the channel phase estimate, 
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. This can be generated in system level simulations by drawing a random variable with the appropriate distribution. The distribution will, of course, depend on the channel estimator being used at the receiver. Yet another way of generating 
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 is outlined in Appendix A. 

The output of the link error prediction algorithm (see Figure 1) is the effective Eb/No, 
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, depending on the case of interest. The probability of error for the transmission or FER can then be obtained in two (approximately equivalent) ways. In the first method, the probability of error for the transmission or FER is simply (0.3)
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,  GOTOBUTTON ZEqnNum198746  \* MERGEFORMAT  i.e., the FER is obtained using the lookup curve 
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 \* MERGEFORMAT [6]. In the second, more accurate, method, short term FER curves for the given channel model and effective code rate are used to obtain the FER. The method of generating the short-term curves depends on whether the traffic channel is power controlled or not, and is outlined in Appendix B. 

The key step in Figure 1 is the calculation of the effective Eb/No or 
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These formulae depend on the variables 
[image: image43.wmf],

ˆ

,,,,,

ˆ

ˆ

ip

j

ipiipipiipip

HEGEe

q

bba

==

, whose significance we discuss below. Conceptually, 
[image: image44.wmf],

ip

H

 depends on the manner in which the receiver combines multiple copies
 of a given code symbol or modulation symbol. Note that 
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 is simply the receiver’s estimate of the channel gain 
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 takes on different values based on the manner in which the receiver combines the copies. For example: 

1. Pilot weighted combining (PWC): In this case 
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a. Perfect channel estimates:
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b. Imperfect channel phase estimate, but perfect estimate of the magnitude of the channel gain 
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c. All other cases: 
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2. Maximum ratio combining (MRC): In this case, 
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3. For all other cases, 
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 can be defined appropriately.

2.1 Effective Eb/No for BPSK Modulation

Recall that here we assume that the number of modulation symbols transmitted in each slot is the same, i.e., 
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2.2 Effective Eb/No for QPSK Modulation

Once again, we assume that the number of modulation symbols transmitted in each slot is the same, i.e., 
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We remark here that from the definition of 
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 in Table 1, it follows that (0.2)

 can be unified into one single formula as 
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 and 


[image: image65.wmf]2

,,,,

11

,

2

222

,,,,,,,

1111

(2)ˆcos()

.

ˆsin()ˆ

nP

iiipipipip

ip

Eeff

nPnP

iiipipipipipipip

ipip

ME

S

N

ME

baaq

baaqbas

==

====

æö

-D

ç÷

èø

S=

æöæö

D+

ç÷ç÷

èøèø

åå

åååå

.
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (0.3)

2.3 General Formula for Effective Eb/No

In this section, we assume that the modulation as well as the number of modulation symbols transmitted in each slot is allowed to vary. In this case, the effective Eb/No can be shown to equal (see first, the relation between (0.3)

)
(0.2)

 and (0.1)
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3 Outline of Method 2: The “Equivalent SNR Method”

Method 1 is precise in that it models the actual channel estimates and, thereby, the associated estimation error, to determine the impact on demodulation/decoding. In practice an underlying statistical model that maps the pilot quality to the estimation error will be needed to make use of the method. Here, we evaluate an alternative wherein the error prediction is based only on the received data and pilot SNR or, equivalently, the SNR of the channel estimates used for demodulation (see Appendix A). 

Figure 2 below outlines the procedure. As in Method 1, the key step for this method is the calculation of the effective Eb/No or 
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 applies to transmissions using QPSK. Simplifications of these formulae for specific cases of interest, such as MRC and PWC, are presented in Sections (0.5)

 applies to transmissions using BPSK modulation, while  GOTOBUTTON ZEqnNum890792  \* MERGEFORMAT , 3.1.2, and 3.1.3. The analysis that led to these formulae is outlined in Appendix C. 

The formulae for Method 2 also depend on the variables 
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, whose values, in turn, depend on the manner in which the receiver combines multiple copies of a given code symbol or modulation symbol in a manner analogous to that for Method 1 (see Section 2).
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Figure 2: Outline of Method 2.

3.1 Effective Eb/No for BPSK modulation

We assume that the number of modulation symbols transmitted in each slot is the same, i.e., 
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The formula above simplifies in the following cases of interest.

3.1.1 MRC, with Perfect Estimate of Interference Plus Thermal Noise 
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Observe that 
(0.6)

 depends only the magnitude of the channel gain  GOTOBUTTON ZEqnNum947523  \* MERGEFORMAT , the received data symbol SNR 
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3.1.2 Pilot Weighted Combining (PWC)

In this case, 
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 simplifies to
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3.1.3 Constant Interference Plus Thermal Noise

Since 
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 on each path in each slot, both MRC and PWC yield the same 
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3.2 Effective Eb/No for QPSK modulation

Once again, we assume that the number of modulation symbols transmitted in each slot is the same, i.e., 
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The simplifications of 3.1.1(0.8)

 for the cases considered in Sections  GOTOBUTTON ZEqnNum567653  \* MERGEFORMAT , 3.1.2, and 3.1.3, are straightforward are not dealt with here.

4 Performance of the Proposed Methods

In this section we present some link level simulation results for the performance of the proposed link error prediction methods. For comparison, we have also included the performance of the quasi-static approach (QSA).  Since the eventual goal of link error predictors is to predict throughputs, we are interested in the actual link level throughput and throughputs predicted by each scheme (the throughputs normalized by the peak throughput, for convenience). Additionally, we will be interested in the prediction error ratio (PER) for each link error prediction scheme, which is defined as simply the difference between the actual throughput and the predicted throughput, normalized by the actual throughput, and expressed as a percentage.

We will consider both incremental redundancy (IR) and Chase combining for H-ARQ combining. The assumptions that are common to all the simulations are given in Table 2.

Table 2. Simulation Assumptions

	Duration of a slot
	1.25ms

	Number of chips in each slot
	1536

	N (Number of information bits)
	2048

	Modulation
	QPSK

	Total number of coded bits in each transmission
	3072

	Duration of each transmission
	2.5ms (2 slots)

	Number of modulation symbols (resp. coded bits) in each slot
	768 (resp. 1536)

	Maximum number of H-ARQ retransmissions (excluding the first transmission)
	5

	(Transmit data Es/Nt)/(Transmit pilot Ec/Nt)
	192

	Power control
	ON, with a fixed pilot SNR target inner-loop (target is denoted by T dB)

	Power control delay
	2 slots 

	Number of receive antennas
	1

	Channel model
	Channel model C (Vehicular A) [3]: 2 path channel

	Channel estimation
	Based on averaging of the received pilot over 1 slot, so that 
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In all the results presented below, the non-Gaussian gain 
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 equals 0.2dB for method 1 and 0.5dB for method 2.

4.1 Experiment 1

In this experiment, the pilot Ec/Nt target for inner-loop power control and the traffic to pilot ratio are held constant for the duration of each simulation run. Performance of the predictors is studied for various values of the pilot Ec/Nt target, which is denoted by T. 

4.1.1 Mobile Speed = 3kmph

The actual throughput with Chase combining and IR, at a mobile speed of 3kmph, and the corresponding throughputs predicted by the different link error prediction methods are shown in Figure 3 and Figure 4. 
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Figure 3. Normalized actual and predicted throughputs with Chase combining.
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Figure 4. Normalized actual and predicted throughputs with IR.

4.1.2 Mobile Speed = 30kmph

The experiments in Section 4.1.1 are repeated here for a mobile speed of 30kmph.
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Figure 5. Normalized actual and predicted throughputs with Chase combining.
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Figure 6. Normalized actual and predicted throughputs with IR.

4.2 Experiment 2

In this experiment, the inner-loop pilot SNR target for the first transmission is set to –21dB. Subsequent retransmissions of the packet, if required, have an inner-loop pilot SNR target of T dB, which is allowed to be different from –21dB. This models the case where due to peak transmit power limitations, or a change in noise rise, the pilot SNR for retransmissions is significantly different from the time of the first transmission. The traffic to pilot ratio is, however, left unchanged. Once again, we are interested in the actual throughput and the throughputs predicted by the various link error prediction methods as a function of T. 
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Figure 7. Normalized actual and predicted throughputs with Chase combining.
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Figure 8. Normalized actual and predicted throughputs with IR.

4.3 Summary of Results

In each of the cases considered, it is evident that QSA overestimates the link throughput. This is because it does not account for the degradation in performance caused by poor channel estimates that result from weak pilots. Both methods presented in this document, by contrast, are consistently accurate in their prediction in all the cases considered. 

Of course, some of the values of T considered above are unsuitable for data transmission because they result in a large number of packet aborts. If we assume that a good operating point of T is one that requires an average of 1.5 to 2 H-ARQ transmissions for successful decoding, then for those values of T, QSA overestimates the throughput by up to 20%. By comparison, for the same operating points, both methods proposed in this document have prediction error ratios of less than 5%. Furthermore, for transmissions at very low data rates using low inner loop pilot SNR target, e.g., -24dB or lower, the error in prediction using QSA is even higher. Note that this situation can arise due to a mobile’s battery power constraints, or for mobiles at the edge of the cell. 

5 Conclusions

Effect of weak pilots is important to capture in EUDCH system simulations. This document outlines two simple methods for capturing the effect of weak pilots using quasi-analytic techniques that avoid the use of large tables and/or fudge factors. They are shown to be accurate over a wide range of cases, with prediction errors of less than 5%. Furthermore, it is shown that simply applying the QSA method as was done for HSDPA studies results in overly optimistic throughput results. Therefore, it is recommended that the methods be adopted for EUDCH system performance evaluation. It should be noted that either method may be used, but if a comparison between designs is being made, then the same link error prediction method must be used for evaluating all of them. 
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Appendix A : Channel Estimation

The receiver’s estimate 
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, determines the “quality” of the receiver’s estimate of the channel gain, which leads to the interpretation that 
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 is the SNR of the channel estimator. The value of 
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 depends on the pilot transmission power, the interference plus thermal noise on the pilot channel, and the channel estimator being used. For example, consider the case where the channel estimate 
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 is obtained from a simple average of the pilot symbols received on path p in slot i. Then, under the quasi-static assumption that the channel is invariant for the duration of the slot, it holds that
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where 
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 is the number of chips in the slot, 
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 is the interference plus thermal noise experienced on the pilot channel on path p in slot i, and 
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 is the transmit energy per pilot chip. 

It also follows from 
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 that  GOTOBUTTON ZEqnNum897947  \* MERGEFORMAT  can alternatively be generated in system simulations as
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where 
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 are the in-phase and quadrature-phase components of 
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 as usual.

Appendix B : Adjustment Terms and Lookup Curves

Let 
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 be the FER of a turbo code of effective rate R on an AWGN channel, when Eb/No equals x and the modulation is QPSK. The puncturing penalty for the code 
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 is simply the additional Eb/No required for the code to achieve an FER of 0.01, when compared with the mother code. Mathematically, 
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, where 
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 is the Eb/No required to achieve an FER of 1% for the mother code on the AWGN channel.

Generation of short term curves: The short term FER curve for a given channel model 
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 is obtained from link level simulations, assuming perfect channel estimation on each resolvable path of the channel. The goal of this is to characterize the probability of error for a packet transmission over the given channel model when the received Eb/No equals x. Of course, since the power of the received signal fluctuates over of the course of the transmission, 
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, in general. Since the variation in the received power depends on whether or not the traffic channel is power controlled, the method of generating these short term curves is different for the two cases. When the traffic channel is not power controlled, the power of the received signal fluctuates in accordance with the corresponding channel model. In this case, the transmit power is kept constant over the course of the transmission, so that 
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 is simply the FER when the Eb/No for the packet transmission equals x. By contrast, when the traffic channel is power controlled, the transmit power varies over the course of the transmission, so that the fluctuation in the power of the received signal is a result of the effect of channel variation and the transmit power variation due to power control. Note that since the channel estimation is assumed to be perfect, the degradation due to imperfect channel estimation is not captured in these short term curves.

Non-Gaussian Gain 
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g

: As we shall see in Appendix C, demodulation using imperfect channel estimates results in additive non-Gaussian noise. But, the lookup curves used to predict the FER for the packet transmission were generated for additive Gaussian noise channels. So, although the effective Eb/No calculated in Sections 2 and 3 are accurate, the FER predicted by these lookup curves may not match the observations. This adjustment term, which only depends on the channel model – albeit weakly, is therefore used to account for this discrepancy. Experimentally, we have found that FER predicted by the lookup curves at a given SNR is higher than the true FER, whence the adjustment term is a gain rather than a penalty. This is not altogether surprising because it is well known that for a given SNR, the information-theoretic capacity of an additive noise channel with an input power constraint is minimized when the additive noise is Gaussian. We do caution here that, in general, at a given SNR, the performance of specific codes, such as turbo codes, need not be better for an arbitrary additive non-Gaussian noise channel than for an AWGN channel. Finally, simulations (not included here) indicate that this gain is typically smaller than 1dB. More importantly, the gain is negligible when the channel estimates are good. 

Appendix C : Derivation of Formulae for Methods 1 and 2

In this section, we present the analysis that yields the formulae used to calculate 
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 in methods 1 and 2. We begin by a derivation of the formulae for method 1 in 
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. We consider, for convenience, a single path channel, which allows us to drop the subscript p in the following discussion. Consider k received copies (0.3)
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,  GOTOBUTTON ZEqnNum198746  \* MERGEFORMAT  of a particular symbol 
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  Suppose that the receiver combines the k copies of the received signal to obtain 
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 as follows: 
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where 
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 depends on the manner of combining the k received signals (see Section 2). Then, in the case where X is a QPSK symbol, the SNR of the combined signal can be easily shown to be
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while in the case where X is a BPSK symbol, the SNR of the combined signal can be shown to equal
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In order to understand the introduction of the adjustment term 
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 in Method 1 (see Figure 1), observe that in the case where X is a QPSK symbol, the in-phase component of the combined signal 
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where 
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 is Gaussian noise of variance 
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 is non-Gaussian. Also, it can be easily shown that when X is BPSK, no non-Gaussian noise terms are present. As a result, such an adjustment term should not be necessary in the case where BPSK modulation is used.

Turning next to the derivation of the formulae used to calculate 
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where 
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whence the SNR of the combined signal is simply
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in the case where X is a QPSK symbol and 
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when X is a BPSK symbol. Note that the last term in 
(0.18)

 is non-Gaussian, which explains the adjustment term  GOTOBUTTON ZEqnNum628297  \* MERGEFORMAT  in for Method 2 (see Figure 2). 







� A packet transmission, as referred to here, may consist of one or more H-ARQ retransmissions.

� The significance of the adjustment term � EMBED Equation.DSMT4  ���, which shall be referred to as the “Non-Gaussian gain,” is provided in � REF _Ref29499252 \r \h ��Appendix B�. 

� Note that these copies can result from the signals received on each resolvable path of the channel, at multiple receive antennas or different H-ARQ transmissions of a packet.

� A complex circularly symmetric Gaussian random variable Z, with independent and identically distributed real and imaginary components and mean 0 and variance � EMBED Equation.DSMT4  ���, will be denoted � EMBED Equation.DSMT4  ���.
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