| TSG-RAN Workir<br>Busan, Korea<br>May 22-25 | g Group 1 #20 TSGR1#20(01)0587                                             |   |
|---------------------------------------------|----------------------------------------------------------------------------|---|
| Agenda item:                                | AH24, HSDPA                                                                |   |
| Source:                                     | Lucent Technologies                                                        |   |
| Title:                                      | System Performance Comparison of Chase Combining and Adaptive IF for HSDPA | २ |
| Document for:                               | Discussion and Decision                                                    |   |

## 1 Introduction

System simulation results comparing the performance of Chase combining with the asynchronous, adaptive incremental redundancy ( $A^2IR$ ), originally proposed in [4], are presented.

### 2 Simulation Results

Results for both Chase combining and  $A^2IR$  were obtained using the data rates table shown in Table 1. Both schemes use variable TTI for transmission as shown in the table.

| TTI     |                         | Data rate [Kb/s]          |                         |                         |                         |  |  |  |
|---------|-------------------------|---------------------------|-------------------------|-------------------------|-------------------------|--|--|--|
| [slots] |                         | (Modulation, Coding Rate) |                         |                         |                         |  |  |  |
|         | 7680 bits code<br>block | 5120 bits code<br>block   | 3840 bits code<br>block | 2560 bits code<br>block | 1280 bits code<br>block |  |  |  |
| 15      | 768                     | 512                       | 384                     | 256                     | 128                     |  |  |  |
|         | (QPSK, 0.16)            | (QPSK, 0.106)             | (QPSK, 0.08)            | (QPSK, 0.053)           | (QPSK, 0.027)           |  |  |  |
| 5       | 2304                    | 1536                      | 1152                    | 768                     | 384                     |  |  |  |
|         | (QPSK, 0.48)            | (QPSK, 0.32)              | (QPSK, 0.24)            | (QPSK, 0.16)            | (QPSK, 0.08)            |  |  |  |
| 3       | 3840                    | 2560                      | 1920                    | 1280                    | 640                     |  |  |  |
|         | (QPSK, 0.8)             | (QPSK, 0.53)              | (QPSK, 0.4)             | (QPSK, 0.27)            | (QPSK, 0.13)            |  |  |  |
| 2       | 5760                    | 3840                      | 2880                    | 1920                    | 960                     |  |  |  |
|         | (8PSK, 0.8)             | (QPSK, 0.8)               | (8PSK, 0.4)             | (QPSK, 0.4)             | (QPSK, 0.2)             |  |  |  |
| 1       | 11520                   | 7680                      | 5760                    | 3840                    | 1920                    |  |  |  |
|         | (64QAM, 0.8)            | (16QAM, 0.8)              | (8PSK, 0.8)             | (QPSK, 0.8)             | (QPSK, 0.4)             |  |  |  |

#### Table 1. Data rates

The throughput metrics used viz. Over-The-Air (OTA) Throughput, Service Throughput and Packet Call Throughput are as defined in the TR (see [1]). In addition, the cumulative distribution function (cdf) of the UE packet call throughput is also provided as a measure of quality of service.

As used in [1], the following assumptions are made (other assumptions from TR are listed in the Appendix of this

document).

- 30% power used by overhead channels
- Single path Rayleigh fading with 3km/hr and 30 km/hr speeds.
- Fractional Recovered Power (FRP) is 0.98

The following additional assumptions are made in obtaining the simulation results:

- No limit on maximum number of retries.
- Fast cell selection is not considered.
- Results do not count padding into the throughput (i.e. only information bits count towards throughput).
- Channel quality measurement and ACK/NACK feedback are error-free.
- The channel quality feedback delay is assumed to be 6 slots and the ACK/NACK delay is assumed to be 3 slots.
- Maximum C/I scheduler is used for both schemes.

The Chase combining scheme has flexibility in selecting the MCS and TTI only for the first transmission of a frame. The selection is done using Table 1. The A<sup>2</sup>IR scheme can select MCS and TTI both on the first transmission as well as on retransmissions of a frame, again using Table 1. The adaptive scheme uses link quality feedback valid during previous transmissions of a frame to obtain an estimate of the aggregated energy for that frame at the receiver. That information is used in conjunction with the most recent link quality feedback to determine the MCS and TTI for retransmission. This adaptive scheme attempts to pick the MCS and TTI to fulfil the residual energy required for the frame to be successful with high probability. For example, for a given MCS, suppose we need  $E_b/N_o$  of 1 (= 0 dB) for successful decoding. If  $E_b/N_o$  from earlier transmissions is 9/10, then we need only 1/10 (= -10 dB) more. The MCS for retransmission can be selected to provide just the required energy (= -10 dB) under the current channel conditions.

#### 2.1 System performance at 3.0 Km/h

The average throughput metrics are shown for  $A^2IR$  and Chase combining in Table 2 and Table 3 respectively for the case of 3 km/hr. In addition to the gains seen in service throughput and average packet call throughput, it is important to consider the cdf of the packet call throughput seen by UEs. This is a measure of the Quality of Service provided to UEs by the system.

| Number of UEs | ΟΤΑ    | Service | Packet | Utilization |
|---------------|--------|---------|--------|-------------|
|               | [Kb/s] | [Kb/s]  | [Kb/s] |             |
| 12            | 1522.0 | 433.8   | 1081.8 | 0.288       |
| 37            | 1764.5 | 1321.9  | 938.1  | 0.735       |
| 46            | 1831.1 | 1556.2  | 871.8  | 0.851       |
| 50            | 1927.4 | 1765.5  | 831.9  | 0.917       |
| 56            | 2018.2 | 1908.8  | 813.4  | 0.947       |
| 65            | 2198.7 | 2145.9  | 799.4  | 0.976       |
| 75            | 2368.3 | 2356.5  | 756.0  | 0.995       |
| 80            | 2424.7 | 2420.0  | 731.4  | 0.998       |

Table 2. Throughput performance of A<sup>2</sup>IR

| 87  | 2526.5 | 2525.3 | 736.0 | 1.000 |
|-----|--------|--------|-------|-------|
| 100 | 2653.0 | 2653.0 | 723.9 | 1.000 |
| 110 | 2776.7 | 2776.7 | 716.5 | 1.000 |
| 120 | 2879.4 | 2879.4 | 708.5 | 1.000 |
| 130 | 2957.5 | 2957.5 | 702.9 | 1.000 |

| Number of UEs | ΟΤΑ    | Service | Packet | Utilization |  |  |  |
|---------------|--------|---------|--------|-------------|--|--|--|
|               | [Kb/s] | [Kb/s]  | [Kb/s] |             |  |  |  |
| 12            | 1303.0 | 440.9   | 977.9  | 0.346       |  |  |  |
| 37            | 1520.3 | 1288.3  | 786.2  | 0.850       |  |  |  |
| 56            | 1780.9 | 1756.4  | 693.4  | 0.987       |  |  |  |
| 75            | 2037.8 | 2036.9  | 669.2  | 1.000       |  |  |  |
| 100           | 2351.7 | 2351.7  | 660.4  | 1.000       |  |  |  |

Table 3. Throughput performance of Chase combining

In Figure 1-Figure 4 we try to match the user packet call throughput CDFs obtained from Chase combining and  $A^2IR$  as a measure of increased capacity from  $A^2IR$  for the same quality of service. In general, it can be observed that gains in number of UEs supported with  $A^2IR$  as compared to Chase combining (for roughly the same QoS) can range from 30-40%.

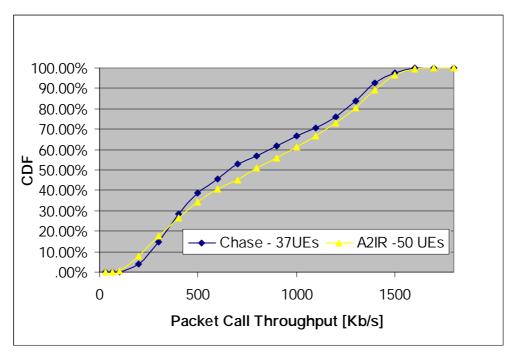



Figure 1. CDF of Packet Call Throughput at 3.0 Km/h

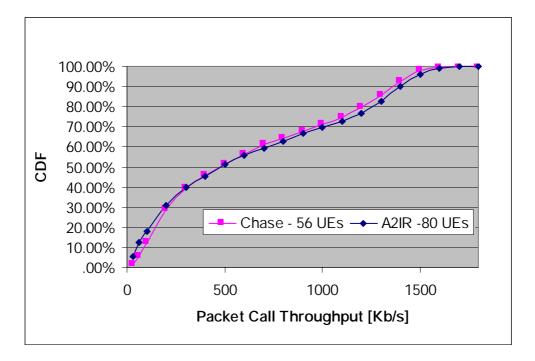



Figure 2. CDF of Packet Call Throughput at 3.0 Km/h

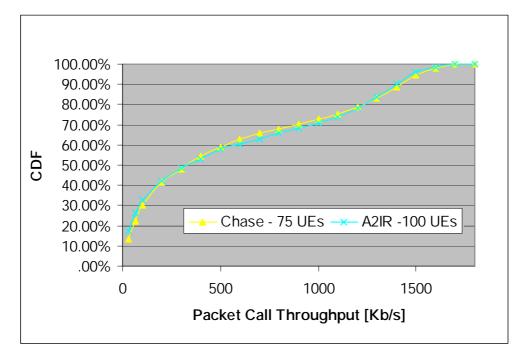



Figure 3. CDF of Packet Call Throughput at 3.0 Km/h

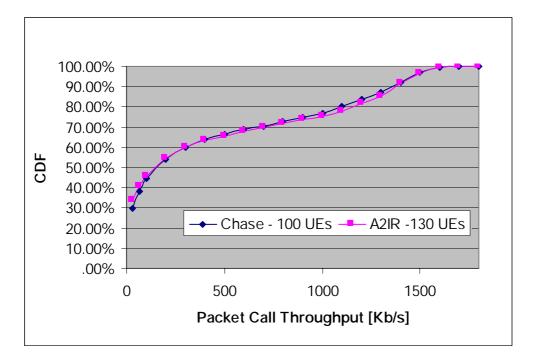



Figure 4. CDF of Packet Call Throughput at 3.0 Km/h

#### 2.2 System performance at 30.0 Km/h

The average throughput metrics are shown for  $A^2IR$  and Chase combining in Table 4 and Table 5 respectively for the case of 30 km/hr.

| Number of UEs | ΟΤΑ    | Service | Packet | Util  |
|---------------|--------|---------|--------|-------|
|               | [Kb/s] | [Kb/s]  | [Kb/s] |       |
| 12            | 1490.7 | 428.5   | 1078.3 | 0.291 |
| 37            | 1766.4 | 1311.2  | 935.7  | 0.737 |
| 46            | 1833.1 | 1574.6  | 862.5  | 0.860 |
| 56            | 2012.6 | 1893.5  | 833.0  | 0.941 |
| 65            | 2156.2 | 2109.9  | 785.3  | 0.979 |
| 75            | 2291.5 | 2283.9  | 752.2  | 0.997 |
| 87            | 2485.4 | 2483.1  | 740.6  | 0.999 |
| 100           | 2629.8 | 2629.8  | 714.0  | 1.000 |
| 110           | 2711.3 | 2711.3  | 707.7  | 1     |
| 120           | 2853.9 | 2853.9  | 730.9  | 1     |

Table 4. Throughput performance of A<sup>2</sup>IR

| Number of UEs | ΟΤΑ      | Service  | Packet   | Util     |
|---------------|----------|----------|----------|----------|
|               | [Kb/s]   | [Kb/s]   | [Kb/s]   |          |
| 12            | 1302.971 | 440.9024 | 977.889  | 0.345525 |
| 37            | 1520.297 | 1288.273 | 786.218  | 0.849984 |
| 56            | 1780.909 | 1756.409 | 693.3747 | 0.986756 |
| 75            | 2037.769 | 2036.939 | 669.1564 | 0.999599 |
| 100           | 2351.71  | 2351.71  | 660.407  | 1        |

Table 5. Throughput performance of Chase combining

Similar conclusions can be drawn for the case of 30km/hr speed as shown in Figure 5-Figure 8

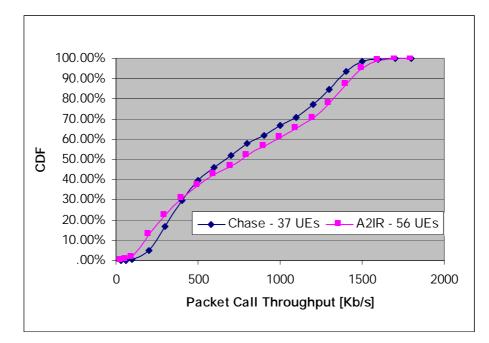



Figure 5. CDF of Packet Call Throughput at 30.0 Km/h

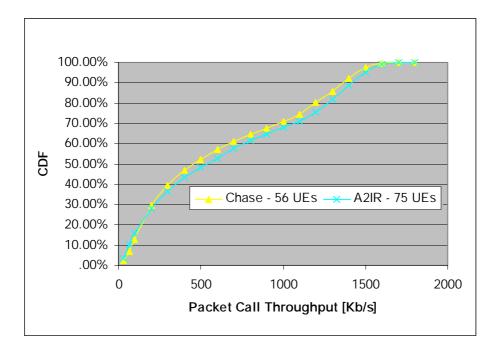



Figure 6. CDF of Packet Call Throughput at 30.0 Km/h

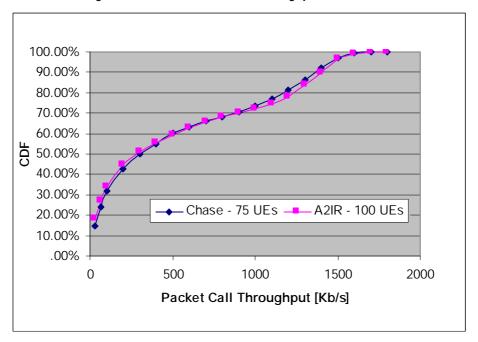



Figure 7. CDF of Packet Call Throughput at 30.0 Km/h

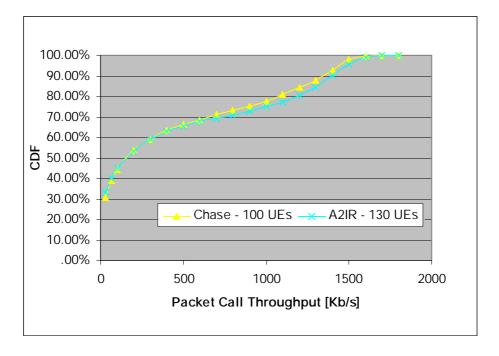



Figure 8. CDF of Packet Call Throughput at 30.0 Km/h

# 3 Signalling and Buffer Requirements

A total of 2 bits will be needed for New/Continue and redundancy version indication for adaptive IR as shown in Table 6. With the highest coding rate of 0.8 and mother code rate of 0.2 a maximum of 4 different versions of IR transmissions are possible. Note that the at least 1-bit New/Continue indication will even be needed for Chase combining in order to recover from ACK/NACK errors [5]. Therefore, IR needs only 1 bit of additional signalling compared to Chase combining.

| '00' | First Transmission and New Indication             |
|------|---------------------------------------------------|
| '01' | First Redundancy version and Continue Indication  |
| '10' | Second Redundancy version and Continue Indication |
| '11' | Third Redundancy version and Continue Indication  |

Table 6. Signalling for adaptive IR

An estimate of the buffering needed at the receiver (input of the Turbo decoder) for IR is given in Table 7. In general, the buffer sizes needed for IR are 2-3 times more compared to Chase combining as is also pointed out in [5].

| Code block<br>size | Number of coded symbols | Maximum buffer size for N-<br>channel SAW |                                       |                                       | fer size for N-<br>el SAW             |
|--------------------|-------------------------|-------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| [bits]             | (R <sub>c</sub> =1/5)   | [Kby                                      | tes]                                  | [Kby                                  | /tes]                                 |
|                    |                         | (N=                                       | =1)                                   | (N                                    | =4)                                   |
|                    |                         | 8-bits to<br>indicate a soft<br>value     | 4-bits to<br>indicate a soft<br>value | 8-bits to<br>indicate a soft<br>value | 4-bits to<br>indicate a soft<br>value |
| 7680               | 38400                   | 38.4                                      | 19.2                                  | 153.6                                 | 76.8                                  |
| 5120               | 25600                   | 25.6                                      | 12.8                                  | 102.4                                 | 51.2                                  |
| 3840               | 19200                   | 19.2                                      | 9.6                                   | 76.8                                  | 38.4                                  |
| 2560               | 12800                   | 12.8                                      | 6.4                                   | 51.2                                  | 25.6                                  |
| 1280               | 6400                    | 6.4                                       | 3.2                                   | 25.6                                  | 12.8                                  |

Table 7. Estimates of buffer requirements for adaptive IR

## 4 Summary of Performance Results

| Number of UEs supported for<br>the same quality of service |                   | Service Th         | nroughput         | A <sup>2</sup> IR Gain                 |
|------------------------------------------------------------|-------------------|--------------------|-------------------|----------------------------------------|
|                                                            | roughput CDF)     | [Kb/s]             |                   | (Number of UEs,<br>Service Throughput) |
| Chase<br>Combining                                         | A <sup>2</sup> IR | Chase<br>Combining | A <sup>2</sup> IR | [%]                                    |
| 37                                                         | 50                | 1288.3             | 1765.5            | (35, 37)                               |
| 56                                                         | 80                | 1756.4             | 2420.0            | (43, 38)                               |
| 75                                                         | 100               | 2036.9             | 2653.0            | (33, 30)                               |
| 100                                                        | 130               | 2351.7             | 2957.5            | (30, 26)                               |

Table 8. Performance Comparison of Chase Combining and A<sup>2</sup>IR at 3.0Km/h.

### 5 Conclusion and Recommendation

A system performance comparison is given for Chase combining and Asynchronous Adaptive Incremental Redundancy (A<sup>2</sup>IR). Both schemes use variable TTI. The A<sup>2</sup>IR can support 30-43% more UEs compared to Chase combining and provide 26-37% improvement in system throughput. The adaptive IR scheme needs larger buffer sizes at the receiver compared to Chase combining and one additional bit of signaling on the downlink. This increase in cost is marginal compared to the gains achieved. It is therefore recommended to allow Adaptive Incremental Redundancy operation for HSDPA and provide the necessary signalling support.

#### 6 References

- [1] "Physical Layer Aspects of UTRA High Speed Downlink Packet Access" TR25.848.
- [2] "Performance Comparison of Hybrid-ARQ Schemes", TSG-RAN #17(00) 1396, Motorola.
- [3] "Performance Comparison of Chase Combining and Incremental Redundancy", TSG-RAN #17(00) 1428, Ericsson.
- [4] "Asynchronous, Adaptive Incremental Redundancy (A<sup>2</sup>IR) for HSDPA", TSG-RAN #17(00) 1382, Lucent.
- [5] "HSDPA related signaling parameters in downlink, version 2", R2-011177, Nokia.

# 7 Annex: Simulation parameters

The system level simulation parameters are listed in Table 9 below.

| Parameter                                                             | Explanation/Assumption              | Comments                                   |
|-----------------------------------------------------------------------|-------------------------------------|--------------------------------------------|
| Cellular layout                                                       | Hexagonal grid, 3-sector sites      | Provide your cell layout picture           |
| Site to Site distance                                                 | 2800 m                              |                                            |
| Antenna pattern                                                       | As proposed in [2]                  | Only horizontal pattern specified          |
| Propagation model                                                     | $L = 128.1 + 37.6 \ Log_{10}(R)$    | R in kilometers                            |
| CPICH power                                                           | -10 dB                              |                                            |
| Other common channels                                                 | - 10 dB                             |                                            |
| Power allocated to HSDPA transmission, including associated signaling | Max. 70 % of total cell power       |                                            |
| Slow fading                                                           | As modeled in UMTS 30.03, B 1.4.1.4 |                                            |
| Std. deviation of slow fading                                         | 8 dB                                |                                            |
| Correlation between sectors                                           | 1.0                                 |                                            |
| Correlation between sites                                             | 0.5                                 |                                            |
| Correlation distance of slow fading                                   | 50 m                                |                                            |
| Carrier frequency                                                     | 2000 MHz                            |                                            |
| BS antenna gain                                                       | 14 dB                               |                                            |
| UE antenna gain                                                       | 0 dBi                               |                                            |
| UE noise figure                                                       | 9 dB                                |                                            |
| Max. # of retransmissions                                             | Specify the value used              | Retransmissions by fast HARQ               |
| Fast HARQ scheme                                                      | Chase combining or adaptive IR      |                                            |
| BS total Tx power                                                     | Up to 44 dBm                        |                                            |
| Active set size                                                       | 3                                   | Maximum size                               |
| Frame duration                                                        | 3.33 ms                             |                                            |
| Scheduling                                                            | Max C/I                             |                                            |
| Specify Fast Fading model                                             | Jakes spectrum                      | Generated e.g. by Jakes or Filter approach |

#### Table 9. Basic system level simulation assumptions.

The fundamentals of the data-traffic model are captured in Table 10 below.

| Table 10. Data-traffic model parameters |  |
|-----------------------------------------|--|
|-----------------------------------------|--|

| Process                   | Random Variable        | Parameters                                                          |
|---------------------------|------------------------|---------------------------------------------------------------------|
| Packet Calls Size         | Pareto with cutoff     | A=1.1, k=4.5 Kbytes, m=2 Mbytes, $\mu = 25$                         |
|                           |                        | Kbytes                                                              |
| Time Between Packet Calls | Geometric              | $\mu = 5$ seconds                                                   |
| Packet Size               | Segmented based on MTU | (e.g. 1500 octets)                                                  |
|                           | size                   |                                                                     |
| Packets per Packet Call   | Deterministic          | Based on Packet Call Size and Packet MTU                            |
| Packet Inter-arrival Time | Geometric              | $\mu$ = MTU size /peak link speed                                   |
| (open-loop)               |                        | (e.g. $[1500 \text{ octets } * 8] / 2 \text{ Mb/s} = 6 \text{ ms})$ |

| Packet Inter-arrival Time | Deterministic | TCP/IP Slow Start               |
|---------------------------|---------------|---------------------------------|
| (closed-loop)             |               | (Fixed Network Delay of 100 ms) |