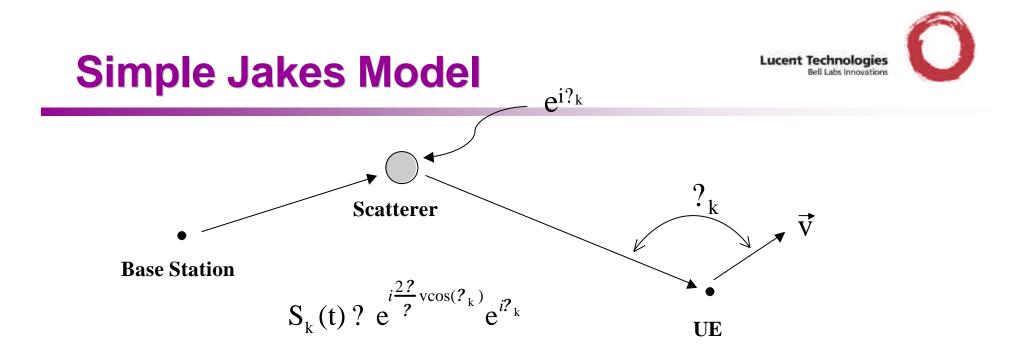
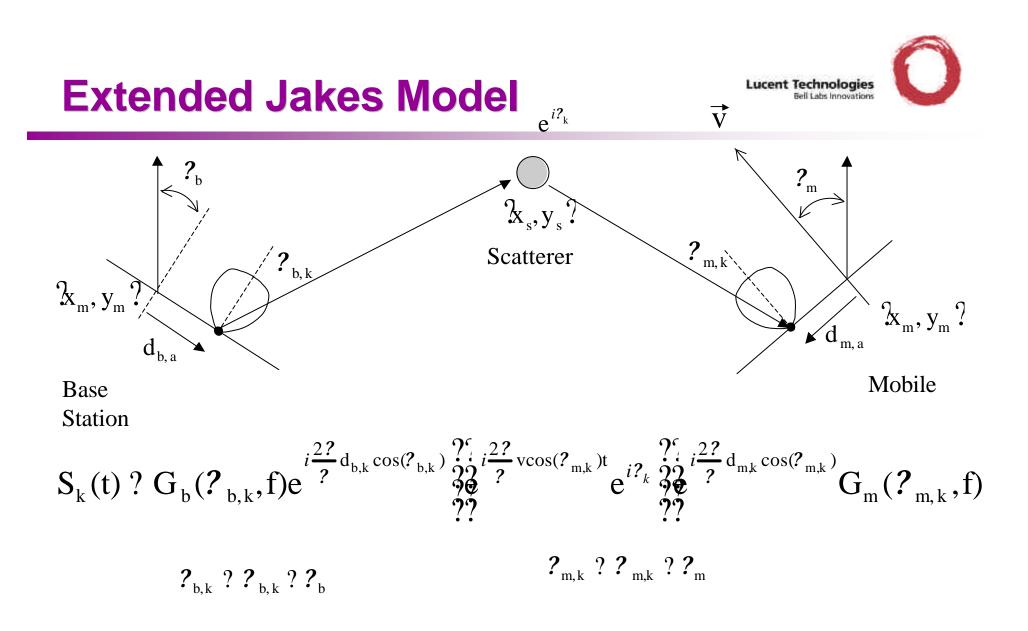
Proposal for a Spatial Channel Model in 3GPP RAN1/RAN4

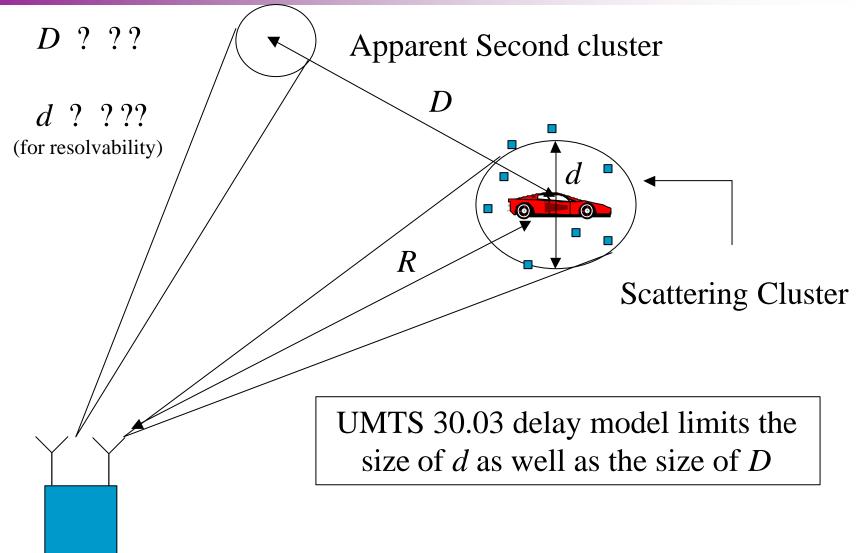

Contribution WG1#20(01)579 of Lucent Technologies to 3GPP-WG1 Busan, May 21st 2001



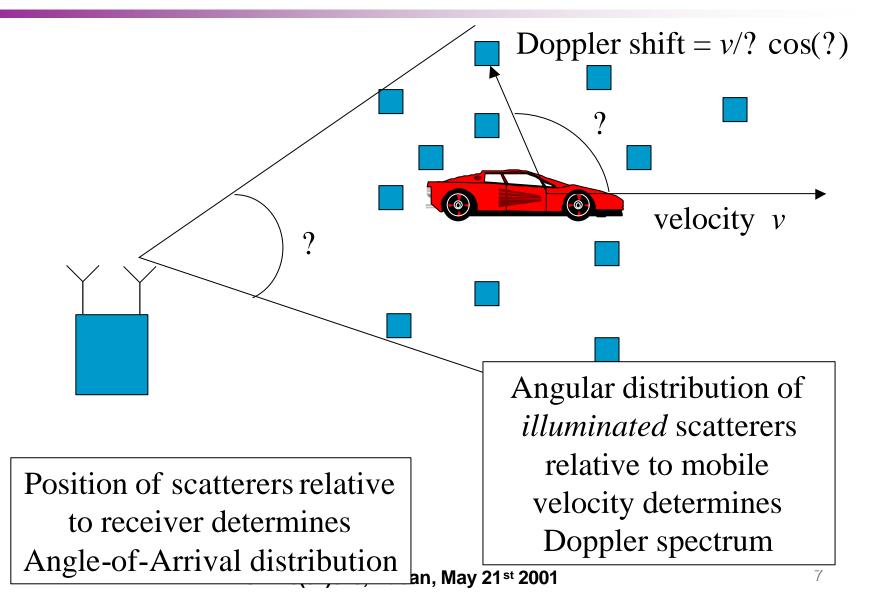
- Implement the channel as an extended Jakes' model
- Incorporate the recommendations of COST 259.
- Include spatial knowledge of the basestation, UE, and scatterer positions.
- Use a common set of scatterers for uplink and downlink.
- Include provisions for antenna patterns and mobile movement through the cell.

The contribution from each scatterer is summed to get the fading channel

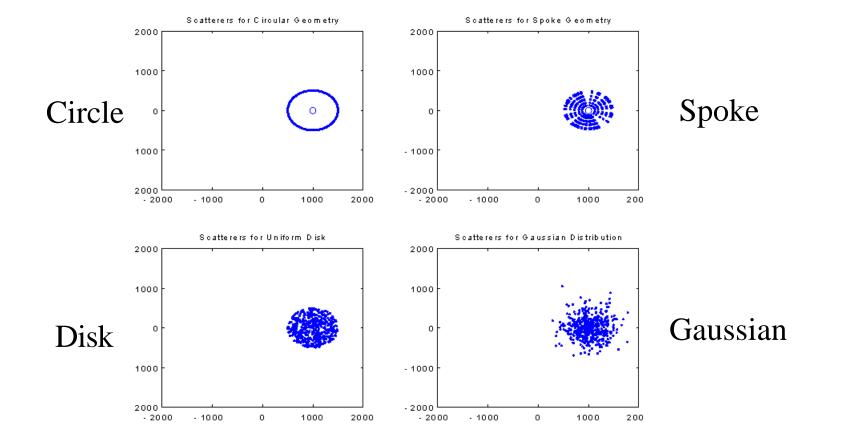
$$C(t)? \frac{E_o}{\sqrt{N}}? S_k(t)$$


Goals of Spatial Channel Model

- Self-consistent modeling of:
 - Temporal Fading / Doppler Spread
 - Frequency Fading / Delay Spread
 - Spatial Fading / Angle Spread
 - i.e., cannot have arbitrary statistics
- Collapses to known 2-D model (e.g. Jake's Model)
- Limited number of possible parameter assignments repeatability!
- Self-consistent in both uplink and downlink channels (i.e. reciprocity while allowing for upling/downlink frequency differences)
- Allows for time evolution (i.e., continuous from frame to frame)
 - useful in beam-steering performance evaluation


Relationship Between Scatterers and Parameters (1/2)

Relationship Between Scatterers and Parameters (2/2)

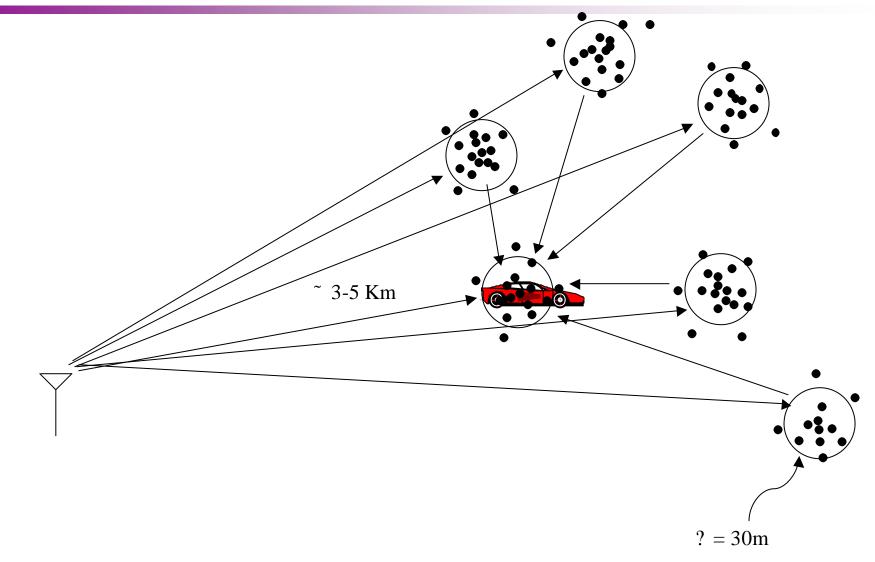

Options for Scatterer Distribution

- Options for Macro-cell models scatterers around mobile:
 - uniform on circle about mobile
 - uniform in disk about mobile
 - uniform on spokes emanating from the mobile
 - Bivariate Gaussian about mobile
- Options for Micro-cell models scatterers surround both mobile and base
 - uniform on circles about mobile and base
 - on ellipse with mobile and base at foci
- Each has its own AOA/TOA/Doppler statistics
- We have decided to ignore the TOA statistics within a cluster for macro-cell model assuming that each cluster is a single resolvable path (i.e., a UMTS 30.03 tap)
 - limits the cluster size
 - TOA statistics determine the number and size of the clusters

Macro-cell Models - Scatterer Distribution

- All macro cell distributions provide classic Doppler spectrum since they are uniform in angle about the mobile (assuming mobile uses omni-directional antenna and base station illuminates entire scattering radius)
- Gaussian distribution matches best with limited AOA measurement data available
- Thus, we choose Gaussian distribution of scatterers about mobile for macro/mid size cell model
- Elliptical model allows separate scattering ellipses to represent different taps in UMTS 30.03 model
- Other microcell models represent problematic relationships between AOA and TOA.
- Thus, we choose Elliptical distribution of scatterers for micro-cell model

UMTS 30.03 Channel Models


Pedestrian							
	Channel A		Channel B				
Тар	Relative Delay	Average	Relative	Average Power			
	(ns)	Power (dB)	Delay (ns)	(dB)			
1	0	0	0	0			
2	110	-9.7	200	-0.9			
3	190	-19.2	800	-4.9			
4	410	-22.8	1200	-8.0			
5			2300	-7.8			
6			3700	-23.9			

Vehicular

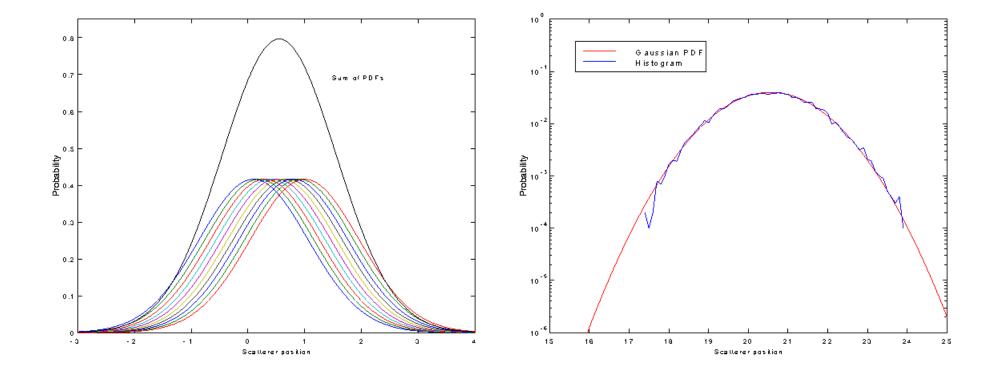
	Channel A		Channel B	
Тар	Relative Delay	Average	Relative Delay	Average Power
	(ns)	Power (dB)	(ns)	(dB)
1	0	0	0	-2.5
2	310	-1.0	300	0
3	710	-9.0	8900	-12.8
4	1090	-10.0	12900	-10.0
5	1730	-15.0	17100	-25.2
6	2510	-20.0	20000	-16.0

Example Scenario for Veh-A

UMTS 30.03 Spatial Channel Models (1/2)

- Vehicular A
 - 6 clusters of scatterers (5 due to reflectors)
 - each cluster bi-variate Gaussian sigma = 30m
 - cluster separations 90m 750m
 - mobile distance of 3-5km (macro cell)
 - moderate/low delay spread (rms = 370 ns)
 - low angle spread (rms = \sim 2 degrees)
- Vehicular B
 - 6 clusters of scatterers (5 due to reflectors)
 - each cluster bi-variate Gaussian sigma = 40m
 - cluster separations 90m 6000m
 - mobile distance of 3-5km (macro cell)
 - high delay spread (rms = 4000 ns)
 - low-moderate angle spread (rms = ~ 10 degrees)

UMTS 30.03 Spatial Channel Models (2/2)


- Pedestrian A (Macro)
 - 4 clusters of scatterers (3 due to reflectors)
 - each cluster bi-variate Gaussian sigma = 5m
 - cluster separations 35m 125m
 - mobile distance of 300-500m (micro/mid cell)
 - low delay spread (rms = 45 ns)
 - low angle spread (rms = ~ 2 degrees)
- Pedestrian B (Macro)
 - 6 clusters of scatterers (5 due to reflectors)
 - each cluster bi-variate Gaussian sigma = 10m
 - cluster separations 60m 1000m
 - distance of 300-500m (micro/mid cell)
 - moderate delay spread (rms = 750 ns)
 - moderate/high angle spread (rms = ~ 20 degrees)

- The preceding model varies with time but does not account for larger scale movement of the mobile
- We may wish to examine the ability to track mobile movement (e.g., for beamforming)
- To accomplish this we allow the scattering clusters to move at fixed intervals.
- We add/delete scatterers by creating "composite distributions" to create overall Gaussian pdf.
- The larger the time between changes the more the mobile moves and thus the more scatterers which will be added and deleted.
- Increasing the number of scatterers to be changed increases the phase discontinuities experienced.

Time Evolution - Method

Super-position of Gaussians to produce a Gaussian

- Channel measurements were taken to aid in the creation of an appropriate channel model
- Measurements taken in suburban (Whippany, NJ) and urban (Newark, NJ) settings. Whippany and Newark show moderate/ narrow angle spread environments.
- Details of the measurement campaign results can be shared within 3GPP if a discussion forum is established.
- Sharing of channel sounding results within 3GPP is the only way forward for a realistic parameterization of the channel model.

References

[1] R.M. Buehrer, S. Arunachalam, K. Wu and A. Tonello, "Spatial Channel Model and Measurements for IMT-2000 Systems", Proc. of Vehicular Technology Conference, Rhodes, Greece, May 2001.