|                               |                                                              |                                                                                                                                                                           |                                                         |           |         |                                        |                                                                                                     | CR-Form-v4           |
|-------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------|---------|----------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------|
|                               |                                                              | CHAN                                                                                                                                                                      | IGE R                                                   | EQU       | EST     | -                                      |                                                                                                     |                      |
| *                             | 25.211                                                       | CR 103                                                                                                                                                                    | ж                                                       | ev _      | æ       | Current versi                          | 3.6.C                                                                                               | ×                    |
| For <u>HELP</u> on u          | sing this for                                                | rm, see bottom                                                                                                                                                            | of this pag                                             | ge or loc | k at th | e pop-up text                          | over the ₩ s                                                                                        | ymbols.              |
| Proposed change a             | <i>affects:</i>                                              | (U)SIM                                                                                                                                                                    | ME/UE                                                   | X R       | adio Ad | ccess Network                          | X Core N                                                                                            | letwork              |
| Title: %                      | Correction                                                   | n of the represe                                                                                                                                                          | entation of                                             | slot form | nat     |                                        |                                                                                                     |                      |
| Source: #                     | Panasoni                                                     | С                                                                                                                                                                         |                                                         |           |         |                                        |                                                                                                     |                      |
| Work item code: 第             |                                                              |                                                                                                                                                                           |                                                         |           |         | Date: ૠ                                | 18, May, 20                                                                                         | 001                  |
| Category: ₩                   | Use one of F (co A (co release B (ac C (fu D (ec Detailed ex | the following cate<br>rrection)<br>presponds to a cello<br>ddition of feature)<br>nctional modificational<br>ditorial modification<br>planations of the<br>3GPP TR 21.900 | orrection in<br>),<br>tion of feat<br>on)<br>above cate | ure)      |         | 2<br>R96<br>R97<br>R98<br>R99<br>REL-4 | R99 the following re (GSM Phase 2 (Release 1996 (Release 1997 (Release 1999 (Release 4) (Release 5) | 2)<br>6)<br>7)<br>3) |
| Descen for change             | . 90 Tho                                                     | roforonoo oymk                                                                                                                                                            | al from T                                               | COE 010   | door    | not cover the                          | according CC                                                                                        | DCII C               |
| Reason for change             |                                                              | reference symb<br>CH and PDSC                                                                                                                                             |                                                         | 525.212   | does    | not cover the t                        | case of P-CC                                                                                        | PCH, 5-              |
| Summary of chang              | The N <sub>data</sub>                                        | number of data<br>2.                                                                                                                                                      | bits per d                                              | ownlink   | slot is | always repres                          | sented by N <sub>da</sub>                                                                           | <sub>ta1</sub> and   |
| Consequences if not approved: |                                                              | nsistency of the<br>CH, S-CCPCH                                                                                                                                           |                                                         |           | its per | downlink slot                          | happens in c                                                                                        | ase of P-            |
| Clauses affected:             | <b>90</b> 2 F                                                | 222 5227                                                                                                                                                                  |                                                         |           |         |                                        |                                                                                                     |                      |
| Ciauses arrecteu:             | <b>3</b> , 5.                                                | 3.3.3, 5.3.3.6,                                                                                                                                                           |                                                         |           |         |                                        |                                                                                                     |                      |
| Other specs<br>affected:      | T                                                            | other core speci<br>est specificatio<br>&M Specification                                                                                                                  | ns                                                      | *         |         |                                        |                                                                                                     |                      |
| Other comments:               | <b></b>                                                      |                                                                                                                                                                           |                                                         |           |         |                                        |                                                                                                     |                      |

#### How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <a href="http://www.3gpp.org/3G\_Specs/CRs.htm">http://www.3gpp.org/3G\_Specs/CRs.htm</a>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **%** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <a href="ftp://ftp.3gpp.org/specs/">ftp://ftp.3gpp.org/specs/</a> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

# 3 Symbols and aAbbreviations

## 3.1 Symbols

<u>N<sub>data1</sub></u> The number of data bits per downlink slot in Data1 field.

N<sub>data2</sub> The number of data bits per downlink slot in Data2 field. If the slot format does not contain a

Data2 field,  $N_{data2} = 0$ .

## 3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AI Acquisition Indicator

AICH Acquisition Indicator Channel

AP Access Preamble

AP-AICH Access Preamble Acquisition Indicator Channel

API Access Preamble Indicator
BCH Broadcast Channel
CA Channel Assignment

CAI Channel Assignment Indicator CCC CPCH Control Command

CCPCH Common Control Physical Channel CCTrCH Coded Composite Transport Channel

CD Collision Detection

CD/CA-ICH Collision Detection/Channel Assignment Indicator Channel

CDI Collision Detection Indicator
CPCH Common Packet Channel
CPICH Common Pilot Channel
CSICH CPCH Status Indicator Channel

DCH Dedicated Channel

DPCCH Dedicated Physical Control Channel
DPCH Dedicated Physical Channel
DPDCH Dedicated Physical Data Channel
DSCH Downlink Shared Channel

DSMA-CD Digital Sense Multiple Access - Collison Detection

DTX Discontinuous Transmission
FACH Forward Access Channel
FBI Feedback Information
FSW Frame Synchronization Word

ICH Indicator Channel
MUI Mobile User Identifier
PCH Paging Channel

P-CCPCH Primary Common Control Physical Channel

PCPCH Physical Common Packet Channel PDSCH Physical Downlink Shared Channel

PICH Page Indicator Channel

PRACH Physical Random Access Channel
PSC Primary Synchronisation Code
RACH Random Access Channel
RNC Radio Network Controller

S-CCPCH Secondary Common Control Physical Channel

SCH Synchronisation Channel SF Spreading Factor SFN System Frame Number SI Status Indicator

SSC Secondary Synchronisation Code STTD Space Time Transmit Diversity TFCI Transport Format Combination Indicator TSTD Time Switched Transmit Diversity

TPC Transmit Power Control UE User Equipment

UTRAN UMTS Terrestrial Radio Access Network

## 5.3.3.3 Primary Common Control Physical Channel (P-CCPCH)

The Primary CCPCH is a fixed rate (30 kbps, SF=256) downlink physical channels used to carry the BCH transport channel.

Figure 15 shows the frame structure of the Primary CCPCH. The frame structure differs from the downlink DPCH in that no TPC commands, no TFCI and no pilot bits are transmitted. The Primary CCPCH is not transmitted during the first 256 chips of each slot. Instead, Primary SCH and Secondary SCH are transmitted during this period (see subclause 5.3.3.4).

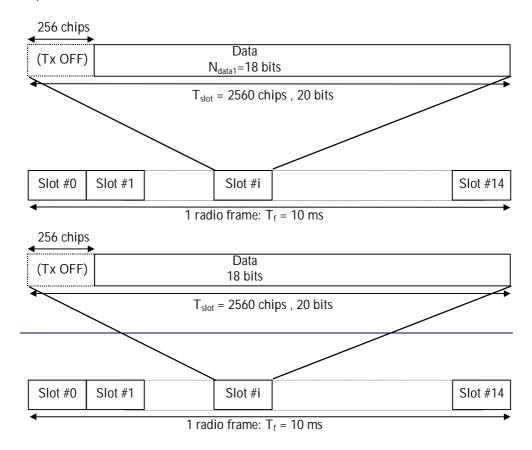



Figure 15: Frame structure for Primary Common Control Physical Channel

## 5.3.3.4 Secondary Common Control Physical Channel (S-CCPCH)

The Secondary CCPCH is used to carry the FACH and PCH. There are two types of Secondary CCPCH: those that include TFCI and those that do not include TFCI. It is the UTRAN that determines if a TFCI should be transmitted, hence making it mandatory for all UEs to support the use of TFCI. The set of possible rates for the Secondary CCPCH is the same as for the downlink DPCH, see subclause 5.3.2. The frame structure of the Secondary CCPCH is shown in figure 17.

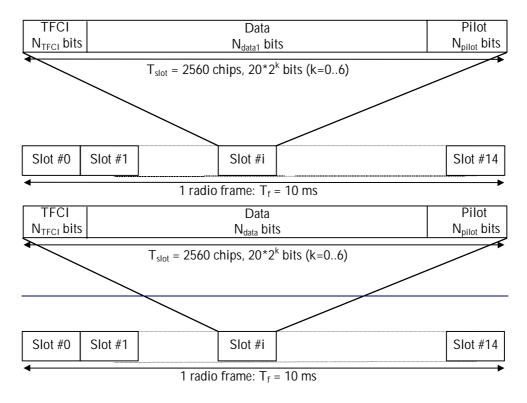



Figure 17: Frame structure for Secondary Common Control Physical Channel

The parameter k in figure 17 determines the total number of bits per downlink Secondary CCPCH slot. It is related to the spreading factor SF of the physical channel as  $SF = 256/2^k$ . The spreading factor range is from 256 down to 4.

The values for the number of bits per field are given in table 17. The channel bit and symbol rates given in table 17 are the rates immediately before spreading. The pilot patterns are given in table 18.

The FACH and PCH can be mapped to the same or to separate Secondary CCPCHs. If FACH and PCH are mapped to the same Secondary CCPCH, they can be mapped to the same frame. The main difference between a CCPCH and a downlink dedicated physical channel is that a CCPCH is not inner-loop power controlled. The main difference between the Primary and Secondary CCPCH is that the transport channel mapped to the Primary CCPCH (BCH) can only have a fixed predefined transport format combination, while the Secondary CCPCH support multiple transport format combinations using TFCI. Furthermore, a Primary CCPCH is transmitted over the entire cell while a Secondary CCPCH may be transmitted in a narrow lobe in the same way as a dedicated physical channel (only valid for a Secondary CCPCH carrying the FACH).

Table 17: Secondary CCPCH fields

| Slot Format<br>#i | Channel Bit<br>Rate (kbps) | Channel<br>Symbol Rate<br>(ksps) | SF  | Bits/ Frame | Bits/<br>Slot | N <sub>data1</sub> | $N_{pilot}$ | N <sub>TFCI</sub> |
|-------------------|----------------------------|----------------------------------|-----|-------------|---------------|--------------------|-------------|-------------------|
| 0                 | 30                         | 15                               | 256 | 300         | 20            | 20                 | 0           | 0                 |
| 1                 | 30                         | 15                               | 256 | 300         | 20            | 12                 | 8           | 0                 |
| 2                 | 30                         | 15                               | 256 | 300         | 20            | 18                 | 0           | 2                 |
| 3                 | 30                         | 15                               | 256 | 300         | 20            | 10                 | 8           | 2                 |
| 4                 | 60                         | 30                               | 128 | 600         | 40            | 40                 | 0           | 0                 |
| 5                 | 60                         | 30                               | 128 | 600         | 40            | 32                 | 8           | 0                 |
| 6                 | 60                         | 30                               | 128 | 600         | 40            | 38                 | 0           | 2                 |
| 7                 | 60                         | 30                               | 128 | 600         | 40            | 30                 | 8           | 2                 |
| 8                 | 120                        | 60                               | 64  | 1200        | 80            | 72                 | 0           | 8*                |
| 9                 | 120                        | 60                               | 64  | 1200        | 80            | 64                 | 8           | 8*                |
| 10                | 240                        | 120                              | 32  | 2400        | 160           | 152                | 0           | 8*                |
| 11                | 240                        | 120                              | 32  | 2400        | 160           | 144                | 8           | 8*                |
| 12                | 480                        | 240                              | 16  | 4800        | 320           | 312                | 0           | 8*                |
| 13                | 480                        | 240                              | 16  | 4800        | 320           | 296                | 16          | 8*                |
| 14                | 960                        | 480                              | 8   | 9600        | 640           | 632                | 0           | 8*                |
| 15                | 960                        | 480                              | 8   | 9600        | 640           | 616                | 16          | 8*                |
| 16                | 1920                       | 960                              | 4   | 19200       | 1280          | 1272               | 0           | 8*                |
| 17                | 1920                       | 960                              | 4   | 19200       | 1280          | 1256               | 16          | 8*                |

<sup>\*</sup> If TFCI bits are not used, then DTX shall be used in TFCI field.

The pilot symbol pattern is described in table 18. The shadowed part can be used as frame synchronization words. (The symbol pattern of pilot symbols other than the frame synchronization word shall be "11"). In table 18, the transmission order is from left to right. (Each two-bit pair represents an I/Q pair of QPSK modulation.)

Table 18: Pilot Symbol Pattern

|         | Npilot = 8 |    |    |    | Npilot = 16 |    |    |    |    |    |    |    |
|---------|------------|----|----|----|-------------|----|----|----|----|----|----|----|
| Symbol  | 0          | 1  | 2  | 3  | 0           | 1  | 2  | 3  | 4  | 5  | 6  | 7  |
| #       |            |    |    |    |             |    |    |    |    |    |    |    |
| Slot #0 | 11         | 11 | 11 | 10 | 11          | 11 | 11 | 10 | 11 | 11 | 11 | 10 |
| 1       | 11         | 00 | 11 | 10 | 11          | 00 | 11 | 10 | 11 | 11 | 11 | 00 |
| 2       | 11         | 01 | 11 | 01 | 11          | 01 | 11 | 01 | 11 | 10 | 11 | 00 |
| 2 3     | 11         | 00 | 11 | 00 | 11          | 00 | 11 | 00 | 11 | 01 | 11 | 10 |
| 4       | 11         | 10 | 11 | 01 | 11          | 10 | 11 | 01 | 11 | 11 | 11 | 11 |
| 5       | 11         | 11 | 11 | 10 | 11          | 11 | 11 | 10 | 11 | 01 | 11 | 01 |
| 6       | 11         | 11 | 11 | 00 | 11          | 11 | 11 | 00 | 11 | 10 | 11 | 11 |
| 7       | 11         | 10 | 11 | 00 | 11          | 10 | 11 | 00 | 11 | 10 | 11 | 00 |
| 8       | 11         | 01 | 11 | 10 | 11          | 01 | 11 | 10 | 11 | 00 | 11 | 11 |
| 9       | 11         | 11 | 11 | 11 | 11          | 11 | 11 | 11 | 11 | 00 | 11 | 11 |
| 10      | 11         | 01 | 11 | 01 | 11          | 01 | 11 | 01 | 11 | 11 | 11 | 10 |
| 11      | 11         | 10 | 11 | 11 | 11          | 10 | 11 | 11 | 11 | 00 | 11 | 10 |
| 12      | 11         | 10 | 11 | 00 | 11          | 10 | 11 | 00 | 11 | 01 | 11 | 01 |
| 13      | 11         | 00 | 11 | 11 | 11          | 00 | 11 | 11 | 11 | 00 | 11 | 00 |
| 14      | 11         | 00 | 11 | 11 | 11          | 00 | 11 | 11 | 11 | 10 | 11 | 01 |

For slot formats using TFCI, the TFCI value in each radio frame corresponds to a certain transport format combination of the FACHs and/or PCHs currently in use. This correspondence is (re-)negotiated at each FACH/PCH addition/removal. The mapping of the TFCI bits onto slots is described in [3].

## 5.3.3.6 Physical Downlink Shared Channel (PDSCH)

The Physical Downlink Shared Channel (PDSCH) is used to carry the Downlink Shared Channel (DSCH).

A PDSCH corresponds to a channelisation code below or at a PDSCH root channelisation code. A PDSCH is allocated on a radio frame basis to a single UE. Within one radio frame, UTRAN may allocate different PDSCHs under the same PDSCH root channelisation code to different UEs based on code multiplexing. Within the same radio frame, multiple parallel PDSCHs, with the same spreading factor, may be allocated to a single UE. This is a special case of multicode

transmission. All the PDSCHs under the same PDSCH root channelisation code are operated with radio frame synchronisation.

PDSCHs allocated to the same UE on different radio frames may have different spreading factors.

The frame and slot structure of the PDSCH are shown on figure 20.

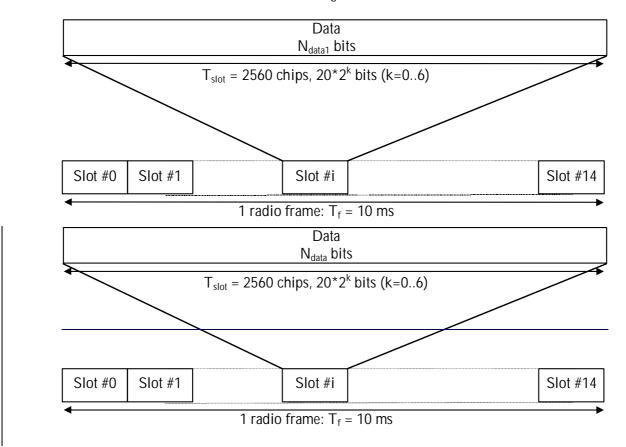



Figure 20: Frame structure for the PDSCH

For each radio frame, each PDSCH is associated with one downlink DPCH. The PDSCH and associated DPCH do not necessarily have the same spreading factors and are not necessarily frame aligned.

All relevant Layer 1 control information is transmitted on the DPCCH part of the associated DPCH, i.e. the PDSCH does not carry Layer 1 information. To indicate for UE that there is data to decode on the DSCH, the TFCI field of the associated DPCH shall be used.

The TFCI informs the UE of the instantaneous transport format parameters related to the PDSCH as well as the channelisation code of the PDSCH.

The channel bit rates and symbol rates for PDSCH are given in table 20.

For PDSCH the allowed spreading factors may vary from 256 to 4.

Table 20: PDSCH fields

| Slot format #i | Channel Bit<br>Rate (kbps) | Channel<br>Symbol Rate<br>(ksps) | SF  | Bits/<br>Frame | Bits/ Slot | Ndata <u>1</u> |
|----------------|----------------------------|----------------------------------|-----|----------------|------------|----------------|
| 0              | 30                         | 15                               | 256 | 300            | 20         | 20             |
| 1              | 60                         | 30                               | 128 | 600            | 40         | 40             |
| 2              | 120                        | 60                               | 64  | 1200           | 80         | 80             |
| 3              | 240                        | 120                              | 32  | 2400           | 160        | 160            |
| 4              | 480                        | 240                              | 16  | 4800           | 320        | 320            |
| 5              | 960                        | 480                              | 8   | 9600           | 640        | 640            |
| 6              | 1920                       | 960                              | 4   | 19200          | 1280       | 1280           |

When open loop transmit diversity is employed for the PDSCH, STTD encoding is used on the data bits as described in subclause 5.3.1.1.1.

# 3GPP TSG-RAN-WG1 Meeting #20 Busan, Korea, 21-25 May 2001

R1-01-0497

|                               |                                           | CHA                                                                                                                                                       | NGE R                                               | EQUE       | ST         |                                        |                                                                                                                  | CR-Form-v4                           |
|-------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------|------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| *                             | 25.211                                    | CR 104                                                                                                                                                    | ж                                                   | ev -       | <b>#</b> ( | Current vers                           | ion: <b>3.6</b>                                                                                                  | . <b>0</b> #                         |
| For <u>HELP</u> on            | using this t                              | form, see botton                                                                                                                                          | n of this pag                                       | e or look  | at the     | pop-up text                            | over the ₩                                                                                                       | symbols.                             |
| Proposed change               | e affects:                                | ₩ (U)SIM                                                                                                                                                  | ME/UE[                                              | X Rad      | io Acc     | ess Network                            | X Core                                                                                                           | e Network                            |
| Title:                        | <b>Correct</b>                            | ion of the repres                                                                                                                                         | sentation of                                        | slot forma | at         |                                        |                                                                                                                  |                                      |
| Source:                       | <b>⊮</b> Panaso                           | nic                                                                                                                                                       |                                                     |            |            |                                        |                                                                                                                  |                                      |
| Work item code:               | #                                         |                                                                                                                                                           |                                                     |            |            | Date: ℜ                                | 18, May,                                                                                                         | 2001                                 |
| Category:                     | F (6 A (7 relea B (7 C (7 D (7 Detailed 6 | of the following ca<br>correction)<br>corresponds to a<br>ise)<br>addition of feature<br>functional modificate<br>explanations of the<br>in 3GPP TR 21.90 | correction in e), eation of featution) e above cate | ıre)       | 1          | 2<br>R96<br>R97<br>R98<br>R99<br>REL-4 | REL-99<br>the following<br>(GSM Phase<br>(Release 19<br>(Release 19<br>(Release 19<br>(Release 4)<br>(Release 5) | e 2)<br>196)<br>197)<br>198)<br>199) |
| Reason for chang              |                                           | e reference sym                                                                                                                                           |                                                     | S25.212 d  | oes no     | ot cover the                           | case of P-C                                                                                                      | CCPCH, S-                            |
| Summary of char               |                                           | e number of dat                                                                                                                                           | ta bits per de                                      | ownlink sl | ot is al   | lways repres                           | sented by N                                                                                                      | I <sub>data1</sub> and               |
| Consequences if not approved: |                                           | onsistency of the CPCH, S-CCPCI                                                                                                                           |                                                     |            | per d      | ownlink slot                           | happens ir                                                                                                       | n case of P-                         |
| Clauses affected:             | 光 3,                                      | 5.3.3.3, 5.3.3.6,                                                                                                                                         |                                                     |            |            |                                        |                                                                                                                  |                                      |
| Other specs affected:         | *                                         | Other core spec<br>Test specification                                                                                                                     | ons                                                 | *          |            |                                        |                                                                                                                  |                                      |
| Other comments:               | * *                                       |                                                                                                                                                           |                                                     |            |            |                                        |                                                                                                                  |                                      |

#### How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <a href="http://www.3gpp.org/3G\_Specs/CRs.htm">http://www.3gpp.org/3G\_Specs/CRs.htm</a>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **%** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <a href="ftp://ftp.3gpp.org/specs/">ftp://ftp.3gpp.org/specs/</a> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

## 3 Symbols and aAbbreviations

## 3.1 Symbols

<u>N<sub>data1</sub></u> The number of data bits per downlink slot in Data1 field.

N<sub>data2</sub> The number of data bits per downlink slot in Data2 field. If the slot format does not contain a

Data2 field,  $N_{data2} = 0$ .

## 3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AI Acquisition Indicator

AICH Acquisition Indicator Channel

AP Access Preamble

AP-AICH Access Preamble Acquisition Indicator Channel

API Access Preamble Indicator
BCH Broadcast Channel
CA Channel Assignment

CAI Channel Assignment Indicator CCC CPCH Control Command

CCPCH Common Control Physical Channel CCTrCH Coded Composite Transport Channel

CD Collision Detection

CD/CA-ICH Collision Detection/Channel Assignment Indicator Channel

CDI Collision Detection Indicator
CPCH Common Packet Channel
CPICH Common Pilot Channel
CSICH CPCH Status Indicator Channel

DCH Dedicated Channel

DPCCH Dedicated Physical Control Channel
DPCH Dedicated Physical Channel
DPDCH Dedicated Physical Data Channel
DSCH Downlink Shared Channel

DSMA-CD Digital Sense Multiple Access - Collison Detection

DTX Discontinuous Transmission
FACH Forward Access Channel
FBI Feedback Information
FSW Frame Synchronization Word

ICH Indicator Channel
MUI Mobile User Identifier
PCH Paging Channel

P-CCPCH Primary Common Control Physical Channel

PCPCH Physical Common Packet Channel PDSCH Physical Downlink Shared Channel

PICH Page Indicator Channel

PRACH Physical Random Access Channel
PSC Primary Synchronisation Code
RACH Random Access Channel
RNC Radio Network Controller

S-CCPCH Secondary Common Control Physical Channel

SCH Synchronisation Channel
SF Spreading Factor
SFN System Frame Number
SI Status Indicator

SSC Secondary Synchronisation Code STTD Space Time Transmit Diversity TFCI Transport Format Combination Indicator TSTD Time Switched Transmit Diversity

TPC Transmit Power Control UE User Equipment

UTRAN UMTS Terrestrial Radio Access Network

## 5.3.3.3 Primary Common Control Physical Channel (P-CCPCH)

The Primary CCPCH is a fixed rate (30 kbps, SF=256) downlink physical channels used to carry the BCH transport channel.

Figure 15 shows the frame structure of the Primary CCPCH. The frame structure differs from the downlink DPCH in that no TPC commands, no TFCI and no pilot bits are transmitted. The Primary CCPCH is not transmitted during the first 256 chips of each slot. Instead, Primary SCH and Secondary SCH are transmitted during this period (see subclause 5.3.3.4).

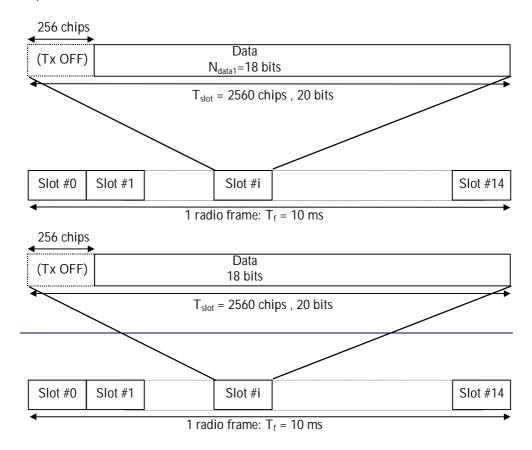



Figure 15: Frame structure for Primary Common Control Physical Channel

## 5.3.3.4 Secondary Common Control Physical Channel (S-CCPCH)

The Secondary CCPCH is used to carry the FACH and PCH. There are two types of Secondary CCPCH: those that include TFCI and those that do not include TFCI. It is the UTRAN that determines if a TFCI should be transmitted, hence making it mandatory for all UEs to support the use of TFCI. The set of possible rates for the Secondary CCPCH is the same as for the downlink DPCH, see subclause 5.3.2. The frame structure of the Secondary CCPCH is shown in figure 17.

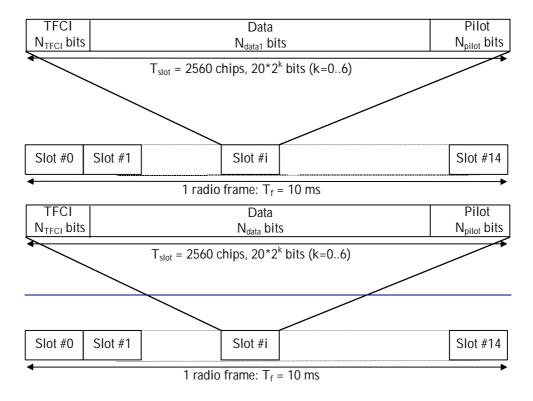



Figure 17: Frame structure for Secondary Common Control Physical Channel

The parameter k in figure 17 determines the total number of bits per downlink Secondary CCPCH slot. It is related to the spreading factor SF of the physical channel as  $SF = 256/2^k$ . The spreading factor range is from 256 down to 4.

The values for the number of bits per field are given in table 17. The channel bit and symbol rates given in table 17 are the rates immediately before spreading. The pilot patterns are given in table 18.

The FACH and PCH can be mapped to the same or to separate Secondary CCPCHs. If FACH and PCH are mapped to the same Secondary CCPCH, they can be mapped to the same frame. The main difference between a CCPCH and a downlink dedicated physical channel is that a CCPCH is not inner-loop power controlled. The main difference between the Primary and Secondary CCPCH is that the transport channel mapped to the Primary CCPCH (BCH) can only have a fixed predefined transport format combination, while the Secondary CCPCH support multiple transport format combinations using TFCI. Furthermore, a Primary CCPCH is transmitted over the entire cell while a Secondary CCPCH may be transmitted in a narrow lobe in the same way as a dedicated physical channel (only valid for a Secondary CCPCH carrying the FACH).

Table 17: Secondary CCPCH fields

| Slot Format<br>#i | Channel Bit<br>Rate (kbps) | Channel<br>Symbol Rate<br>(ksps) | SF  | Bits/ Frame | Bits/<br>Slot | N <sub>data1</sub> | $N_{pilot}$ | N <sub>TFCI</sub> |
|-------------------|----------------------------|----------------------------------|-----|-------------|---------------|--------------------|-------------|-------------------|
| 0                 | 30                         | 15                               | 256 | 300         | 20            | 20                 | 0           | 0                 |
| 1                 | 30                         | 15                               | 256 | 300         | 20            | 12                 | 8           | 0                 |
| 2                 | 30                         | 15                               | 256 | 300         | 20            | 18                 | 0           | 2                 |
| 3                 | 30                         | 15                               | 256 | 300         | 20            | 10                 | 8           | 2                 |
| 4                 | 60                         | 30                               | 128 | 600         | 40            | 40                 | 0           | 0                 |
| 5                 | 60                         | 30                               | 128 | 600         | 40            | 32                 | 8           | 0                 |
| 6                 | 60                         | 30                               | 128 | 600         | 40            | 38                 | 0           | 2                 |
| 7                 | 60                         | 30                               | 128 | 600         | 40            | 30                 | 8           | 2                 |
| 8                 | 120                        | 60                               | 64  | 1200        | 80            | 72                 | 0           | 8*                |
| 9                 | 120                        | 60                               | 64  | 1200        | 80            | 64                 | 8           | 8*                |
| 10                | 240                        | 120                              | 32  | 2400        | 160           | 152                | 0           | 8*                |
| 11                | 240                        | 120                              | 32  | 2400        | 160           | 144                | 8           | 8*                |
| 12                | 480                        | 240                              | 16  | 4800        | 320           | 312                | 0           | 8*                |
| 13                | 480                        | 240                              | 16  | 4800        | 320           | 296                | 16          | 8*                |
| 14                | 960                        | 480                              | 8   | 9600        | 640           | 632                | 0           | 8*                |
| 15                | 960                        | 480                              | 8   | 9600        | 640           | 616                | 16          | 8*                |
| 16                | 1920                       | 960                              | 4   | 19200       | 1280          | 1272               | 0           | 8*                |
| 17                | 1920                       | 960                              | 4   | 19200       | 1280          | 1256               | 16          | 8*                |

<sup>\*</sup> If TFCI bits are not used, then DTX shall be used in TFCI field.

The pilot symbol pattern is described in table 18. The shadowed part can be used as frame synchronization words. (The symbol pattern of pilot symbols other than the frame synchronization word shall be "11"). In table 18, the transmission order is from left to right. (Each two-bit pair represents an I/Q pair of QPSK modulation.)

Table 18: Pilot Symbol Pattern

|         | Npilot = 8 |    |    |    | Npilot = 16 |    |    |    |    |    |    |    |
|---------|------------|----|----|----|-------------|----|----|----|----|----|----|----|
| Symbol  | 0          | 1  | 2  | 3  | 0           | 1  | 2  | 3  | 4  | 5  | 6  | 7  |
| #       |            |    |    |    |             |    |    |    |    |    |    |    |
| Slot #0 | 11         | 11 | 11 | 10 | 11          | 11 | 11 | 10 | 11 | 11 | 11 | 10 |
| 1       | 11         | 00 | 11 | 10 | 11          | 00 | 11 | 10 | 11 | 11 | 11 | 00 |
| 2 3     | 11         | 01 | 11 | 01 | 11          | 01 | 11 | 01 | 11 | 10 | 11 | 00 |
| 3       | 11         | 00 | 11 | 00 | 11          | 00 | 11 | 00 | 11 | 01 | 11 | 10 |
| 4       | 11         | 10 | 11 | 01 | 11          | 10 | 11 | 01 | 11 | 11 | 11 | 11 |
| 5       | 11         | 11 | 11 | 10 | 11          | 11 | 11 | 10 | 11 | 01 | 11 | 01 |
| 6       | 11         | 11 | 11 | 00 | 11          | 11 | 11 | 00 | 11 | 10 | 11 | 11 |
| 7       | 11         | 10 | 11 | 00 | 11          | 10 | 11 | 00 | 11 | 10 | 11 | 00 |
| 8       | 11         | 01 | 11 | 10 | 11          | 01 | 11 | 10 | 11 | 00 | 11 | 11 |
| 9       | 11         | 11 | 11 | 11 | 11          | 11 | 11 | 11 | 11 | 00 | 11 | 11 |
| 10      | 11         | 01 | 11 | 01 | 11          | 01 | 11 | 01 | 11 | 11 | 11 | 10 |
| 11      | 11         | 10 | 11 | 11 | 11          | 10 | 11 | 11 | 11 | 00 | 11 | 10 |
| 12      | 11         | 10 | 11 | 00 | 11          | 10 | 11 | 00 | 11 | 01 | 11 | 01 |
| 13      | 11         | 00 | 11 | 11 | 11          | 00 | 11 | 11 | 11 | 00 | 11 | 00 |
| 14      | 11         | 00 | 11 | 11 | 11          | 00 | 11 | 11 | 11 | 10 | 11 | 01 |

For slot formats using TFCI, the TFCI value in each radio frame corresponds to a certain transport format combination of the FACHs and/or PCHs currently in use. This correspondence is (re-)negotiated at each FACH/PCH addition/removal. The mapping of the TFCI bits onto slots is described in [3].

## 5.3.3.6 Physical Downlink Shared Channel (PDSCH)

The Physical Downlink Shared Channel (PDSCH) is used to carry the Downlink Shared Channel (DSCH).

A PDSCH corresponds to a channelisation code below or at a PDSCH root channelisation code. A PDSCH is allocated on a radio frame basis to a single UE. Within one radio frame, UTRAN may allocate different PDSCHs under the same PDSCH root channelisation code to different UEs based on code multiplexing. Within the same radio frame, multiple parallel PDSCHs, with the same spreading factor, may be allocated to a single UE. This is a special case of multicode

transmission. All the PDSCHs under the same PDSCH root channelisation code are operated with radio frame synchronisation.

PDSCHs allocated to the same UE on different radio frames may have different spreading factors.

The frame and slot structure of the PDSCH are shown on figure 20.

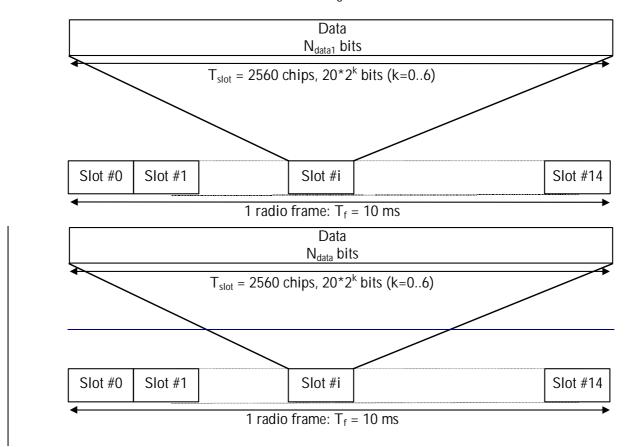



Figure 20: Frame structure for the PDSCH

For each radio frame, each PDSCH is associated with one downlink DPCH. The PDSCH and associated DPCH do not necessarily have the same spreading factors and are not necessarily frame aligned.

All relevant Layer 1 control information is transmitted on the DPCCH part of the associated DPCH, i.e. the PDSCH does not carry Layer 1 information. To indicate for UE that there is data to decode on the DSCH, the TFCI field of the associated DPCH shall be used.

The TFCI informs the UE of the instantaneous transport format parameters related to the PDSCH as well as the channelisation code of the PDSCH.

The channel bit rates and symbol rates for PDSCH are given in table 20.

For PDSCH the allowed spreading factors may vary from 256 to 4.

Table 20: PDSCH fields

| Slot format #i | Channel Bit<br>Rate (kbps) | Channel<br>Symbol Rate<br>(ksps) | SF  | Bits/<br>Frame | Bits/ Slot | Ndata <u>1</u> |
|----------------|----------------------------|----------------------------------|-----|----------------|------------|----------------|
| 0              | 30                         | 15                               | 256 | 300            | 20         | 20             |
| 1              | 60                         | 30                               | 128 | 600            | 40         | 40             |
| 2              | 120                        | 60                               | 64  | 1200           | 80         | 80             |
| 3              | 240                        | 120                              | 32  | 2400           | 160        | 160            |
| 4              | 480                        | 240                              | 16  | 4800           | 320        | 320            |
| 5              | 960                        | 480                              | 8   | 9600           | 640        | 640            |
| 6              | 1920                       | 960                              | 4   | 19200          | 1280       | 1280           |

When open loop transmit diversity is employed for the PDSCH, STTD encoding is used on the data bits as described in subclause 5.3.1.1.1.