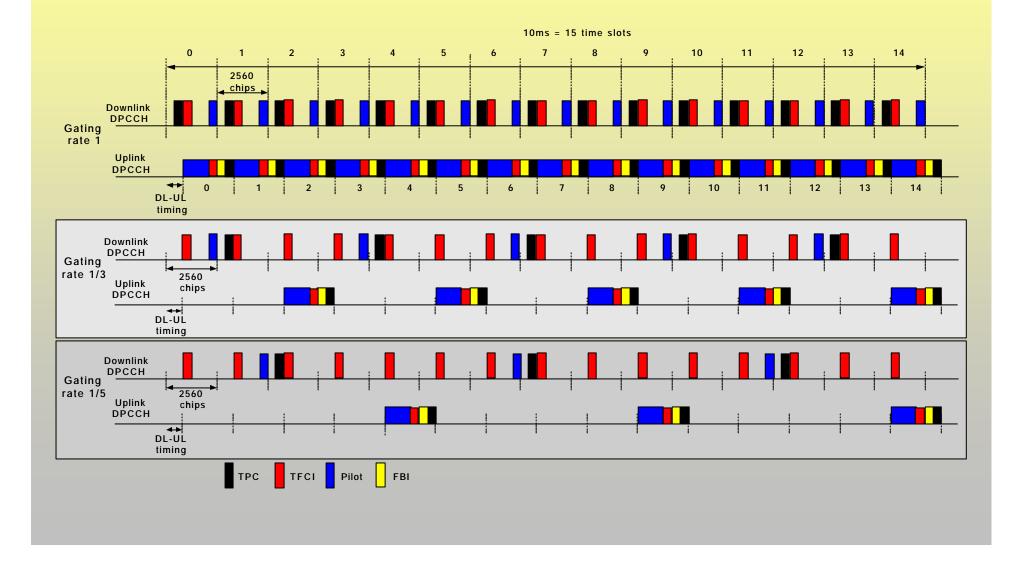


Introduction of Rel-5 WI "Gated DPCCH Transmission"


21-25 May 2001 3GPP RAN WG1/WG2/WG3 Busan, Korea

Samsung Electronics and Nokia

Overview

- Battery life is an important resource in UE side and capacity is an important resource in network side
- Rel-5 Work item "Gated DPCCH transmission"
 - Apply for DCH associated with DSCH in FDD
 - Intermittent transmission of DPCCH
- Expected gain with respect to Release 99
 - UE battery life increase
 - Capacity increase due to reduction of interference on both UL and DL

Gating Operation

DPCCH Switched-On Time Slot

- DL: TPC and PILOT are 'on' only for the switched-on time slots, but TFCI is 'on' for all time slots
- UL: All control fields (PILOT, TFCI, TPC, and FBI) are 'on' only for the switched-on time slots
- Reference pattern for switched-on time slot
 - Pseudo-random pattern based on CFN is used

Gating Structure

Initiation & Termination

- Determined by UTRAN
- Indicated using higher layer signaling
- Parameters
 - Gating rate: 1, 1/3, 1/5
 - Gating mode (Direction)
 - Uplink/Downlink
 - Downlink only
 - TFCS Subset Info
 - RX gating DRX cycle
- Basic Gating and embedded data periods

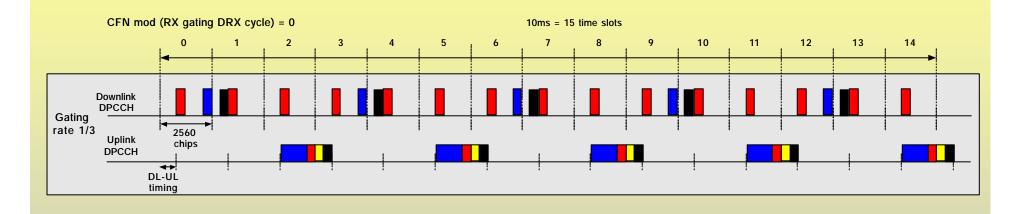
Gating Structure (cont'd)

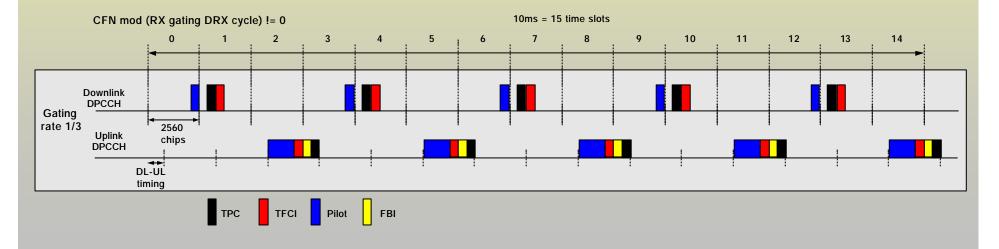
Initiation

 Activated by higher layer signaling when there is no data to transmit on both UL and DL

Gating period

- Basic Gating period: intermittent transmission of DPCCH only on the specified time slots
- *Embedded data period*: permission of low rate data transmission on DPDCH under gating
 - Data rate can be restricted by TFCS

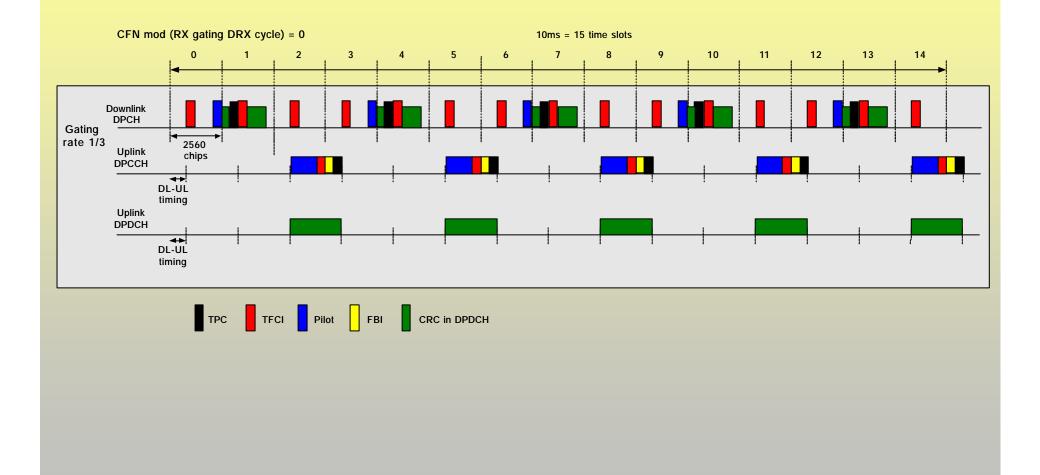

Termination


 Deactivated by higher layer signaling when there is data to transmit on either UL or DL

RX Gating

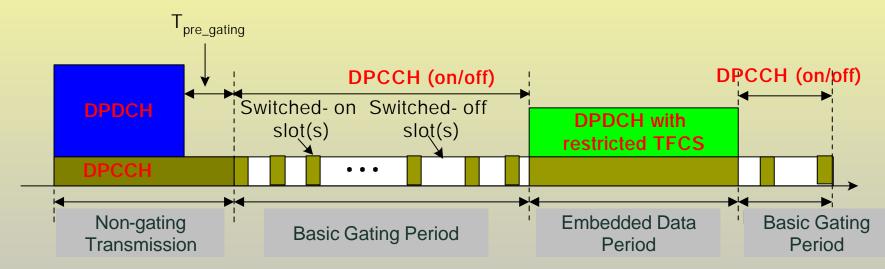
- Battery Saving from the UE RX side
 - Achieved by signaling `RX gating DRX cycle' from UTRAN to UE with the other gating parameters
 - Start of DPDCH transmission is allowed if
 - CFN mod (RX gating DRX cycle) = 0 and
 - CFN corresponds to beginning of each TTI
- TFCI is transmitted
 - in all slots if CFN mod (RX gating DRX cycle) = 0
 - intermittently if CFN mod (RX gating DRX cycle)? 0

RX Gating (cont'd)



Outer Loop Power Control

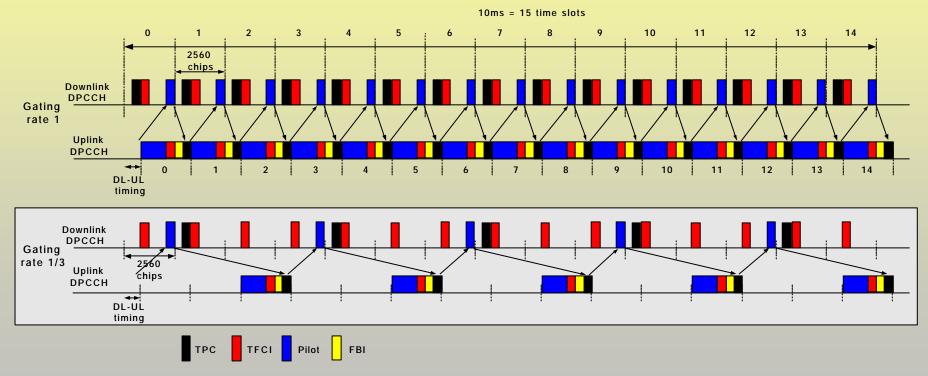
- Facilitates adequate performance for outer loop power control during gating
 - CRC is attached to the zero length transport block
- Encoded CRC is transmitted intermittently on DPDCH
 - Uplink: encoded CRC is transmitted in the time slots in which DPCCH is transmitted
 - Downlink: encoded CRC is transmitted in the time slots in which TPC is transmitted


Outer Loop Power Control (cont'd)

Basic Gating and Embedded Data Periods

Example of uplink DPDCH transmission

Embedded Data Period


- To transfer low rate data during gating
 - Turning on transmission of DPCCH on all the time slots
 - But TPC shall be updated only for the specified time slots as in basic gating period
 - Restricted TFCS is used for limiting data rate
- Detection of DPDCH during gating
 - DL: Decoding DL TFCI
 - UL: Pilot energy comparison in UTRAN
- Advantage
 - Avoidance of unnecessary signaling to initiate and terminate gating
 - Increase of average duration of gating

Pseudo-Random Pattern Generation

- The generation is based on CFN of period 2.56 sec
- The known CFN enables UTRAN & UE to generate the pseudo-random pattern synchronously
- No extra signaling is required for the synchronized generation of pseudo-random pattern
- EMI problem can be minimized

Power Control for Gating

Conceptual diagram of power control operation

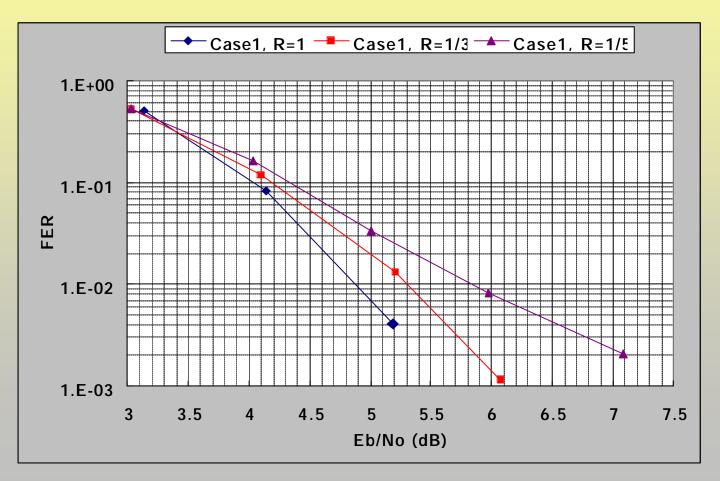
Gating results in reduced power control rate

Power Control for Gating (cont'd)

Transmit power adjustment

Performed in response to the latest valid TPC command

TPC command


- Generated based on the latest valid received switchedon time slot
- Transmission power is updated on the earliest valid switched-on time slot

Power Control Performance

- Link simulation was made to evaluate the required TX E_b/N₀ of UL DPDCH during embedded DPDCH period
- **DL** gating rates = 1, 1/3, 1/5
- UL channel bit rate
 - DPDCH: 60 kbps
 - DPCCH: 15 kbps
- DPCCH/DPDCH = -5dB
- Power control rate
 - No gating: 1500 Hz
 - Gating: 500 Hz (Gating rate R=1/3), 300 Hz (R=1/5)
- TPC command error = 4%
- Channel coding: convolution code of rate 1/3

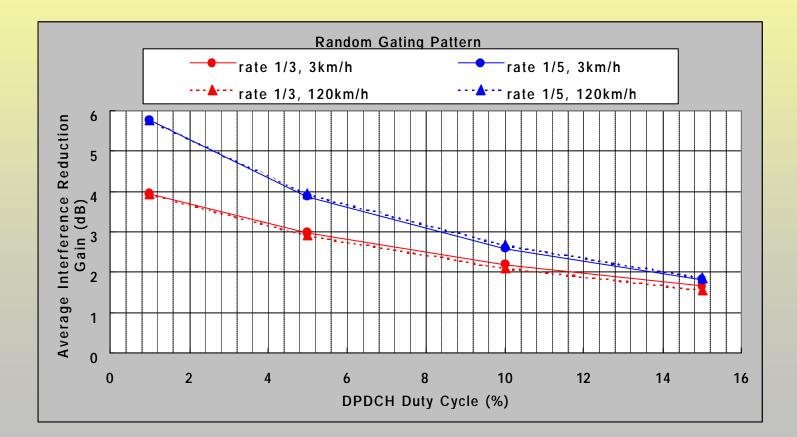
Power Control Performance (cont'd) UL DPCH required E_b/N_0 with UE speed = 3 km/h

E_b/N₀ increase ? 0.4 dB (R=1/3), 1.0 dB (R=1/5) at FER=1%

Power Control Performance (cont'd) UL DPCH required E_b/N₀ with UE speed = 120 km/h

E_b/N₀ increase ? 0.6 dB (R=1/3), 0.9 dB (R=1/5) at FER=1%

Power Control Performance (cont'd)


Summary of simulation results

- Reduced power control rate increases the E_b/N₀ required for DPDCH transmission during embedded data period
 - Additional required power < 1 dB</p>
- UL TX power is zero in the switched-off slots during the basic gating period
- The gated transmission can save overall UE TX power

UL Interference Reduction

Average UL Interference Reduction Gain

=(average Tx power when no gating)/(average Tx power when gating)

UE Battery Life Enhancement

Timing for turning the gating on Downlink Image: Downlink

Percentage of time DPCCH gating on for DCH associated with DSCH

DPCCH_gating_% = 66 %

UE Battery Life Enhancement (cont'd)

UE battery life improvement calculation with TX only gating

	Gating rate	UE battery life improvement
Medium range Tx power level	1/3	<mark>21</mark> %
	1/5	<mark>34</mark> %
Maximum Tx power level	1/3	<mark>26</mark> %
	1/5	44 %

UE Battery Life Enhancement (cont'd)

UE battery life improvement due to TX and RX gating with medium range TX power level

Gating rate	К	UE battery life improvement
1/3	1	<mark>21</mark> %
	4	<mark>32</mark> %
	8	<mark>34</mark> %
1/5	1	<mark>34</mark> %
	4	<mark>56</mark> %
	8	<mark>60</mark> %

- K: RX gating DRX cycle
- RX side has to be on during the whole frame in every Kth frame

Conclusion

- Advantage of gating compared to continuous transmission of DPCCH when no DSCH data
 - Improved battery life in UE side
 - Interference reduction (capacity increase) in UTRAN side
- Rx gating
 - More improved battery life
- Outer loop power control during gating
 - CRC attachment to zero length transport block