TSG-RAN Working Group 1 meeting #20 Busan, Korea May 21-May 25, 2001

TSGR1#20(01)0466

Agenda item:	R99/REL-4
Source:	Ericsson
Title:	Correction of compressed mode by puncturing
Document for:	Decision

For one TTI more than one CM pattern can be active at the same time with different CM methods, which means that different frames in the TTI can be compressed by different methods. However, one frame can only be compressed using one method. Following text is extracted from 25.212, section 4.2.7.2:

In case of compressed mode by puncturing and fixed positions, for some calculations, $N'_{data,*}$ is used for radio frames with gap instead of $N_{data,*}$, where $N'_{data,*} = P \times 15 \times (N'_{data1} + N'_{data2})$. N'_{data1} and N'_{data2} are the number of bits in the data fields of the slot format used for the current compressed mode, i.e. slot format A or B as defined in [2] corresponding to the Spreading Factor and the number of transmitted slots in use.

Slot format B is not intended to be used for frames compressed by puncturing and should be removed from the text. With slot format B the SF is changed and this is not the intention of the method.

To avoid that other slot formats and other CM methods are considered in the calculation it should be stated in section 4.2.7.2.1.2 that when calculating Z_i the parameter $N_{data,i}$ shall be replaced by $(N_{TGL}[n] + (N_{data,*} - N'_{data,*}))$ only for the frames compressed by puncturing.

The formula for calculating N_{TGL} is in the general section 4.2.7.1 but it is only applicable to CM by puncturing. Moving this formula to 4.2.7.2.1.2 will strengthen the description of how to calculate parameters for CM by puncturing

In 25.211, section 5.3.2, the description of what slot format for DPCH to be used can be found. The text is improved to avoid ambiguities when choosing slot format.

CHANGE REQUEST									
ж <mark>2</mark>	2 <mark>5.212</mark> CF	R <mark>105</mark>	ង rev <mark>-</mark> ង	Current vers	^{ion:} 3.5.0 [#]				
For <u>HELP</u> on using this form, see bottom of this page or look at the pop-up text over the \Re symbols.									
Proposed change affects: % (U)SIM ME/UE X Radio Access Network X Core Network									
Title: ೫ 🤇	Correction of a	compressed mod	e by puncturing						
Source: # E	Ericsson								
Work item code: #				<i>Date:</i>	May 15, 2001				
De	ise <u>one</u> of the fo F (correctio A (correspo B (addition C (functiona D (editorial	onds to a correction of feature), al modification of fe modification) tions of the above	n in an earlier releas eature)	2 R96 R97 R98 R99 REL-4	R99 the following releases: (GSM Phase 2) (Release 1996) (Release 1997) (Release 1998) (Release 1999) (Release 4) (Release 5)				
Reason for change:	% Correction	n is necessary to	avoid ambiguity						
Summary of change:	clarificatio		sed for frames co # of bits to elimin						
Consequences if not approved:	# Ambiguity	in calculations							
Clauses affected:	₭ 4.2.7.2 ar	nd 4.2.7.2.1.2							
Other specs affected:	Test sp	core specificatior pecifications Specifications	IS X						
Other comments:	ж								

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

4.2.7.2 Determination of rate matching parameters in downlink

For downlink $N_{data,i}$ does not depend on the transport format combination *j*. $N_{data,*}$ is given by the channelization code(s) assigned by higher layers. Denote the number of physical channels used for the CCTrCH by *P*. $N_{data,*}$ is the number of bits available to the CCTrCH in one radio frame and defined as $N_{data,*} = P \times 15 \times (N_{data,1} + N_{data,2})$, where $N_{data,1}$ and $N_{data,2}$ are defined in [2]. Note that contrary to the uplink, the same rate matching patterns are used in TTIs containing no compressed radio frames and in TTIs containing radio frames compressed by spreading factor reduction or higher layer scheduling.

In the following, the total amount of puncturing or repetition for the TTI is calculated.

Additional calculations for TTIs containing radio frames compressed by puncturing in case fixed positions are used, are performed to determine this total amount of rate matching needed.

For compressed mode by puncturing, in TTIs where some compressed radio frames occur, the puncturing is increased or the repetition is decreased compared to what is calculated according to the rate matching parameters provided by higher layers. This allows to cope with reduction of available data bits on the physical channel(s) if the slot format for the compressed frame(s) contains fewer data bits than for the normal frames(s), and to create room for later insertion of marked bits, noted p-bits, which will identify the positions of the gaps in the compressed radio frames.

The amount of additional puncturing corresponds to the number of bits to create the gap in the TTI for TrCH *i*, plus the difference between the number of data bits available in normal frames and in compressed frames, due to slot format change. In case of fixed positions, it is calculated in addition to the amount of rate matching indicated by higher layers. It is noted $Np_{i,max}^{TTI,m}$.

In fixed positions case, to obtain the total rate matching $\Delta N_{i,\max}^{TTI,cm,m}$ to be performed on the TTI *m*, $Np_{i,\max}^{TTI,m}$ is subtracted from $\Delta N_{i,\max}^{TTI,m}$ (calculated based on higher layers RM parameters as for normal rate matching). This allows to create room for the $Np_{i,\max}^{TTI,m}$ bits p to be inserted later. If the result is null, i.e. the amount of repetition matches exactly the amount of additional puncturing needed, then no rate matching is necessary.

In case of compressed mode by puncturing and fixed positions, for some calculations, $N'_{data,*}$ is used for radio frames with gap instead of $N_{data,*}$, where $N'_{data,*} = P \times 15 \times (N'_{data1} + N'_{data2})$. N'_{data1} and N'_{data2} are the number of bits in the data fields of the slot format used for the <u>frames compressed by puncturing current compressed mode, i.e. slot</u> format A or B as defined in [2] corresponding to the Spreading Factor and the number of transmitted slots in use.

The number of bits corresponding to the gap for TrCH *i*, in each radio frame of its TTI is calculated using the number of bits to remove on all Physical Channels $N_{TGL}[k]$, where k is the radio frame number in the largest TTI.

For each radio frame k of the largest TTI that is overlapping with a transmission gap, N_{TGL}[k] is given by the relation:

$$N_{TGL} = \begin{cases} \frac{TGL}{15} \times N'_{data,*,\tau} \text{ if } N_{first} + TGL \le 15 \\ \frac{15 - N_{first}}{15} \times N'_{data,*,\tau} \text{ in first radio frame of the gap if } N_{first} + TGL > 15 \\ \frac{TGL - (15 - N_{first})}{15} \times N'_{data,*,\tau} \text{ in second radio frame of the gap if } N_{first} + TGL > 15 \end{cases}$$

N_{first} and *TGL* are defined in subclause 4.4.

Note that $N_{TGL}[k] = 0$ if radio frame k is not overlapping with a transmission gap.

4.2.7.2.1.2 Calculations for compressed mode by puncturing

Calculations of $\Delta N_{i,\max}^{TTI,m}$ for all TTI *m* within largest TTI, for all TrCH *i*

First an intermediate calculation variable $N_{i,*}$ is calculated for all transport channels *i* by the following formula:

$$N_{i,*} = \frac{1}{F_i} \times \left(\max_{I \in TFS(i)} N_{i,I}^{TTI} \right)$$

Then an intermediate calculation variable $\Delta N_{i,*}$ is derived from $N_{i,*}$ by the formula given at subclause 4.2.7, for all TrCH *i*.

In order to compute the $\Delta N_{i,l}^{TTI,m}$ parameters for all TrCH *i*, all TF *l* and all TTI with number *m* in the largest TTI, we first compute an intermediate parameter $\Delta N_{i,max}^{m}$ by the following formula :

$$\Delta N_{i,\max}^m = F_i \times \Delta N_{i,*}$$

Calculations of $Np_{i,\max}^n$ and $Np_{i,\max}^{TTI,m}$

Let $Np_{i,\max}^n$ be the number of bits to eliminate on TrCH *i* to create the gap for compressed mode and to cope for the reduction of the number of available data bits in the compressed frame if the changed slot format contains fewer data bits than for normal frame, in each radio frame n of the TTI, calculated for the Transport Format Combination of TrCH *i*, in which the number of bits of TrCH *i* is at its maximum.

 $Np_{i,\max}^n$ is calculated for each radio frame n of the TTI in the following way.

Intermediate variables Z_i for i = 1 to I are calculated using the formula (1) in 4.2.7, by replacing $N_{data,j}$ in the frames compressed by puncturing with by $(N_{TGL}[n] + (N_{data,*} - N'_{data,*}))$.

The number of bits corresponding to the gap for TrCH *i*, in each radio frame of its TTI is calculated using the number of bits to remove on all Physical Channels $N_{TGL}[k]$, where k is the radio frame number in the largest TTI.

For each radio frame k of the largest TTI that is overlapping with a transmission gap, N_{TGL}[k] is given by the relation:

$$N_{TGL} = \begin{cases} \frac{TGL}{15} \times N'_{data,^*}, \text{ if } N_{first} + TGL \le 15\\ \frac{15 - N_{first}}{15} \times N'_{data,^*}, \text{ in first radio frame of the gap if } N_{first} + TGL > 15\\ \frac{TGL - (15 - N_{first})}{15} \times N'_{data,^*}, \text{ in second radio frame of the gap if } N_{first} + TGL > 15 \end{cases}$$

N_{first} and TGL are defined in subclause 4.4.

Note that N $_{TGL}$ [k] = 0 if radio frame k is not overlapping with a transmission gap.

Then $Np_{i,\max}^n = (Z_i - Z_{i-1})$ for i = 1 to I

The total number of bits $Np_{i,\max}^{TTI,m}$ corresponding to the gaps for compressed mode for TrCH i in the TTI is calculated as:

$$Np_{i,\max}^{TTI,m} = \sum_{n=m \times F_i}^{n=(m+1) \times F_i - 1} Np_{i,\max}^n$$

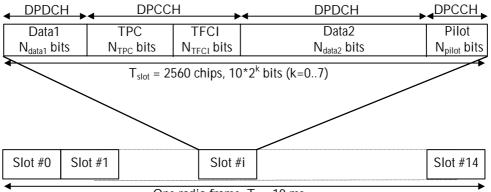
The amount of rate matching $\Delta N_{i,\max}^{TTI,cm,m}$ for the highest TrCH bit rate is then computed by the following formula :

$$\Delta N_{i,\max}^{TTI,cm,m} = \Delta N_{i,\max}^m - N p_{i,\max}^{TTI,m}$$

If $\Delta N_{i,\text{max}}^{TT1,cm,m} = 0$, then, for TrCH *i*, the output data of the rate matching is the same as the input data and the rate matching algorithm of subclause 4.2.7.5 does not need to be executed.

If $\Delta N_{i,\max}^{TTI,cm,m} \neq 0$, then, for TrCH *i*, the rate matching algorithm of subclause 4.2.7.5 needs to be executed, and the parameters listed in subclauses 4.2.7.2.1.3 and 4.2.7.2.1.4 shall be used for determining e_{ini} , e_{plus} , and e_{minus} , and $\Delta N_{i,l}^{TTI,m}$.

CHANGE REQUEST										
^ж 25	<mark>.211</mark> CR	101	₩ ev	- [#]	Current vers	^{ion:} 3.6.0	ж			
For <u>HELP</u> on using t	For <u>HELP</u> on using this form, see bottom of this page or look at the pop-up text over the \Re symbols.									
Proposed change affects: # (U)SIM ME/UE X Radio Access Network X Core Network										
Title: # Cor	rection of co	mpressed mo	<mark>de by punc</mark>	turing						
Source: # Eric	csson									
Work item code: #					Date: ¥	May 15, 200)1			
Deta	 <i>F</i> (correction) <i>A</i> (correspond <i>B</i> (addition of <i>C</i> (functional <i>D</i> (editorial m 	ds to a correctio feature), modification of f odification) ns of the above	on in an earl feature)		2	R99 the following re (GSM Phase 2 (Release 1996 (Release 1997 (Release 1999 (Release 1999 (Release 4) (Release 5))))			
Reason for change: #	Correction	is necessary to	<mark>o avoid an</mark>	biguity						
Summary of change: #	Clarification method	n what slot forr	mat that sh	all be use	ed for each c	ompressed m	ode			
Consequences if % not approved:	Ambiguity i	n specification	on what s	lot format	t to use in co	mpressed fran	nes			
Clauses affected: #	5.3.2									
Other specs % affected:	Test spe	re specificatio cifications ecifications	ns 🖁							
Other comments: #										


- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

5.3.2 Dedicated downlink physical channels

There is only one type of downlink dedicated physical channel, the Downlink Dedicated Physical Channel (downlink DPCH).

Within one downlink DPCH, dedicated data generated at Layer 2 and above, i.e. the dedicated transport channel (DCH), is transmitted in time-multiplex with control information generated at Layer 1 (known pilot bits, TPC commands, and an optional TFCI). The downlink DPCH can thus be seen as a time multiplex of a downlink DPDCH and a downlink DPCCH, compare subclause 5.2.1.

Figure 9 shows the frame structure of the downlink DPCH. Each frame of length 10 ms is split into 15 slots, each of length $T_{slot} = 2560$ chips, corresponding to one power-control period.

One radio frame, $T_f = 10 \text{ ms}$

The parameter k in figure 9 determines the total number of bits per downlink DPCH slot. It is related to the spreading factor SF of the physical channel as $SF = 512/2^{k}$. The spreading factor may thus range from 512 down to 4.

The exact number of bits of the different downlink DPCH fields (N_{pilot}, N_{TPC}, N_{TFCI}, N_{data1} and N_{data2}) is given in table 11. What slot format to use is configured by higher layers and can also be reconfigured by higher layers.

There are basically two types of downlink Dedicated Physical Channels; those that include TFCI (e.g. for several simultaneous services) and those that do not include TFCI (e.g. for fixed-rate services). These types are reflected by the duplicated rows of table 11. It is the UTRAN that determines if a TFCI should be transmitted and it is mandatory for all UEs to support the use of TFCI in the downlink. The mapping of TFCI bits onto slots is described in [3].

In compressed <u>frames_mode</u>, a different slot format is used compared to normal mode. There are two possible compressed slot formats that are labelled A and B. <u>Slot Ff</u>ormat B <u>shall be is</u>-used <u>in frames_for</u>-compressed <u>mode</u> by spreading factor reduction and <u>slot</u> format A <u>shall be is</u>-used <u>in frames compressed by puncturing or higher layer</u> <u>scheduling</u> for all other transmission time reduction methods</u>. The channel bit and symbol rates given in table 11 are the rates immediately before spreading.

	Slot Format #i	Channel Bit Rate (kbps)	Channel Symbol Rate	SF	Bits/ Slot		DCH /Slot	DPCCH Bits/Slot		Transmitted slots per radio frame	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			(ksps)			N _{Data1}	N _{Data2}	N _{TPC}	N _{TFCI}	N _{Pilot}	N _{Tr}
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	15	7.5	512	10	0	4	2	0	4	15
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0A	15	7.5	512	10	0	4	2	0	4	8-14
1B 30 15 256 20 0 4 4 4 8 8.14 2 30 15 256 20 2 14 2 0 2 15 2A 30 15 256 20 2 14 2 0 4 8.14 3 30 15 256 20 2 12 2 2 2 15 3A 30 15 256 20 2 12 2 0 4 8.14 4 30 15 256 20 2 12 2 0 4 8.14 4 30 15 256 20 2 10 2 2 4 15 5A 30 15 256 20 2 8 2 0 8 8.14 5 30 15 256 20 2 8	0B	30	15	256	20	0	8	4	0	8	8-14
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	15	7.5	512	10	0	2	2	2	4	15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1B	30	15	256	20	0	4	4	4	8	8-14
2B6030128404284048-143301525620212222153A3015256202102428-143B6030128404244448-144301525620212204154A3015256202122048-144B6030128404244088-145301525620282448-145B6030128404204488-146A301525620282088-146B60301284041640168-147301525620262288-147301525620242488-147301525620242488-14730152562024228157A301525620244168-14<	2	30	15	256	20	2	14	2	0	2	15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2A	30	15	256	20	2	14	2	0	2	8-14
3A3015256202102428-143B6030128404244448-144301525620212204154A3015256202122048-144B6030128404244088-1453015256202102244155A301525620282448-146301525620282088-146301525620282088-146B60301284041640168-14730152562026228157A301525620242488-147B60301284041244168-148603012840628204159A6030128406242448-149603012840624208 <td>2B</td> <td>60</td> <td>30</td> <td>128</td> <td>40</td> <td>4</td> <td>28</td> <td>4</td> <td>0</td> <td>4</td> <td>8-14</td>	2B	60	30	128	40	4	28	4	0	4	8-14
3B6030128404244448-144301525620212204154A3015256202122048-144B6030128404244088-145301525620210224155A301525620282448-145B6030128404204488-146301525620282088-146B60301284041640168-14730152562026228157A301525620242488-147B60301284041244168-148603012840628204158A603012840624248-149603012840624248-1496030128406242448-149B	3	30	15	256	20	2	12	2	2	2	15
4 30 15 256 20 2 12 2 0 4 15 4A 30 15 256 20 2 12 2 0 4 8-14 4B 60 30 128 40 4 24 4 0 8 8-14 5 30 15 256 20 2 8 2 4 4 8-14 5B 60 30 128 40 4 20 4 4 8 8-14 6 30 15 256 20 2 8 2 0 8 8-14 6 30 15 256 20 2 6 2 2 8 15 7A 30 15 256 20 2 4 2 4 8 8-14 7B 60 30 128 40 6 28	3A	30	15	256	20	2	10	2	4	2	8-14
4A 30 15 256 20 2 12 2 0 4 $8-14$ $4B$ 60 30 128 40 4 24 4 0 8 $8-14$ 5 30 15 256 20 2 8 2 4 4 $8-14$ $5B$ 60 30 128 40 4 20 4 4 8 $8-14$ 6 30 15 256 20 2 8 2 0 8 $8-14$ 6 30 15 256 20 2 8 2 0 8 $8-14$ $6B$ 60 30 128 40 4 16 4 0 16 $8-14$ 7 30 15 256 20 2 6 2 2 8 $8-14$ 7 30 15 256 20 2 4 2 4 8 $8-14$ 7 30 15 256 20 2 4 2 4 8 $8-14$ 7 30 15 256 20 2 4 2 4 8 $8-14$ 7 30 15 256 20 2 4 2 4 8 $8-14$ 7 8 0 30 128 40 6 28 2 0 4 $8-14$ 8 120 60 30 128 40 <	3B	60	30	128	40	4	24	4	4	4	8-14
4B6030128404244088-145301525620210224155A301525620282448-145B6030128404204488-146301525620282088-146B60301284041640168-14730152562026228157A301525620242488-147B60301284041244168-148603012840628204158A6030128406282048-1496030128406242448-149B12060648012554488-14106030128406242081510A6030128406242088-1411603012840624208	4	30	15	256					0	4	15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4A	30	15	256	20	2	12	2	0	4	8-14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4B	60	30	128	40	4	24	4	0	8	8-14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	30	15	256	20	2	10	2	2	4	15
630152562028208156A301525620282088-146B60301284041640168-14730152562026228157A301525620242488-147B60301284041244168-1486030128406282048-148B12060648012564088-1496030128406242448-149B12060648012524488-14106030128406242081510A6030128406242081511A6030128406222281511A6030128406222281511A6030128406222281511A603012840622228	5A	30	15	256	20	2	8	2	4	4	8-14
6A 30 15 256 20 2 8 2 0 8 8.14 $6B$ 60 30 128 40 4 16 4 0 16 8.14 7 30 15 256 20 2 6 2 2 8 15 $7A$ 30 15 256 20 2 4 2 4 8 8.14 $7B$ 60 30 128 40 4 12 4 4 16 8.14 $7B$ 60 30 128 40 6 28 2 0 4 8.14 8 60 30 128 40 6 28 2 0 4 8.14 $8B$ 120 60 64 80 12 56 4 0 8 8.14 9 60 30 128 40 6 24 2 4 4 8.14 $9B$ 120 60 64 80 12 52 4 4 8 8.14 10 60 30 128 40 6 24 2 0 8 8.14 $10B$ 120 60 64 80 12 48 4 0 16 8.14 $11B$ 120 60 64 80 12 48 4 0 16 8.14 $11A$ 60 30 128 40 <	5B	60	30	128	40	-	20		4	8	8-14
6B 60 30 128 40 4 16 4 0 16 8.14 7 30 15 256 20 2 6 2 2 8 15 7A 30 15 256 20 2 4 2 4 8 8.14 7B 60 30 128 40 4 12 4 4 16 8.14 8 60 30 128 40 6 28 2 0 4 8.14 8B 120 60 64 80 12 56 4 0 8 8.14 9 60 30 128 40 6 24 2 4 4 15 9A 60 30 128 40 6 24 2 4 4 8.14 9B 120 60 64 80 12 52 4 4 8.14 10 60 30 128 40 6 24 2 0 8 8.14 10B 120 60 64 80 12 48 4 0 16 8.14 11 60 30 128 40 6 22 2 2 8 15 $11A$ 60 30 128 40 6 20 2 4 8 8.14 11 60 30 128 40 6 20 2	6				20	2	8		0	8	
730152562026228157A301525620242488-147B60301284041244168-148603012840628204158A6030128406282048-148B12060648012564088-1496030128406242448-149B12060648012524488-14106030128406242081510A6030128406242088-1410B120606480124840168-14116030128406222281511A6030128406202488-1411B1206064801248488-14121206064801248488-1413240120321602811248*815 </td <td>6A</td> <td>30</td> <td></td> <td></td> <td>20</td> <td>2</td> <td></td> <td>2</td> <td>0</td> <td>8</td> <td></td>	6A	30			20	2		2	0	8	
7A 30 15 256 20 2 4 2 4 8 8.14 $7B$ 60 30 128 40 4 12 4 4 16 8.14 8 60 30 128 40 6 28 2 0 4 15 $8A$ 60 30 128 40 6 28 2 0 4 8.14 $8B$ 120 60 64 80 12 56 4 0 8 8.14 9 60 30 128 40 6 24 2 4 4 8.14 $9A$ 60 30 128 40 6 24 2 4 4 8.14 $9B$ 120 60 64 80 12 52 4 4 8 8.14 10 60 30 128 40 6 24 2 0 8 8.14 $10B$ 120 60 64 80 12 48 4 0 16 8.14 11 60 30 128 40 6 22 2 2 8 8.14 $11A$ 60 30 128 40 6 22 2 2 8 8.14 $11B$ 120 60 64 80 12 44 4 4 16 8.14 $12A$ 120 60 64 80 <td>6B</td> <td>60</td> <td>30</td> <td></td> <td>40</td> <td>4</td> <td>16</td> <td>4</td> <td>0</td> <td>16</td> <td>8-14</td>	6B	60	30		40	4	16	4	0	16	8-14
$7B$ 60 30 128 40 4 12 4 4 16 8.14 8 60 30 128 40 6 28 2 0 4 15 $8A$ 60 30 128 40 6 28 2 0 4 8.14 $8B$ 120 60 64 80 12 56 4 0 8 8.14 9 60 30 128 40 6 26 2 2 4 15 $9A$ 60 30 128 40 6 24 2 4 4 8.14 $9B$ 120 60 64 80 12 52 4 4 8 8.14 10 60 30 128 40 6 24 2 0 8 15 $10A$ 60 30 128 40 6 24 2 0 8 8.14 10 60 30 128 40 6 22 2 2 8 15 $11A$ 60 30 128 40 6 20 2 4 8 8.14 11 60 30 128 40 6 20 2 4 8 8.14 $11B$ 120 60 64 80 12 48 4 8^* 8 15 $12A$ 120 60 64 80 1	7	30	15		20	2	6	2	2	8	15
8603012840628204158A6030128406282048-148B12060648012564088-149603012840626224159A6030128406242448-149B12060648012524488-14106030128406242081510A6030128406242088-14106030128406242088-1410B120606480124840168-14116030128406222281511A6030128406202488-1411120606480124444168-1412120606480124848*81512A1206064801240416*88-14121206064801240416*	7A	30	15		20	2	4	2	4	8	8-14
$8A$ 60 30 128 40 6 28 2 0 4 8.14 $8B$ 120 60 64 80 12 56 4 0 8 8.14 9 60 30 128 40 6 26 2 2 4 15 $9A$ 60 30 128 40 6 24 2 4 4 8.14 $9B$ 120 60 64 80 12 52 4 4 8 8.14 10 60 30 128 40 6 24 2 0 8 15 $10A$ 60 30 128 40 6 24 2 0 8 8.14 $10B$ 120 60 64 80 12 48 4 0 16 8.14 11 60 30 128 40 6 20 2 4 8 8.14 $11A$ 60 30 128 40 6 20 2 4 8 8.14 $11B$ 120 60 64 80 12 44 4 4 16 8.14 $12A$ 120 60 64 80 12 40 4 16^* 8 8.14 $12A$ 120 32 160 28 112 4 8^* 8 15 $13A$ 240 120 32 160											
$8B$ 120 60 64 80 12 56 4 0 8 $8-14$ 9 60 30 128 40 6 26 2 2 4 15 9A 60 30 128 40 6 24 2 4 4 $8-14$ 9B 120 60 64 80 12 52 4 4 8 $8-14$ 10 60 30 128 40 6 24 2 0 8 15 10A 60 30 128 40 6 24 2 0 8 $8-14$ 10B 120 60 64 80 12 48 4 0 16 $8-14$ 11 60 30 128 40 6 22 2 2 8 15 11A 60 30 128 40 6 20 2 4 8 $8-14$ 11 60 30 128 40 6 20 2 4 8 $8-14$ 11B 120 60 64 80 12 44 4 4 16 $8-14$ 12 120 60 64 80 12 40 4 16^* 8 $8-14$ 12A 120 32 160 24 96 8 16^* 16 $8-14$ $13A$ 240 120 32 160 28 104 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>-</td> <td></td>	-								0	-	
9603012840626224159A6030128406242448-149B12060648012524488-14106030128406242081510A6030128406242088-1410B120606480124840168-14116030128406222281511A6030128406202488-1411B120606480124444168-1412120606480124848*81512A1206064801240416*88-14121206064801240416*88-1413240120321602811248*81513A2401203216028104416*88-1413B480240163205623288*161514A4802401632056									0	-	
9A6030128406242448-149B12060648012524488-14106030128406242081510A6030128406242088-1410B120606480124840168-14116030128406222281511A6030128406202488-1411B120606480124444168-1412120606480124848*81512A1206064801240416*88-1412B240120321602811248*81513A240120321602811248*81513A2401203216028104416*88-1413B480240163205623288*161514A480240163205623288*161514A480240163205									-		
9B12060648012524488-14106030128406242081510A6030128406242088-1410B120606480124840168-14116030128406222281511A6030128406202488-1411B120606480124444168-1412120606480124444168-1412120606480124848*81512A1206064801240416*88-1413240120321602811248*81513A2401203216028104416*88-1413B480240163205623288*161514A480240163205623288*161514A480240163205623288*161514A48024016320 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td></td<>						-				-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$10A$ 60 30 128 40 6 24 2 0 8 $8-14$ $10B$ 120 60 64 80 12 48 4 0 16 $8-14$ 11 60 30 128 40 6 22 2 2 8 15 $11A$ 60 30 128 40 6 20 2 4 8 $8-14$ $11B$ 120 60 64 80 12 44 4 4 16 $8-14$ 12 120 60 64 80 12 48 4 8^* 8 15 $12A$ 120 60 64 80 12 40 4 16^* 8 $8-14$ $12B$ 240 120 32 160 24 96 8 16^* 16 $8-14$ 13 240 120 32 160 28 112 4 8^* 8 15 $13A$ 240 120 32 160 28 104 4 16^* 8 $8-14$ $13B$ 480 240 16 320 56 232 8 8^* 16 15 $14A$ 480 240 16 320 56 232 8 8^* 16 15 $14A$ 480 240 16 320 56 224 8 16^* 16 $8-14$ $14B$ <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td></td<>								-	-		
$10B$ 120 60 64 80 12 48 4 0 16 $8-14$ 11 60 30 128 40 6 22 2 2 8 15 $11A$ 60 30 128 40 6 20 2 4 8 $8-14$ $11B$ 120 60 64 80 12 44 4 4 16 $8-14$ 12 120 60 64 80 12 48 4 8^* 8 15 $12A$ 120 60 64 80 12 40 4 16^* 8 $8-14$ $12B$ 240 120 32 160 24 96 8 16^* 16 $8-14$ 13 240 120 32 160 28 112 4 8^* 8 15 $13A$ 240 120 32 160 28 104 4 16^* 8 $8-14$ $13B$ 480 240 16 320 56 224 8 16^* 16 $8-14$ 14 480 240 16 320 56 232 8 8^* 16 15 $14A$ 480 240 16 320 56 224 8 16^* 16 $8-14$ $14B$ 960 480 8 640 112 488 8 8^* 16 15 $15A$ <									-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						-			-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								-	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										_	. –
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								•	-	-	- · ·
13A 240 120 32 160 28 104 4 16* 8 8-14 13B 480 240 16 320 56 224 8 16* 16 8-14 14 480 240 16 320 56 232 8 8* 16 15 14A 480 240 16 320 56 232 8 8* 16 15 14A 480 240 16 320 56 224 8 16* 16 8-14 14B 960 480 8 640 112 464 16 16* 32 8-14 15 960 480 8 640 120 488 8 8* 16 15 15A 960 480 8 640 120 480 8 16* 16 8-14											
13B 480 240 16 320 56 224 8 16* 16 8-14 14 480 240 16 320 56 232 8 8* 16 15 14A 480 240 16 320 56 232 8 8* 16 15 14A 480 240 16 320 56 224 8 16* 16 8-14 14B 960 480 8 640 112 464 16 16* 32 8-14 15 960 480 8 640 120 488 8 8* 16 15 15A 960 480 8 640 120 480 8 16* 16 8-14									-		
14 480 240 16 320 56 232 8 8* 16 15 14A 480 240 16 320 56 224 8 16* 16 8-14 14B 960 480 8 640 112 464 16 16* 32 8-14 15 960 480 8 640 120 488 8 8* 16 15 15A 960 480 8 640 120 480 8 16* 16 8-14											
14A 480 240 16 320 56 224 8 16* 16 8-14 14B 960 480 8 640 112 464 16 16* 32 8-14 15 960 480 8 640 120 488 8 8* 16 15 15A 960 480 8 640 120 480 8 16* 16 8-14											
14B 960 480 8 640 112 464 16 16* 32 8-14 15 960 480 8 640 120 488 8 8* 16 15 15A 960 480 8 640 120 480 8 16* 16 8-14											
15 960 480 8 640 120 488 8 8* 16 15 15A 960 480 8 640 120 488 8 8* 16 15											
15A 960 480 8 640 120 480 8 16* 16 8-14									-		
I 15R I 1920 I 960 I 4 I 1280 I 240 I 976 I 16 I 16* I 32 I 9₋14	15A 15B	1920	960	4	1280	240	976	16	16*	32	8-14
135 1320 300 4 1280 240 370 10 10 32 314 16 1920 960 4 1280 248 1000 8 8* 16 15											
16 1720 960 4 1200 240 1000 6 6 10 13 16A 1920 960 4 1280 248 992 8 16* 16 8-14											

Table 11: DPDCH and DPCCH fields

* If TFCI bits are not used, then DTX shall be used in TFCI field.

NOTE1: Compressed mode is only supported through spreading factor reduction for SF=512 with TFCI.

NOTE2: Compressed mode by spreading factor reduction is not supported for SF=4.

NOTE3: If the Node B receives an invalid combination of data frames for downlink transmission, the procedure specified in [15], sub-clause 5.1.2, may require the use of DTX in both the DPDCH and the TFCI field of the DPCCH.

The pilot bit patterns are described in table 12. The shadowed column part of pilot bit pattern is defined as FSW and FSWs can be used to confirm frame synchronization. (The value of the pilot bit pattern other than FSWs shall be "11".) In table 12, the transmission order is from left to right.

In downlink compressed mode through spreading factor reduction, the number of bits in the TPC and Pilot fields are doubled. Symbol repetition is used to fill up the fields. Denote the bits in one of these fields in normal mode by X_1 , X_2 , X_3 , ..., X_X . In compressed mode the following bit sequence is sent in corresponding field: X_1 , X_2 , X_1 , X_2 , X_3 , X_4 , X_3 , X_4 ,..., X_X .

	N _{pilot} = 2	N _{pilo} (*			N _{pilo} (*						N _{pilot} (*	= 16 3)			
Symbol #	0	0	1	0	1	2	3	0	1	2	3	4	5	6	7
Slot #0	11	11	11	11	11	11	10	11	11	11	10	11	11	11	10
1	00	11	00	11	00	11	10	11	00	11	10	11	11	11	00
2	01	11	01	11	01	11	01	11	01	11	01	11	10	11	00
3	00	11	00	11	00	11	00	11	00	11	00	11	01	11	10
4	10	11	10	11	10	11	01	11	10	11	01	11	11	11	11
5	11	11	11	11	11	11	10	11	11	11	10	11	01	11	01
6	11	11	11	11	11	11	00	11	11	11	00	11	10	11	11
7	10	11	10	11	10	11	00	11	10	11	00	11	10	11	00
8	01	11	01	11	01	11	10	11	01	11	10	11	00	11	11
9	11	11	11	11	11	11	11	11	11	11	11	11	00	11	11
10	01	11	01	11	01	11	01	11	01	11	01	11	11	11	10
11	10	11	10	11	10	11	11	11	10	11	11	11	00	11	10
12	10	11	10	11	10	11	00	11	10	11	00	11	01	11	01
13	00	11	00	11	00	11	11	11	00	11	11	11	00	11	00
14	00	11	00	11	00	11	11	11	00	11	11	11	10	11	01

Table 12: Pilot bit patterns for downlink DPCCH with N_{pilot} = 2, 4, 8 and 16

NOTE *1: This pattern is used except slot formats 2B and 3B.

- NOTE *2: This pattern is used except slot formats 0B, 1B, 4B, 5B, 8B, and 9B.
- NOTE *3: This pattern is used except slot formats 6B, 7B, 10B, 11B, 12B, and 13B.
- NOTE: For slot format *n*B where n = 0, ..., 15, the pilot bit pattern corresponding to N_{pilot}/2 is to be used and symbol repetition shall be applied.

The relationship between the TPC symbol and the transmitter power control command is presented in table 13.

	Transmitter power		
N _{TPC} = 2	N _{TPC} = 4	N _{TPC} = 8	control command
11	1111	11111111	1
00	0000	0000000	0

Table 13: TPC Bit Pattern

Multicode transmission may be employed in the downlink, i.e. the CCTrCH (see [3]) is mapped onto several parallel downlink DPCHs using the same spreading factor. In this case, the Layer 1 control information is transmitted only on the first downlink DPCH. DTX bits are transmitted during the corresponding time period for the additional downlink DPCHs, see figure 10.

In case there are several CCTrCHs mapped to different DPCHs transmitted to the same UE different spreading factors can be used on DPCHs to which different CCTrCHs are mapped. Also in this case, Layer 1 control information is only transmitted on the first DPCH while DTX bits are transmitted during the corresponding time period for the additional DPCHs.

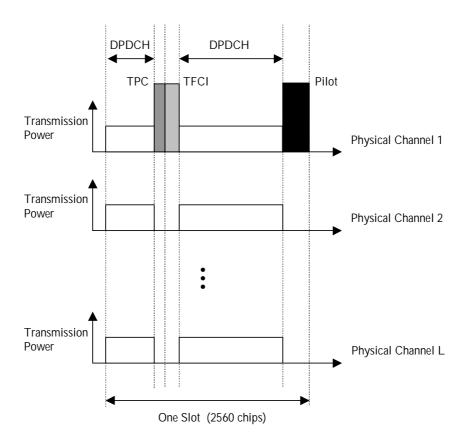


Figure 10: Downlink slot format in case of multi-code transmission

CHANGE REQUEST										
^ж 2	<mark>5.212</mark> CR	<mark>106</mark> ^អ	ev <mark>-</mark> #	Current version:	4.0.0 [#]					
For <u>HELP</u> on using this form, see bottom of this page or look at the pop-up text over the \Re symbols.										
Proposed change affe	Proposed change affects: # (U)SIM ME/UE X Radio Access Network X Core Network									
Title: % C	Correction of co	mpressed mode	by puncturing							
Source: % E	ricsson									
Work item code: #				Date: 🕷 🛛 M	<mark>ay 15, 2001</mark>					
De	e <u>one</u> of the follo F (correction) A (correspond B (addition of C (functional D (editorial m	ds to a correction i feature), modification of fea odification) ns of the above ca	ture)	Use <u>one</u> of the t 2 (GS se) R96 (Rei R97 (Rei R98 (Rei R99 (Rei REL-4 (Rei	EL-4 following releases: M Phase 2) lease 1996) lease 1997) lease 1998) lease 1999) lease 4) lease 5)					
Reason for change:	Correction	is necessary to a	void ambiguity							
Summary of change:		on calculating #		ompressed by punc hate to create the g						
Consequences if solution of approved:	* Ambiguity i	n calculations								
Clauses affected:	4.2.7.2 and	4.2.7.2.1.2								
	H Other co	re specifications cifications ecifications	ж							
Other comments:	ж									

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

4.2.7.2 Determination of rate matching parameters in downlink

For downlink $N_{data,i}$ does not depend on the transport format combination *j*. $N_{data,*}$ is given by the channelization code(s) assigned by higher layers. Denote the number of physical channels used for the CCTrCH by *P*. $N_{data,*}$ is the number of bits available to the CCTrCH in one radio frame and defined as $N_{data,*} = P \times 15 \times (N_{data,1} + N_{data,2})$, where $N_{data,1}$ and $N_{data,2}$ are defined in [2]. Note that contrary to the uplink, the same rate matching patterns are used in TTIs containing no compressed radio frames and in TTIs containing radio frames compressed by spreading factor reduction or higher layer scheduling.

In the following, the total amount of puncturing or repetition for the TTI is calculated.

Additional calculations for TTIs containing radio frames compressed by puncturing in case fixed positions are used, are performed to determine this total amount of rate matching needed.

For compressed mode by puncturing, in TTIs where some compressed radio frames occur, the puncturing is increased or the repetition is decreased compared to what is calculated according to the rate matching parameters provided by higher layers. This allows to cope with reduction of available data bits on the physical channel(s) if the slot format for the compressed frame(s) contains fewer data bits than for the normal frames(s), and to create room for later insertion of marked bits, noted p-bits, which will identify the positions of the gaps in the compressed radio frames.

The amount of additional puncturing corresponds to the number of bits to create the gap in the TTI for TrCH *i*, plus the difference between the number of data bits available in normal frames and in compressed frames, due to slot format change. In case of fixed positions, it is calculated in addition to the amount of rate matching indicated by higher layers. It is noted $Np_{i,max}^{TTI,m}$.

In fixed positions case, to obtain the total rate matching $\Delta N_{i,\max}^{TTI,cm,m}$ to be performed on the TTI *m*, $Np_{i,\max}^{TTI,m}$ is subtracted from $\Delta N_{i,\max}^{TTI,m}$ (calculated based on higher layers RM parameters as for normal rate matching). This allows to create room for the $Np_{i,\max}^{TTI,m}$ bits p to be inserted later. If the result is null, i.e. the amount of repetition matches exactly the amount of additional puncturing needed, then no rate matching is necessary.

In case of compressed mode by puncturing and fixed positions, for some calculations, $N'_{data,*}$ is used for radio frames with gap instead of $N_{data,*}$, where $N'_{data,*} = P \times 15 \times (N'_{data1} + N'_{data2})$. N'_{data1} and N'_{data2} are the number of bits in the data fields of the slot format used for the <u>frames compressed by puncturing current compressed mode, i.e. slot</u> format A or B as defined in [2] corresponding to the Spreading Factor and the number of transmitted slots in use.

The number of bits corresponding to the gap for TrCH *i*, in each radio frame of its TTI is calculated using the number of bits to remove on all Physical Channels $N_{TGL}[k]$, where k is the radio frame number in the largest TTI.

For each radio frame k of the largest TTI that is overlapping with a transmission gap, N_{TGL}[k] is given by the relation:

$$N_{TGL} = \begin{cases} \frac{TGL}{15} \times N'_{data,*,\tau} \text{ if } N_{first} + TGL \le 15 \\ \frac{15 - N_{first}}{15} \times N'_{data,*,\tau} \text{ in first radio frame of the gap if } N_{first} + TGL > 15 \\ \frac{TGL - (15 - N_{first})}{15} \times N'_{data,*,\tau} \text{ in second radio frame of the gap if } N_{first} + TGL > 15 \end{cases}$$

N_{first} and TGL are defined in subclause 4.4.

Note that $N_{TGL}[k] = 0$ if radio frame k is not overlapping with a transmission gap.

4.2.7.2.1.2 Calculations for compressed mode by puncturing

Calculations of $\Delta N_{i,\max}^{TTI,m}$ for all TTI *m* within largest TTI, for all TrCH *i*

First an intermediate calculation variable $N_{i,*}$ is calculated for all transport channels *i* by the following formula:

$$N_{i,*} = \frac{1}{F_i} \times \left(\max_{I \in TFS(i)} N_{i,I}^{TTI} \right)$$

Then an intermediate calculation variable $\Delta N_{i,*}$ is derived from $N_{i,*}$ by the formula given at subclause 4.2.7, for all TrCH *i*.

In order to compute the $\Delta N_{i,l}^{TTI,m}$ parameters for all TrCH *i*, all TF *l* and all TTI with number *m* in the largest TTI, we first compute an intermediate parameter $\Delta N_{i,max}^{m}$ by the following formula :

$$\Delta N_{i,\max}^m = F_i \times \Delta N_{i,*}$$

Calculations of $Np_{i,\max}^n$ and $Np_{i,\max}^{TTI,m}$

Let $Np_{i,\max}^n$ be the number of bits to eliminate on TrCH *i* to create the gap for compressed mode and to cope for the reduction of the number of available data bits in the compressed frame if the changed slot format contains fewer data bits than for normal frame, in each radio frame n of the TTI, calculated for the Transport Format Combination of TrCH *i*, in which the number of bits of TrCH *i* is at its maximum.

 $Np_{i,\max}^n$ is calculated for each radio frame n of the TTI in the following way.

Intermediate variables Z_i for i = 1 to I are calculated using the formula (1) in 4.2.7, by replacing $N_{data,j}$ in the frames compressed by puncturing with by $(N_{TGL}[n] + (N_{data,*} - N'_{data,*}))$.

The number of bits corresponding to the gap for TrCH *i*, in each radio frame of its TTI is calculated using the number of bits to remove on all Physical Channels $N_{TGL}[k]$, where k is the radio frame number in the largest TTI.

For each radio frame k of the largest TTI that is overlapping with a transmission gap, N_{TGL}[k] is given by the relation:

$$N_{TGL} = \begin{cases} \frac{TGL}{15} \times N'_{data,^*}, \text{ if } N_{first} + TGL \le 15 \\ \frac{15 - N_{first}}{15} \times N'_{data,^*}, \text{ in first radio frame of the gap if } N_{first} + TGL > 15 \\ \frac{TGL - (15 - N_{first})}{15} \times N'_{data,^*}, \text{ in second radio frame of the gap if } N_{first} + TGL > 15 \end{cases}$$

N_{first} and TGL are defined in subclause 4.4.

Note that N $_{TGL}[k] = 0$ if radio frame k is not overlapping with a transmission gap.

Then $Np_{i,\max}^n = (Z_i - Z_{i-1})$ for i = 1 to I

The total number of bits $Np_{i,\max}^{TTI,m}$ corresponding to the gaps for compressed mode for TrCH i in the TTI is calculated as:

$$Np_{i,\max}^{TTI,m} = \sum_{n=m < F_i}^{n=(m+1) < F_i-1} Np_{i,\max}^n$$

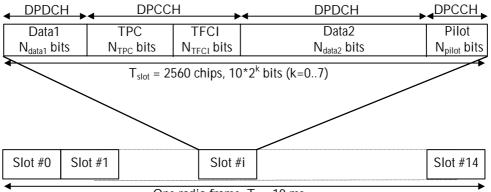
The amount of rate matching $\Delta N_{i,\max}^{TTI,cm,m}$ for the highest TrCH bit rate is then computed by the following formula :

$$\Delta N_{i,\max}^{TTI,cm,m} = \Delta N_{i,\max}^m - N p_{i,\max}^{TTI,m}$$

If $\Delta N_{i,\text{max}}^{TTI,cm,m} = 0$, then, for TrCH *i*, the output data of the rate matching is the same as the input data and the rate matching algorithm of subclause 4.2.7.5 does not need to be executed.

If $\Delta N_{i,\max}^{TTI,cm,m} \neq 0$, then, for TrCH *i*, the rate matching algorithm of subclause 4.2.7.5 needs to be executed, and the parameters listed in subclauses 4.2.7.2.1.3 and 4.2.7.2.1.4 shall be used for determining e_{ini} , e_{plus} , and e_{minus} , and $\Delta N_{i,l}^{TTI,m}$.

CHANGE REQUEST									
^ж 25.	<mark>211</mark> CR <mark>1</mark>	<mark>02</mark>	# ev <mark>-</mark>	ж (Current vers	^{ion:} 4.0.0	ж		
For <u>HELP</u> on using this form, see bottom of this page or look at the pop-up text over the \Re symbols.									
Proposed change affects: # (U)SIM ME/UE X Radio Access Network X Core Network									
Title: % Cor	rection of com	pressed mode	e by punctur	ing					
Source: % Eric	sson								
Work item code: #					<i>Date:</i>	May 15, 200)1		
Detai	one of the follow F (correction) A (corresponds B (addition of fe C (functional mod led explanations und in 3GPP <u>TR</u>	to a correction eature), odification of fea lification) s of the above c	ature)	elease)	Use <u>one</u> of 2 R96 R97 R98 R99 REL-4	REL-4 the following re (GSM Phase 2 (Release 1996, (Release 1997, (Release 1999, (Release 4)) (Release 5))))		
Reason for change: #	Correction is	necessary to	avoid ambig	uity					
Summary of change: #	Clarification wethod	what slot form	at that shall	be used	d for each c	ompressed m	ode		
Consequences if % not approved:	Ambiguity in	specification of	on what slot	format	to use in co	mpressed frar	nes		
Clauses affected: #	5.3.2								
Other specs % affected:	Other core Test speci O&M Spec		s ¥						
Other comments: #									


- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request

5.3.2 Dedicated downlink physical channels

There is only one type of downlink dedicated physical channel, the Downlink Dedicated Physical Channel (downlink DPCH).

Within one downlink DPCH, dedicated data generated at Layer 2 and above, i.e. the dedicated transport channel (DCH), is transmitted in time-multiplex with control information generated at Layer 1 (known pilot bits, TPC commands, and an optional TFCI). The downlink DPCH can thus be seen as a time multiplex of a downlink DPDCH and a downlink DPCCH, compare subclause 5.2.1.

Figure 9 shows the frame structure of the downlink DPCH. Each frame of length 10 ms is split into 15 slots, each of length $T_{slot} = 2560$ chips, corresponding to one power-control period.

One radio frame, $T_f = 10 \text{ ms}$

The parameter k in figure 9 determines the total number of bits per downlink DPCH slot. It is related to the spreading factor SF of the physical channel as $SF = 512/2^{k}$. The spreading factor may thus range from 512 down to 4.

The exact number of bits of the different downlink DPCH fields (N_{pilot}, N_{TPC}, N_{TFCI}, N_{data1} and N_{data2}) is given in table 11. What slot format to use is configured by higher layers and can also be reconfigured by higher layers.

There are basically two types of downlink Dedicated Physical Channels; those that include TFCI (e.g. for several simultaneous services) and those that do not include TFCI (e.g. for fixed-rate services). These types are reflected by the duplicated rows of table 11. It is the UTRAN that determines if a TFCI should be transmitted and it is mandatory for all UEs to support the use of TFCI in the downlink. The mapping of TFCI bits onto slots is described in [3].

In compressed <u>frames_mode</u>, a different slot format is used compared to normal mode. There are two possible compressed slot formats that are labelled A and B. <u>Slot f</u>Format B <u>shall be is</u>-used <u>in frames_for</u>-compressed <u>mode</u> by spreading factor reduction and <u>slot</u> format A <u>shall be is</u>-used <u>in frames compressed by puncturing or higher layer</u> <u>scheduling</u> for all other transmission time reduction methods</u>. The channel bit and symbol rates given in table 11 are the rates immediately before spreading.

0157.5512100420410A157.5512100420480B3015256200840881157.5512100222411B301525620044488230152562021420282B6030128404284048330152562021024283B603012840424444843015256202122048430152562021220484B6030128404244088530152562021022415A30152562021022415A3015256202820815A3015256202820815A3015	14 5 14 5 14 14 5 14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 5 14 5 14 14 14 5 14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 5 14 5 14 14 5 14
1157.5512100222411B301525620044488230152562021420212A30152562021420282B6030128404284048330152562021222213A30152562021024283B6030128404244448430152562021220414A30152562021220414A30152562021022415A30152562021022415A3015256202820816A30158256202820816A30152256202820816A30152256202820886B60<	5 14 5 14 14 5 5 14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 5 14 14 5 14
1B301525620044488-230152562021420212A3015256202142028-2B6030128404284048-330152562021222213A3015256202102428-3B6030128404244448-43015256202122048-4B6030128404244088-5530152562021022415A30152562021022415A301525620210224485B6030128404204488-6A3015256202820816A3015256202820816A301525620282088-7	14 5 14 14 5 14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 14 5 14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 5 14
330152562021222213A3015256202102428-3B6030128404244444430152562021220414A3015256202122048-4B6030128404244088-530152562021022415A301525620282448-5B6030128404204488-63015256202820816A301525620282088-6B60301284041640168-7301525620242488-7B60301284041244168-860301284062820418A60301284062820418B1	5 14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/
4A 30 15 256 20 2 12 2 0 4 $8 4B$ 60 30 128 40 4 24 4 0 8 $8 5$ 30 15 256 20 2 10 2 2 4 1 $5A$ 30 15 256 20 2 8 2 4 4 $8 5B$ 60 30 128 40 4 20 4 4 8 $8 6$ 30 15 256 20 2 8 2 0 8 1 $6A$ 30 15 256 20 2 8 2 0 8 $8 6B$ 60 30 128 40 4 16 4 0 16 $8 7$ 30 15 256 20 2 6 2 2 8 1 $7A$ 30 15 256 20 2 4 2 4 8 $8 7B$ 60 30 128 40 4 12 4 4 16 $8 8B$ 120 60 64 80 12 56 4 0 8 $8 9B$ 120 60 64 80 12 52 4 4 $8 9B$ 120 60 64 80 12 52 4 4 <td>14</td>	14
4B 60 30 128 40 4 24 4 0 8 $8 5$ 30 15 256 20 2 10 2 2 4 1 $5A$ 30 15 256 20 2 8 2 4 4 $8 5B$ 60 30 128 40 4 20 4 4 8 $8 6$ 30 15 256 20 2 8 2 0 8 1 $6A$ 30 15 256 20 2 8 2 0 8 $8 6B$ 60 30 128 40 4 16 4 0 16 $8 7$ 30 15 256 20 2 6 2 2 8 1 $7A$ 30 15 256 20 2 6 2 2 8 1 $7A$ 30 15 256 20 2 4 2 4 8 $8 7B$ 60 30 128 40 4 12 4 4 16 $8 8B$ 120 60 64 80 12 56 4 0 8 $8 9B$ 120 60 64 80 12 52 4 4 $8 9B$ 120 60 64 80 12 52 4 4 <	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5
6301525620282081 $6A$ 301525620282088 $6B$ 60 30128 40 41640168 7 301525620262281 $7A$ 301525620242488 $7B$ 60301284041244168860301284062820418A6030128406282048960301284062622419A60301284062424489B1206064801252448810603012840624208110A6030128406242081	14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14
6B 60 30 128 40 4 16 4 0 16 8- 7 30 15 256 20 2 6 2 2 8 1 7A 30 15 256 20 2 4 2 4 8 8- 7B 60 30 128 40 4 12 4 4 16 8- 8 60 30 128 40 6 28 2 0 4 1 8A 60 30 128 40 6 28 2 0 4 8- 8B 120 60 64 80 12 56 4 0 8 8- 9 60 30 128 40 6 26 2 2 4 1 9A 60 30 128 40 6 24 2 4 4 8- 9B 120 60 64 80 12<	5
7 30 15 256 20 2 6 2 2 8 1 7A 30 15 256 20 2 4 2 4 8 8 7B 60 30 128 40 4 12 4 4 16 8 8 60 30 128 40 6 28 2 0 4 1 8A 60 30 128 40 6 28 2 0 4 1 8A 60 30 128 40 6 28 2 0 4 8 8B 120 60 64 80 12 56 4 0 8 8 9 60 30 128 40 6 26 2 2 4 1 9A 60 30 128 40 6 24 2 4 4 8 9B 120 60 64 80 12	14
7A 30 15 256 20 2 4 2 4 8 8- 7B 60 30 128 40 4 12 4 4 16 8- 8 60 30 128 40 6 28 2 0 4 1 8A 60 30 128 40 6 28 2 0 4 1 8A 60 30 128 40 6 28 2 0 4 8- 8B 120 60 64 80 12 56 4 0 8 8- 9 60 30 128 40 6 26 2 2 4 1 9A 60 30 128 40 6 24 2 4 4 8- 9B 120 60 64 80 12 52 4 4 8 8- 10 60 30 128 40 6	
7B 60 30 128 40 4 12 4 4 16 8- 8 60 30 128 40 6 28 2 0 4 1 8A 60 30 128 40 6 28 2 0 4 1 8B 120 60 64 80 12 56 4 0 8 8- 9 60 30 128 40 6 26 2 2 4 1 9A 60 30 128 40 6 24 2 4 4 8- 9B 120 60 64 80 12 52 4 4 8 8- 9B 120 60 64 80 12 52 4 4 8 8- 10 60 30 128 40 6 24 2 0 8 1 10A 60 30 128 40 <td< td=""><td>5</td></td<>	5
8 60 30 128 40 6 28 2 0 4 1 8A 60 30 128 40 6 28 2 0 4 1 8B 120 60 64 80 12 56 4 0 8 8- 9 60 30 128 40 6 26 2 2 4 1 9A 60 30 128 40 6 24 2 4 4 8- 9B 120 60 64 80 12 52 4 4 8 10 60 30 128 40 6 24 2 0 8 1 10A 60 30 128 40 6 24 2 0 8 8	14
8A 60 30 128 40 6 28 2 0 4 8- 8B 120 60 64 80 12 56 4 0 8 8- 9 60 30 128 40 6 26 2 2 4 1 9A 60 30 128 40 6 24 2 4 4 8- 9B 120 60 64 80 12 52 4 4 8 8- 10 60 30 128 40 6 24 2 0 8 1 10A 60 30 128 40 6 24 2 0 8 8-	14
8B 120 60 64 80 12 56 4 0 8 8- 9 60 30 128 40 6 26 2 2 4 1 9A 60 30 128 40 6 24 2 4 4 8- 9B 120 60 64 80 12 52 4 4 8 8- 10 60 30 128 40 6 24 2 0 8 1 10A 60 30 128 40 6 24 2 0 8 1	
9 60 30 128 40 6 26 2 2 4 1 9A 60 30 128 40 6 24 2 4 4 8- 9B 120 60 64 80 12 52 4 4 8 8- 10 60 30 128 40 6 24 2 0 8 1 10A 60 30 128 40 6 24 2 0 8 8-	
9A 60 30 128 40 6 24 2 4 4 8- 9B 120 60 64 80 12 52 4 4 8 8- 10 60 30 128 40 6 24 2 0 8 1 10A 60 30 128 40 6 24 2 0 8 8-	-
9B 120 60 64 80 12 52 4 4 8 8- 10 60 30 128 40 6 24 2 0 8 1 10A 60 30 128 40 6 24 2 0 8 8-	
10 60 30 128 40 6 24 2 0 8 1 10A 60 30 128 40 6 24 2 0 8 1	
10A 60 30 128 40 6 24 2 0 8 8-	
	14
	5
	14
11B 120 60 64 80 12 44 4 4 16 8- 12 120 (0 (4 80 12 44 4 16 8-	
	5
	14
	14 5
	5
	1/
	14
	14
	14 5
	14 5 14
	14 5 14 14
	14 5 14 14 5
	14 5 14 14 5 14
16 1720 700 4 1200 240 1000 6 6 10 1 16A 1920 960 4 1280 248 992 8 16* 16 8-	14 5 14 14 5

Table 11: DPDCH and DPCCH fields

* If TFCI bits are not used, then DTX shall be used in TFCI field.

NOTE1: Compressed mode is only supported through spreading factor reduction for SF=512 with TFCI.

NOTE2: Compressed mode by spreading factor reduction is not supported for SF=4.

NOTE3: If the Node B receives an invalid combination of data frames for downlink transmission, the procedure specified in [15], sub-clause 5.1.2, may require the use of DTX in both the DPDCH and the TFCI field of the DPCCH.

The pilot bit patterns are described in table 12. The shadowed column part of pilot bit pattern is defined as FSW and FSWs can be used to confirm frame synchronization. (The value of the pilot bit pattern other than FSWs shall be "11".) In table 12, the transmission order is from left to right.

In downlink compressed mode through spreading factor reduction, the number of bits in the TPC and Pilot fields are doubled. Symbol repetition is used to fill up the fields. Denote the bits in one of these fields in normal mode by X_1 , X_2 , X_3 , ..., X_X . In compressed mode the following bit sequence is sent in corresponding field: X_1 , X_2 , X_1 , X_2 , X_3 , X_4 , X_3 , X_4 ,..., X_X .

	N _{pilot} = 2	N _{pilo} (*			N _{pilo} (*						N _{pilot} (*	= 16 3)			
Symbol #	0	0	1	0	1	2	3	0	1	2	3	4	5	6	7
Slot #0	11	11	11	11	11	11	10	11	11	11	10	11	11	11	10
1	00	11	00	11	00	11	10	11	00	11	10	11	11	11	00
2	01	11	01	11	01	11	01	11	01	11	01	11	10	11	00
3	00	11	00	11	00	11	00	11	00	11	00	11	01	11	10
4	10	11	10	11	10	11	01	11	10	11	01	11	11	11	11
5	11	11	11	11	11	11	10	11	11	11	10	11	01	11	01
6	11	11	11	11	11	11	00	11	11	11	00	11	10	11	11
7	10	11	10	11	10	11	00	11	10	11	00	11	10	11	00
8	01	11	01	11	01	11	10	11	01	11	10	11	00	11	11
9	11	11	11	11	11	11	11	11	11	11	11	11	00	11	11
10	01	11	01	11	01	11	01	11	01	11	01	11	11	11	10
11	10	11	10	11	10	11	11	11	10	11	11	11	00	11	10
12	10	11	10	11	10	11	00	11	10	11	00	11	01	11	01
13	00	11	00	11	00	11	11	11	00	11	11	11	00	11	00
14	00	11	00	11	00	11	11	11	00	11	11	11	10	11	01

Table 12: Pilot bit patterns for downlink DPCCH with N_{pilot} = 2, 4, 8 and 16

NOTE *1: This pattern is used except slot formats 2B and 3B.

NOTE *2: This pattern is used except slot formats 0B, 1B, 4B, 5B, 8B, and 9B.

- NOTE *3: This pattern is used except slot formats 6B, 7B, 10B, 11B, 12B, and 13B.
- NOTE: For slot format *n*B where n = 0, ..., 15, the pilot bit pattern corresponding to N_{pilot}/2 is to be used and symbol repetition shall be applied.

The relationship between the TPC symbol and the transmitter power control command is presented in table 13.

	TPC Bit Pattern								
N _{TPC} = 2	N _{TPC} = 4	N _{TPC} = 8	control command						
11	1111	11111111	1						
00	0000	0000000	0						

Table 13: TPC Bit Pattern

Multicode transmission may be employed in the downlink, i.e. the CCTrCH (see [3]) is mapped onto several parallel downlink DPCHs using the same spreading factor. In this case, the Layer 1 control information is transmitted only on the first downlink DPCH. DTX bits are transmitted during the corresponding time period for the additional downlink DPCHs, see figure 10.

In case there are several CCTrCHs mapped to different DPCHs transmitted to the same UE different spreading factors can be used on DPCHs to which different CCTrCHs are mapped. Also in this case, Layer 1 control information is only transmitted on the first DPCH while DTX bits are transmitted during the corresponding time period for the additional DPCHs.

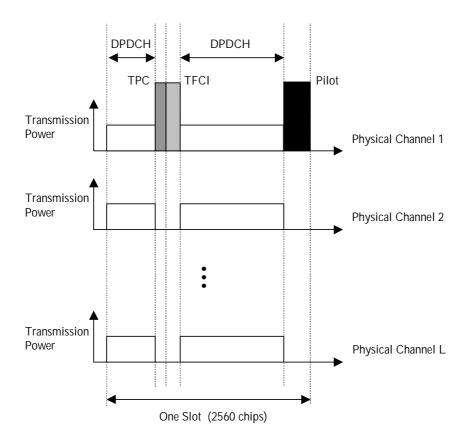


Figure 10: Downlink slot format in case of multi-code transmission