

OFDM as a candidate for stand-alone DSCH

Wavecom, France Telecom, Nortel Networks

3GPP RAN1#19 Las Vegas 27th February - 2nd March 2001

Proposal

Notion presented at TSGR2#19 and introduced in TR 25.950.

Rel'99 architecture is already suitable for its support

• What is a stand-alone DSCH?

a DSCH on a DL carrier different from the DL carrier that carries its companion DPCH

 Proposal: use of OFDM modulation to achieve high data rate in downlink up to 250 km/h

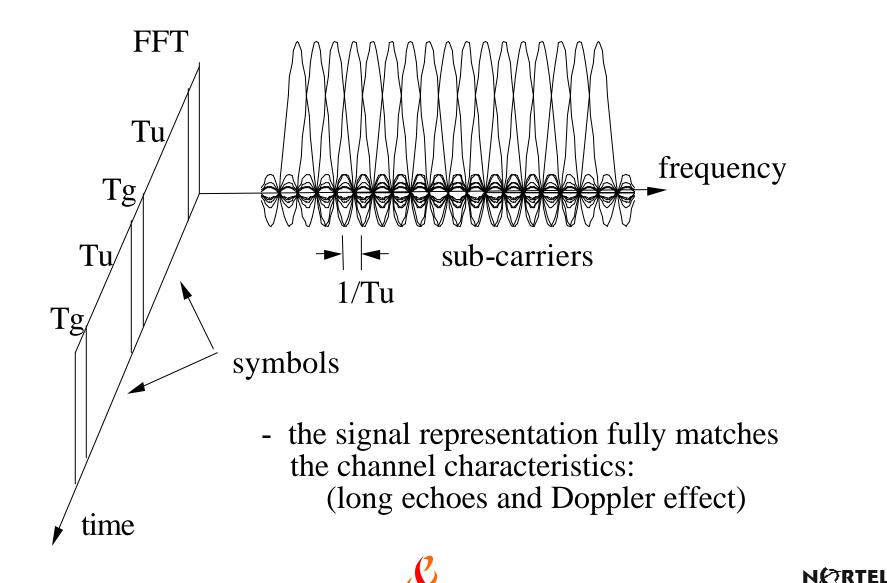
Optional feature for the UE

COFDM principle (Coded OFDM)

† OFDM modulation (Orthogonal Frequency Division Multiplex)

- **†** High data rate information is spread over a multiplex of adjacent <u>orthogonal</u> subcarriers
- t Low data rate sub-carriers are sent simultaneously
 - => OFDM symbol duration >> maximum propagation delay

Intrinsic robustness to multipath effect

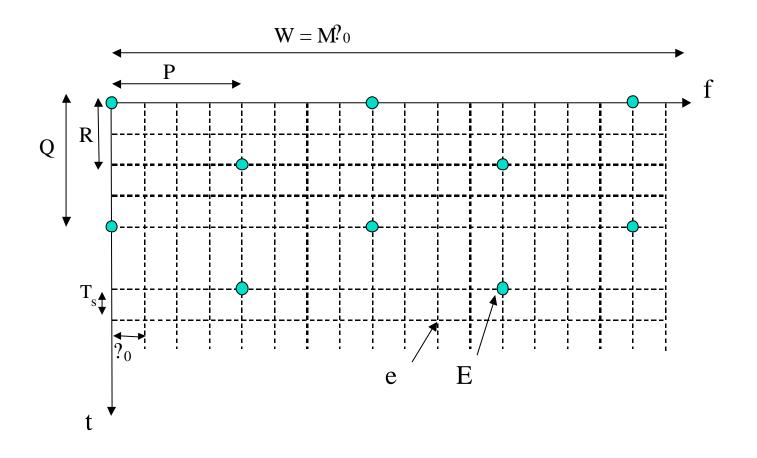

- f Guard interval adding (cyclic prefix) => absorption of all ISI
- Frequency selectivity (deep fades) to be overcome: Interleaving + Error Correcting Code
- t Widely used technique

OFDM symbol representation

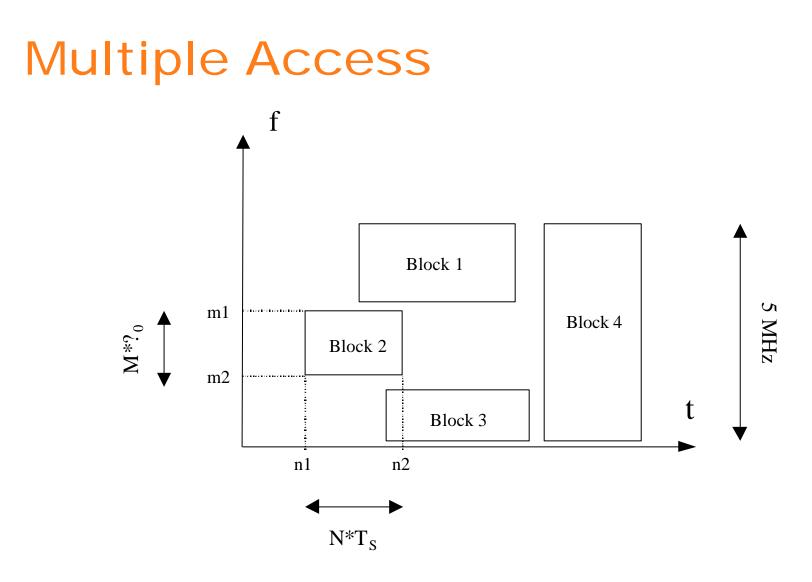
NETWORKS

Example of COFDM parameters

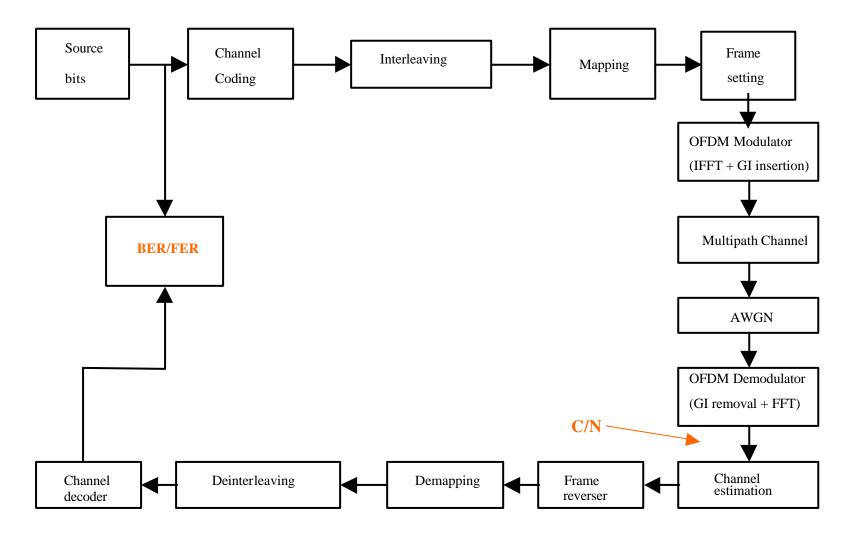
Physical Channel	Type 1	Type 2	Type 3
UMTS propagation conditions (vehicle speed: km/h)	Indoor A (3, 10) Indoor B (3, 10) Out-In A (3, 50, 120)	Out-In B (3, 50, 120) Vehicular A (50, 120, 250)	Vehicular B (50, 120, 250)
3GPP propagation conditions*	Cases 1, 3, 4, 5		Case 2
Useful symbol duration T_{μ} (?s)	15.625	78.125	140.625
Guard interval duration T_{o} (?s)	1.04	5.2	26.04
T_{g}/T_{μ} (%)	6.7	6.7	18.6
Overall symbol duration $T_s = T_u + T_a$ (?s)	16.67	83.325	166.67
Carrier separation $?_0$ (kHz)	64	12.8	7.11
FFT size	120	600	1080
Number of sub-carriers	80	400	720
Number of OFDM symbol per frame (10 ms)	600	120	60
Constellation	QPSK	QPSK	QPSK
Channel bit rate	9.6	9.6	8.625


Physical Channel	Type 1	Type 2	Type 3
Coding rate	3/4	3/4	4/5
Channel bit rate	9.6	9.6	8.625
User bit rate**	7.2	7.2	6.9

Time-frequency frame setting

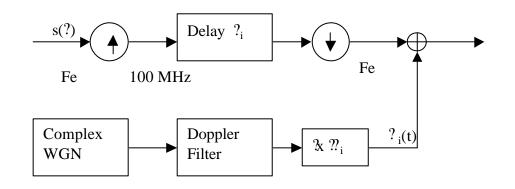


Channel estimation can help for synchronization and scheduling


Flexible and dynamic

Simulation chain synoptic

Simulation conditions

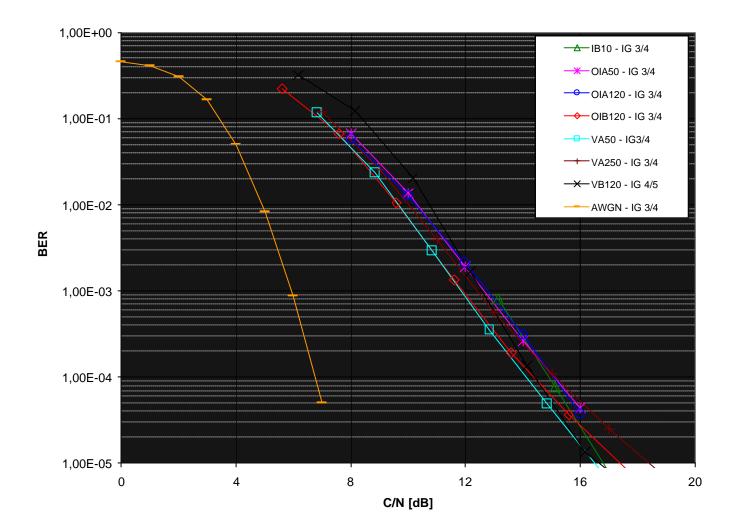

† UMTS channels

IB10, OIA50, OIA120, OIB120, VA50, VA250, VB120

GPP channel : case 3

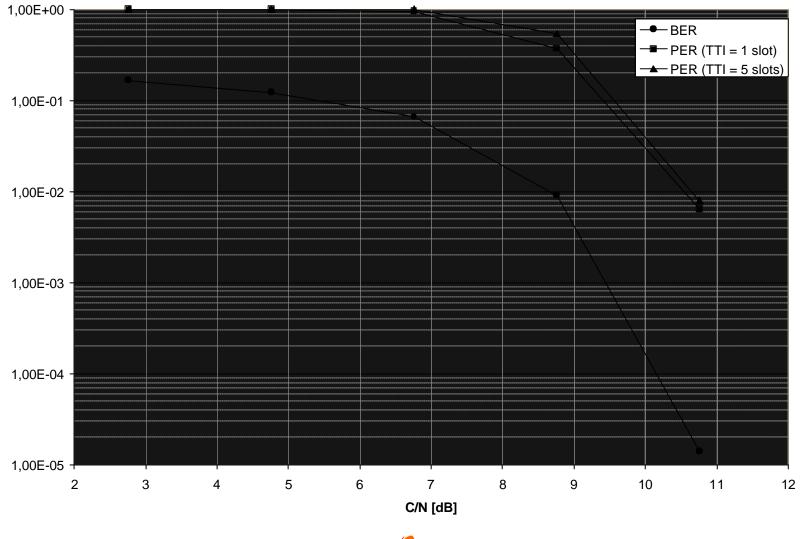
 speed: 120 km/h
 4 taps (delay[ns], attenuation [dB]):
 (0,0); (260,-3); (521,-6); (781,-9)

- Channel model (1 tap) simulated in a continuous way
- Nb of simulated bits :
 10, 50 km/h : 10 Mbits
 120, 250 km/h : 5 Mbits
- Interleaving depth : 3.33 ms (5 slots)
- **†** Perfect channel estimation


Error Correcting Code Convolutional for UMTS Turbo-code (8 it.) for 3GPP

BER vs C/N on UMTS channels

$C/N @ BER = 10^{-4}$


Environment propagation	C/N (dB)
AWGN	6.3
IB 10	14.9
OIA 50	15.1
OIA 120	15.1
OIB 120	14.4
VA 50	14.1
VA 250	15.1
VB 120	14.4

PER vs C/N on 3GPP Case 3 channel

UE's Complexity

- Base-band architecture
 - Services taken into account: voice and high bit rates data services
 - Silicon surface reference: base-band component performing both WCDMA, GSM and GPRS

additional silicon area due to OFDM is only 3.5%.

Radio architecture

- **RX WCDMA and RX OFDM:** while using SAWs one can couple the two bands at the stage of the duplexer.

-**TX WCDMA and RX OFDM:** one antenna (large enough separation) 2 antennas or one antenna with a specific duplexer (close bands).

Possible improvements

† Higher order sub-carrier modulation

† Larger bandwidth

† Combination with AMC, H-ARQ, FCS, MIMO

† Further optimization of the OFDM spectral efficiency

Conclusion

† Stand-alone DSCH: important concept to increase DL data rate

* Will enable efficient asymmetrical services

† Stand-alone DSCH modulation:

- **†** Different solutions, among which OFDM is worth being considered:
 - ∠High spectral efficiency
 - Robustness to multipath and high Doppler
 - ✓Compatible with HARQ, AMC, MIMO and FCS
- Study still open

Proposal: include in the HSDPA TR the possibility to study different type of modulations for stand-alone DSCH

* See R1-01-0293.doc

