For HELP on using this form, see bottom of this page or look at the pop-up text over the symbols.
Proposed change affects: (U)SIM \square ME/UE \bar{X} Radio Access Network \boldsymbol{X} Core Network \square

Title:	Inclusion of 1.28Mcps TDD in TS 25.221	
Source: es	Siemens/CWTS/CATT	
Work item code:	LCRTDD	Date: 26.02.2001
Category: es	B P	Release: REL-4
	Use one of the following categories: F (essential correction) \boldsymbol{A} (corresponds to a correction in an earlier release) B (Addition of feature), C (Functional modification of feature) D (Editorial modification) Detailed explanations of the above categories can be found in 3GPP TR 21.900.	Use one of the following releases:

Reason for change: Inclusion of 1.28 Mcps TDD
Summary of change: ?? The basis for this document was R1-01-0181
?? 6.2.1.2 - definition of choice of uplink spreading aligned with 3.84 Mcps TDD
?? section 6.2.3.1 'midamble transmit power' moved to section 6.7 (as in 5.7)
Consequences if not approved:

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G Specs/CRs.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked contain pop-up help information about the field that they are closest to.
2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://www.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2000-09 contains the specifications resulting from the September 2000 TSG meetings.

3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

BCH	Broadcast Channel
CCPCH	Common Control Physical Channel
CCTrCH	Coded Composite Transport Channel
CDMA	Code Division Multiple Access
DPCH	Dedicated Physical Channel
DRX	Discontinuous Reception
DSCH	Downlink Shared Channel
DwPCH	Downlink Pilot Channel
DwPTS	Downlink Pilot Time Slot
FACH	Forward Access Channel
FDD	Frequency Division Duplex
FEC	Forward Error Correction
GP	Guard Period
GSM	Global System for Mobile Communication
MIB	Master Information Block
NRT	Non-Real Time
OVSF	Orthogonal Variable Spreading Factor
P-CCPCH	Primary CCPCH
PCH	Paging Channel
PDSCH	Physical Downlink Shared Channel
PI	Paging Indicator (value calculated by higher layers)
PICH	Page Indicator Channel
P_{q}	Paging Indicator (indicator set by physical layer)
PRACH	Physical Random Access Channel
PUSCH	Physical Uplink Shared Channel
RACH	Random Access Channel
RF	Radio Frame
RT	Real Time
S-CCPCH	Secondary CCPCH
SCH	Synchronisation Channel
SFN	Cell System Frame Number
TCH	Traffic Channel
TDD	Time Division Duplex
TDMA	Time Division Multiple Access
TrCH	Transport Channel
UE	User Equipment
UpPTS	Uplink Pilot Time Slot
UpPCH	Uplink Pilot Channel
USCH	Uplink Shared Channel

5.6.1.2.2 Common Midamble

The use of the common midamble allocation scheme is signalled to the UE by higher layers as a part of the physical channel configuration. A common midamble may be assigned by layer 1 to all physical channels in one DL time slot, if:

- a single UE uses all physical channels in one DL time slot (as in the case of high rate service);
or
- multiple UEs use the physical channels in one DL time slot; and
- no beamforming is applied to any of these DL physical channels; and
- no closed loop TxDiversity is applied to any of these DL physical channels; and
- midambles are not used for PDSCH physical layer signalling.

The number of channelisation codes currently employed in the DL time slot is associated with the use of a particular common midamble. Different associations apply for different burst types and cell configurations with respect to the maximum number of midambles, see annex Bㄷ.

$6 \quad$ Physical channels for the 1.28 Mcps option

All physical channels take three-layer structure with respect to timeslots, radio frames and system frame numbering (SFN), see [14]. Depending on the resource allocation, the configuration of radio frames or timeslots becomes different. All physical channels need guard symbols in every timeslot. The time slots are used in the sense of a TDMA component to separate different user signals in the time and the code domain. The physical channel signal format for 1.28 Mcps TDD is presented in figure [19].

A physical channel in TDD is a burst, which is transmitted in a particular timeslot within allocated Radio Frames. The allocation can be continuous, i.e. the time slot in every frame is allocated to the physical channel or discontinuous, i.e. the time slot in a subset of all frames is allocated only. A burst is the combination of a data part, a midamble and a guard period. The duration of a burst is one time slot. Several bursts can be transmitted at the same time from one transmitter. In this case, the data part must use different OVSF channelisation codes, but the same scrambling code. The midamble part has to use the same basic midamble code, but can use different midambles.

Figure [19]: Physical channel signal format for 1.28Mcps TDD option

The data part of the burst is spread with a combination of channelisation code and scrambling code. The channelisation code is a OVSF code, that can have a spreading factor of 1, 2, 4, 8, or 16 . The data rate of the physical channel is depending on the used spreading factor of the used OVSF code.

So a physical channel is defined by frequency, timeslot, channelisation code, burst type and Radio Frame allocation The scrambling code and the basic midamble code are broadcast and may be constant within a cell. When a physical channel is established, a start frame is given. The physical channels can either be of infinite duration, or a duration for the allocation can be defined.

6.1 Frame structure

The TDMA frame has a duration of 10 ms and is divided into 2 sub-frames of 5 ms . The frame structure for each subframe in the 10 ms frame length is the same.

Figure [20]: Structure of the sub-frame for 1.28 Mcps TDD option

Time slot\#n (n from 0 to 6): the nth normal time slot, 864 chips duration;
DwPTS: downlink pilot time slot, 96 chips duration;
UpPTS: uplink pilot time slot, 160 chips duration;
GP: main guard period for TDD operation, 96 chips duration;

In Figure [20], the total number of normal time slot for uplink and downlink is 7, and the length for each normal time slot is 864 chips duration. Among the 7 normal time slot, time slot\#0 is always allocated as downlink while time slot\#1 is always allocated as uplink. The time slots for the uplink and the downlink are separated by switching points.
Between the downlink time slots and uplink time slots, the special period is the switching point to separate the uplink and downlink. In each sub-frame of 5 ms for 1.28 Mcps option, there are two switching points (uplink to downlink and vice versa).

Using the above frame structure, the 1.28 Mcps TDD option can operate on both symmetric and asymmetric mode by properly configuring the number of downlink and uplink time slots. In any configuration at least one time slot (time slot\#0) has to be allocated for the downlink and at least one time slot has to be allocated for the uplink (time slot\#1).

Examples for symmetric and asymmetric UL/DL allocations are given in figure [21].

symmetric DL/UL allocation

\qquad
asymmetric DL/UL allocation
Figure [21]: 1.28Mcps TDD sub-frame structure examples

6.2 Dedicated physical channel (DPCH)

The DCH as described in subclause 4.1 'Dedicated transport channels' is mapped onto the dedicated physical channel.

6.2.1 Spreading

The spreading of physical channels is the same as in 3.84 Mcps TDD (cf. 5.2.1 'Spreading').

6.2.2 Burst Format

A normal burst consists of two data symbol fields, a midamble of 144 chips and a guard period. The data fields of the burst are 352 chips long. The corresponding number of symbols depends on the spreading factor, as indicated in table X1 below. The guard period is 16 chip periods long.

The burst format is shown in Figure 22. The contents of the normal burst fields is described in table X2.
Table 10: number of symbols per data field in a normal burst

Spreading factor (Q)	Number of symbols (N) per data field in Burst
$\underline{1}$	$\underline{352}$
$\underline{2}$	$\underline{176}$
$\underline{4}$	$\underline{88}$
$\underline{8}$	$\underline{44}$
$\underline{16}$	$\underline{22}$

Table 11: The contents of the normal burst format fields

$\frac{\text { Chip number }}{(\mathrm{CN})}$	Length of field in chips	Length of field in symbols	Contents of field
0-351	352	cf table 1	Data symbols
352-495	144		Midamble
496-847	352	cf table 1	Data symbols
848-863	16	-	Guard period

Figure 22: Burst structure of the normal burst format (GP denotes the guard period and CP the chip periods)

6.2.2.1 Transmission of TFCI

The normal burst format provides the possibility for transmission of TFCI in uplink and downlink.
The transmission of TFCI is negotiated at call setup and can be re-negotiated during the call. For each CCTrCH it is indicated by higher layer signalling, which TFCI format is applied. Additionally for each allocated timeslot it is signalled individually whether that timeslot carries the TFCI or not. If a time slot contains the TFCI, then it is always transmitted using the first allocated channelisation code in the timeslot, according to the order in the higher layer allocation message.

The transmission of TFCI is done in the data parts of the respective physical channel, this means TFCI and data bits are subject to the same spreading procedure as depicted in [8]. Hence the midamble structure and length is not changed.

The encoded TFCI symbols are equally distributed between the two subframes and the respective data fields. The TFCI information is to be transmitted possibly either directly adjacent to the midamble or after the SS and TPC symbols. Figure [23] shows the position of the TFCI in a traffic burst, if neither SS nor TPC are transmitted. Figure [24] shows the position of the TFCI in a traffic burst, if SS and TPC are transmitted.

Figure 23: Position of TFCI information in the traffic burst in case of no TPC and SS in 1.28 Mcps TDD

Figure 24: Position of TFCI information in the traffic burst in case of TPC and SS in 1.28 Mcps TDD

6.2.2.2 Transmission of TPC

The burst type for dedicated channels provides the possibility for transmission of TPC in uplink and downlink.
The transmission of TPC is done in the data parts of the traffic burst. Hence the midamble structure and length is not changed. The TPC information is to be transmitted directly after the SS information, which is transmitted after the midamble. Figure 25 shows the position of the TPC command in a traffic burst.

For every user the TPC information is to be transmitted at least once per 5 ms sub-frame. If applied, transmission of TPC is done in the data parts of the traffic burst and it can be transmitted using the first allocated channelisation code and the first allocated timeslot (according to the order in the higher layer allocation message). Other allocations (more than one TPC transmission in one sub-frame) of TPC are also possible. The TPC is spread with the same spreading factor (SF) and spreading code as the data parts of the respective physic al channel.

Figure 25: Position of TPC information in the traffic burst in downlink and uplink

For the number of layer 1 symbols per channelisation code there are 3 possibilities for each channelisation code, configured by higher layers:

> | 1) | one SS and one TPC symbol |
| :--- | :--- |
| 2) | no SS and no TPC symbols |
| 3) | $16 / \mathrm{SF}$ SS and $16 /$ SF TPC symbols |

So, in case 3), when $\mathrm{SF}=1$, there are 16 TPC symbols which correspond to 32 bits (for QPSK) and 48 bits (for 8PSK). In the following the uplink is described only. For the description of the downlink, downlink (DL) and uplink (UL) have to be interchanged.

Each of the TPC symbols for uplink power control in the DL will be associated with an UL time slot and an UL $\underline{\mathrm{CCTrCH}}$ pair. This association varies with
?? the number of allocated UL time slots and UL CCTrCHs on these time slots (time slot and CCTrCH pair) and
?? the allocated TPC symbols in the DL.

In case a UE has

more than one channelisation code
and/or
channelisation codes being of lower spreading factor than 16 and using 16/SF SS and 16/SF TPC symbols,
the TPC commands for each ULtime slot CCTrCH pair (all channelisation codes on that time slot belonging to the same time slot and CCTrCH pair have the same TPC command) will be distributed to the following rules:

1. The ULtime slots and CCTrCH pairs the TPC commands are intended for will be numbered form the first to the last ULtime slot and CCTrCH pair allocated to the regarded UE (starting with 0). The number of a time slot and CCTrCH pair is smaller then the number of another time slot and CCTrCH pair within the same time slot if its spreading code with the lowest SC number according to the following table has a lower SC number then the spreading code with the lowest SC number of the other time slot and CCTrCH pair.
2. The commanding TPC symbols on all DLCCTrCHs allocated to one UE are numbered consecutively starting with zero according to the following rules:
a) The numbers of the TPC commands of a regarded DL time slot are lower than those of DL time slots being transmitted after that time slot
b) Within a DL time slot the numbers of the TPC commands of a regarded channelisation code are lower than those of channelisation codes having a higher spreading code number

The spreading code number is defined by the following table (see[8]):

$\underline{\text { SC number }}$	$\underline{\mathrm{SF}(\mathrm{Q})}$	$\underline{\text { Walsh code number }(\mathrm{k})}$
$\underline{0}$	$\underline{16}$	$\mathbf{c}_{Q ? 16}^{(k ?!)}$
	$\underline{-}$	
$\underline{15}$	$\underline{16}$	$\mathbf{c}_{Q ? 16}^{(k ? 16)}$
$\underline{16}$	$\underline{8}$	$\mathbf{c}_{Q ? 8}^{(k ? 1)}$
	$\underline{-}$	
$\underline{23}$	$\underline{8}$	$\mathbf{c}_{Q ? 8}^{(k ? 8)}$

$\underline{24}$	$\underline{4}$	$\mathbf{c}_{Q ? 4}^{(k ? 1)}$
	\cdots	
$\underline{27}$	$\underline{4}$	$\mathbf{c}_{Q ? 4}^{(k ? 4)}$
$\underline{28}$	$\underline{2}$	$\mathbf{c}_{Q ? 2}^{(k ? 1)}$
$\underline{29}$	$\underline{2}$	$\mathbf{c}_{Q ? 2}^{(k ? 2)}$
$\underline{30}$	$\underline{1}$	$\mathbf{c}_{Q ? 1}^{(k ? 1)}$

Note: Spreading factors 2-8 are not used in DL
c) Within a channelisation code numbers of the TPC commands are lower than those of TPC commands being transmitted after that time

The following equation is used to determine the UL time slot which is controlled by the regarded TPC symbol in the DL:

$$
U L_{\text {pos }} ?\left(S F N^{\prime} ? N_{U L_{-} T P C s y m b o l s} ? T P C_{D L p o s}\right) \bmod \left(N_{U L s l o t}\right)^{2}
$$

where
UL $_{\text {pos }}$ is the number of the controlled uplink time slot and CCTrCH pairs.
SFN' is the system frame number counting the sub-frames. The system frame number of the radio frames (SFN) can be derived from SFN' by
$\underline{\text { SFN }=\text { SFN' }}$ div 2, where div is the reminder free division operation.
$\underline{N}_{U L}$ PCSymbols is the number of UL TPC symbols in a sub-frame.
$\mathrm{TPC}_{\mathrm{DL} p o s}$ is the number of the regarded UL TPC symbol in the DL within the sub-frame.
$\underline{N}_{\text {ULslot }}$ is the number of UL slots and CCTrCH pairs in a frame.

In Annex G two examples of the association of TPC commands to time slots and CCTrCH pairs are shown.
Coding of TPC:

The relationship between the TPC Bits and the transmitter power control command for QPSK is the same as in the 3.84Mcps TDD cf. [5.2.2.5 'Transmission of TPC'].

The relationship between the TPC Bits and the transmitter power control command for 8PSK is given in table [12]
Table 12: TPC Bit Pattern for 8PSK

TPC Bits	TPC command	Meaning
$\underline{000}$	'Down'	Decrease Tx Power
$\underline{110}$	'Up' $^{\prime}$	Increase Tx Power

6.2.2.3 Transmission of SS

The SS command is an identifier sent in downlink transmission only, to instruct the UE whether the synchronisation shift has to be increased or decreased by $\mathrm{k} / 8 \mathrm{Tc}$ or has to remain unchanged. The length of the SS command is one symbol.

The default value of $\mathrm{k}(1-8)$ is broadcast in the BCH . The value of k can also be adjusted during call setup or readjusted during the call.

Note: The smallest step for the SS signalled by the UTRAN is $1 / 8 \mathrm{Tc}$. For the UE capabilities regarding the SS adjustment of the UE it is suggested to set the tolerance for the executed command to be [1/9;1/7] Tc.

The relationship between the SS Bits and the SS command for QPSK is the given in table 13:
Table 13: Coding of the SS for QPSK

$\underline{\underline{\text { SS Bits }}}$	$\underline{\text { SS command }}$	$\underline{1}$ Meaning
$\underline{00}$	$\underline{\text { 'Down' }}$	$\underline{\text { Decrease synchronisation shift by k/8 Tc }}$
$\underline{\underline{11}}$	$\underline{\text { Up' }}$	$\underline{\text { Increase synchronisation shift by k/8 Tc }}$
$\underline{01}$	$\underline{\text { Do nothing' }}$	$\underline{\text { No change }}$

The relationship between the SS Bits and the SS command for 8PSK is given in table [14]:
Table 14: Coding of the SS for 8PSK

$\underline{\text { SS Bits }}$	$\underline{\text { SS command }}$	$\underline{\underline{c}}$ Meaning
$\underline{000}$	Down'	$\underline{\text { Decrease synchronisation shift by k/8 Tc }}$
$\underline{110}$	$\underline{\text { Up' }}$	$\underline{\text { Increase synchronisation shift by k/8Tc }}$
$\underline{011}$	$\underline{\text { Do nothing' }}$	$\underline{\text { No change }}$

6.2.2.4 Timeslot formats

The timeslot format depends on the spreading factor, the number of the TFCI bits, the number of SS and TPC symbols and the applied modulation scheme (QPSK/8PSK) as depicted in the following tables.
6.2.2.4.1 Timeslot formats for QPSK
6.2.2.4.1.1 Downlink timeslot formats

Table 15 : Time slot formats for the Downlink

Slot Format \#	Spreading Factor	$\frac{\text { Midamble }}{\frac{\text { length }}{(\text { chips })}}$	$\mathrm{N}_{\text {TFCI }}$ (bits)	$\underline{N}_{S S}$ \& $N_{T P C}$ (bits)	Bits/slot	$\mathrm{N}_{\text {Data/Slot }}$ (bits)	$\underline{N}_{\text {data/data }}$ field(1) (bits)	$\underline{N}_{\text {data/data }}$ field(2) (bits)
$\underline{0}$	16	144	$\underline{0}$	0 \& 0	88	88	44	44
1	16	144	4	0 \& 0	88	86	42	44
$\underline{2}$	16	144	8	0 \& 0	88	84	42	42
$\underline{3}$	16	144	16	0 \& 0	88	80	40	40
4	16	144	32	0 \& 0	88	72	36	36
5	16	144	$\underline{0}$	$\underline{2}$ \& 2	88	84	44	40
$\underline{6}$	16	144	4	$\underline{2}$ \& 2	88	82	42	40
7	16	144	8	2 \& 2	88	80	42	38
8	16	144	16	$\underline{2}$ \& 2	88	76	40	36

Slot Format	Spreading Factor	$\frac{\text { Midamble }}{\frac{\text { length }}{\text { (chips) }}}$	$\underline{N}_{\text {TFCI }}$ (bits)	N_{SS} \& $\mathrm{N}_{\mathrm{TPC}}$ (bits)	Bits/slot	$\mathrm{N}_{\text {Data/Slot }}$ (bits)	$\begin{aligned} & \hline \underline{N}_{\text {data/data }} \\ & \text { field(1) } \\ & \text { (bits) } \end{aligned}$	$\begin{gathered} \hline \mathrm{N}_{\text {data/data }} \\ \text { field(2) (bits) } \end{gathered}$
9	16	144	32	$\underline{2}$ \& 2	88	68	36	32
10	1	144	0	0 \& 0	1408	1408	704	704
11	1	144	4	0 \& 0	1408	1406	702	704
12	1	144	8	0 \& 0	1408	1404	702	702
13	1	144	16	0 \& 0	1408	1400	700	700
14	1	144	32	0 \& 0	1408	1392	696	696
15	1	144	0	2 \& 2	1408	1404	704	700
16	1	144	4	2 \& 2	1408	1402	702	700
17	1	144	8	2 \& 2	1408	1400	702	698
18	1	144	16	2 \& 2	1408	1396	700	696
$\underline{19}$	1	144	32	2 \& 2	1408	1388	696	692
$\underline{20}$	1	144	0	32 \& 32	1408	1344	704	640
$\underline{21}$	1	144	4	32 \& 32	1408	1342	702	640
$\underline{22}$	1	144	8	32 \& 32	1408	1340	702	638
$\underline{23}$	1	144	16	32 \& 32	1408	$\underline{1336}$	700	636
$\underline{24}$	1	144	32	32 \& 32	1408	$\underline{1328}$	696	632

Table 16 : Time slot formats for the Uplink

Slot Format \#	$\begin{gathered} \hline \text { Spreading } \\ \text { Factor } \end{gathered}$	$\begin{gathered} \hline \frac{\text { Midamble }}{\text { length }} \\ \text { (chips) } \end{gathered}$	$\begin{aligned} & \underline{N}_{T F C l} \\ & \text { (bits) } \end{aligned}$	$\begin{gathered} \underline{N}_{S S} \& N_{T P C} \\ \text { (bits) } \end{gathered}$	Bits/slot	$\underline{N}_{\text {Data/Slot }}$ (bits)	$\begin{gathered} \hline \underline{N}_{\text {data/data }} \\ \text { field(1) } \\ \text { (bits) } \end{gathered}$	$\underline{N}_{\text {data/data }}$ field(2) (bits)
0	16	144	0	0 \& 0	88	88	44	44
1	16	144	4	0 \& 0	88	86	42	44
$\underline{2}$	16	144	8	0 \& 0	88	84	42	42
3	16	144	16	0 \& 0	88	80	40	40
4	16	144	32	0 \& 0	88	72	36	36
$\underline{5}$	16	144	$\underline{0}$	$\underline{2}$ \& 2	88	84	44	40
6	16	144	4	2 \& 2	88	82	42	40
$\underline{7}$	16	144	8	2 \& 2	88	80	42	38
8	16	144	16	$\underline{2}$ \& 2	88	76	40	36
$\underline{9}$	16	144	32	$\underline{2 ~ \& ~} 2$	88	68	$\underline{36}$	32
10	8	144	$\underline{0}$	0 \& 0	176	176	88	88
11	8	144	4	0 \& 0	176	174	86	88
12	8	144	8	0 \& 0	176	$\underline{172}$	86	86
13	8	144	16	0 \& 0	176	168	84	84
14	8	144	32	0 \& 0	176	160	80	80

Slot Format $\#$	Spreading Factor	$\begin{gathered} \frac{\text { Midamble }}{(\text { length }} \\ \text { (chips) } \end{gathered}$	$\mathrm{N}_{\mathrm{TFCl}}$ (bits)	N_{ss} \& $\mathrm{N}_{\mathrm{TPC}}$ (bits)	Bits/slot	${ }^{\text {Noata/lot (bits) }}$	$\begin{aligned} & \hline \mathrm{N}_{\text {data/data }} \\ & \text { field(1) (bits) } \end{aligned}$	$\begin{aligned} & \hline \underline{N}_{\text {data/data }} \\ & \text { field(2) (bits) } \end{aligned}$
15	8	144	$\underline{0}$	2 \& 2	176	172	88	84
16	8	144	4	$\underline{2}$ \& 2	176	170	86	84
17	8	144	8	2 \& 2	176	168	86	82
18	8	144	16	2 \& 2	176	164	84	80
19	$\underline{8}$	144	32	2 \& 2	176	156	80	76
$\underline{20}$	8	144	$\underline{0}$	4 \& 4	176	168	88	80
$\underline{11}$	8	144	4	4 \& 4	176	166	86	80
$\underline{22}$	8	144	8	4 \& 4	176	164	86	78
$\underline{23}$	8	144	16	4 \& 4	176	160	84	76
$\underline{24}$	8	144	32	4\&4	176	152	80	72
$\underline{25}$	4	144	$\underline{0}$	0 \& 0	352	352	176	176
$\underline{26}$	4	144	4	0 \& 0	352	350	174	176
$\underline{27}$	4	144	-	0 \& 0	352	348	174	174
$\underline{28}$	4	144	16	0 \& 0	352	344	172	172
$\underline{29}$	4	144	32	0 \& 0	352	336	168	168
30	4	144	$\underline{0}$	2 \& 2	352	348	176	172
$\underline{31}$	$\underline{4}$	144	4	2 \& 2	352	346	174	172

Slot Format	Spreading Factor	$\begin{aligned} & \hline \hline \text { Midamble } \\ & \text { length } \\ & \text { (chips) } \end{aligned}$	$\mathrm{N}_{\mathrm{TFCl}}$ (bits)	$N_{\text {sS }} \& N_{T P C}$ (bits)	Bits/slot	$\mathrm{N}_{\text {Data/lot (bits) }}$	$\begin{aligned} & \hline \hline \mathrm{N}_{\text {data/data }} \\ & \text { field(1) } \text { (bits) } \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}_{\text {data/data }} \\ & \text { field(2) } \\ & \text { (bits) } \end{aligned}$
32	4	144	8	2 \& 2	352	344	174	170
33	4	144	16	2 \& 2	352	340	172	168
34	4	144	32	2 \& 2	352	332	168	164
35	4	144	$\underline{0}$	8 \& 8	352	336	176	160
36	4	144	4	8 \& 8	352	334	174	160
37	4	144	8	8 \& 8	352	332	174	158
38	4	144	16	8 \& 8	352	328	172	156
39	4	144	32	8 \& 8	352	320	168	152
40	$\underline{2}$	144	0	0 \& 0	704	704	352	352
41	$\underline{2}$	144	4	0 \& 0	704	702	350	352
42	$\underline{2}$	144	-	0 \& 0	704	700	350	350
43	$\underline{2}$	144	16	0 \& 0	704	696	348	348
44	$\stackrel{2}{2}$	144	32	0 \& 0	704	688	344	344
45	$\underline{2}$	144	0	2 \& 2	704	700	352	348
46	$\underline{2}$	144	4	2 \& 2	704	698	350	348
47	$\underline{2}$	144	8	2 \& 2	704	696	350	346
48	$\underline{2}$	144	16	2 \& 2	704	692	348	344

Slot Format $\#$	Spreading Factor	$\begin{aligned} & \frac{\text { Midamble }}{\frac{\text { length }}{(\text { (chips) }}} \end{aligned}$	$\mathrm{N}_{\mathrm{TFCl}}$ (bits)	$N_{S S} \& N_{T P C}$ (bits)	Bits/slot	$\mathrm{N}_{\text {Data/lot }}$ (bits)	$\begin{aligned} & \hline \hline \mathrm{N}_{\text {data/data }} \\ & \text { field(1) (bits) } \end{aligned}$	$\begin{aligned} & \hline N_{\text {data/data }} \\ & \text { field(2) (bits) } \end{aligned}$
49	$\underline{2}$	144	32	2 \& 2	704	684	344	340
50	$\underline{2}$	144	0	16 \& 16	704	672	352	320
51	$\underline{2}$	144	4	16 \& 16	704	670	350	320
52	$\underline{2}$	144	8	16 \& 16	704	668	350	318
$\underline{53}$	$\underline{2}$	144	16	16 \& 16	704	664	348	316
54	$\underline{2}$	144	32	16 \& 16	704	656	344	312
55	1	144	0	0 \& 0	1408	1408	704	704
56	1	144	4	0 \& 0	1408	1406	702	704
57	1	144	8	0 \& 0	1408	1404	702	702
58	1	144	16	0 \& 0	1408	1400	700	700
59	1	144	$\underline{32}$	0 \& 0	1408	1392	696	696
60	1	144	0	2 \& 2	1408	1404	704	700
61	1	144	4	2 \& 2	1408	1402	702	700
62	1	144	8	2 \& 2	1408	1400	702	698
63	1	144	16	2 \& 2	1408	1396	700	696
64	1	144	32	$\underline{2}$ \& 2	1408	1388	696	692
65	1	144	0	32 \& 32	1408	1344	704	640
66	1	144	4	32 \& 32	1408	1342	702	640

Slot Format \#	Spreading Factor	Midamble length (chips	$\mathrm{N}_{\mathrm{TFCI}}$ (bits)	$\begin{gathered} \underline{N}_{S S} \& N_{T P C} \\ \text { (bits) } \end{gathered}$	Bits/slot	$\underline{N}_{\text {Data/Slot }}$ (bits)	$\begin{aligned} & \hline \mathrm{N}_{\text {data/data }} \\ & \text { field(1) } \\ & \text { (bits) } \end{aligned}$	$\begin{aligned} & \hline \underline{N}_{\text {data/data }} \\ & \text { field(2) (bits) } \end{aligned}$
67	1	144	8	32 \& 32	1408	1340	702	638
68	1	144	16	32 \& 32	1408	1336	700	636
69	1	144	32	32 \& 32	1408	1328	696	632

Time slot formats for 8PSK
The Downlink and the Uplink timeslot formats are described together in the following table.
Table 17: Timeslot formats for 8PSK modulation

Slot Format \#	Spreading Factor	$\frac{\text { Midamble }}{\left(\frac{\text { length }}{(\text { chips) }}\right.}$	$\mathrm{N}_{\text {TFCI }}$ (bits)	N_{SS} \& $\mathrm{N}_{T P C}$ (bits)	Bits/slot	$\mathrm{N}_{\text {Data/Slot }}$ (bits)	$\begin{aligned} & \hline \mathrm{N}_{\text {data/data }} \\ & \text { field(1) } \\ & \text { (bits) } \end{aligned}$	$\mathrm{N}_{\text {data/data }}$ field(2) (bits)
0	1	144	0	0 \& 0	$\underline{2112}$	2112	1056	1056
1	1	144	6	0 \& 0	$\underline{2112}$	$\underline{2109}$	1053	1056
$\underline{2}$	1	144	12	0 \& 0	$\underline{2112}$	$\underline{2106}$	1053	1053
3	1	144	$\underline{24}$	0 \& 0	$\underline{2112}$	$\underline{2100}$	1050	1050
4	1	144	48	0 \& 0	$\underline{2112}$	$\underline{2088}$	1044	1044
5	1	144	0	3 \& 3	$\underline{2112}$	$\underline{2106}$	1056	1050
$\underline{6}$	1	144	$\underline{6}$	3 \& 3	$\underline{2112}$	2103	1053	1050
7	1	144	12	3 \& 3	$\underline{2112}$	$\underline{2100}$	1053	1047

Slot Format \#	Spreading Factor	$\frac{\text { Midamble }}{\text { length }}$ (chips)	$\mathrm{N}_{\text {TFCI }}$ (bits)	N_{SS} \& $\mathrm{N}_{\mathrm{TPC}}$ (bits)	Bits/slot	$N_{\text {Data/Slot }}$ (bits)	$\begin{aligned} & \hline \hline{ }_{\text {data/data }} \\ & \text { field(1) (bits) } \end{aligned}$	$\begin{aligned} & \hline \hline \underline{N}_{\text {data/data }} \\ & \text { field(2) (bits) } \end{aligned}$
8	1	144	$\underline{24}$	3 \& 3	2112	2094	1050	1044
$\underline{9}$	1	144	48	3 \& 3	$\underline{2112}$	2082	1044	1038
10	1	144	0	48 \& 48	$\underline{2112}$	2016	1056	960
11	1	144	$\underline{6}$	48 \& 48	$\underline{2112}$	2013	1053	960
12	1	144	12	48 \& 48	2112	2010	1053	957
13	1	144	$\underline{24}$	48 \& 48	$\underline{2112}$	2004	1050	954
14	1	144	48	48 \& 48	$\underline{2112}$	1992	1044	948
15	16	144	0	0 \& 0	132	132	66	66
16	16	144	$\underline{6}$	0 \& 0	132	129	$\underline{63}$	66
17	16	144	12	0 \& 0	132	126	63	63
18	16	144	$\underline{24}$	0\&0	132	120	60	$\underline{60}$
19	16	144	48	0 \& 0	132	108	54	54
$\underline{20}$	16	144	0	3 \& 3	132	126	66	60
$\underline{21}$	16	144	$\underline{6}$	3 \& 3	132	123	$\underline{63}$	60
$\underline{22}$	16	144	12	3 \& 3	132	120	63	57
$\underline{23}$	16	144	$\underline{24}$	3 \& 3	132	114	60	54
$\underline{24}$	16	144	48	3 \& 3	132	102	54	48

6.2.3 Training sequences for spread bursts

In this subclause, the training sequences for usage as midambles are defined. The training sequences, i.e. midambles, of different users active in the same cell and same time slot are cyclically shifted versions of one single basic midamble code. The applicable basic midamble codes are given in Annex B.1.

The basic midamble codes in Annex B. 1 are listed in hexadecimal notation. The binary form of the basic midamble code shall be derived according to table [18] below.

Table [18]: Mapping of 4 binary elements m_{i} on a single hexadecimal digit:

4 binary elements m_{i}	Mapped on hexadecimal digit
-1-1-1-1	$\underline{0}$
-1-1-11	$\underline{1}$
-1-11-1	$\underline{2}$
-1-111	$\underline{3}$
-11-1-1	4
-11-11	5
-111-1	$\underline{6}$
-1111	7
1-1-1-1	$\underline{8}$
1-1-11	$\underline{9}$
1-1 1-1	A
$\underline{1-111}$	B
11-1-1	C
11-111	D
1111	E
1111	F

$$
\mathbf{m}_{\mathrm{P}} ? ? m_{1}, m_{2}, \ldots, m_{P} ?
$$

\qquad

According to Annex B.1, the size of this vector \mathbf{m}_{P} is $\mathrm{P}=128$. As QPSK modulation is used, the training sequences are transformed into a complex form, denoted as the complex vector $\underline{\mathbf{m}}_{P}$:

$$
\begin{equation*}
\underline{\mathbf{m}}_{\mathrm{P}} ? ? \underline{m}_{1}, \underline{m}_{2}, \ldots, \underline{m}_{P} ? \tag{2}
\end{equation*}
$$

$\underline{\text { The elements }} \underline{m_{i}} \underline{\text { of }} \underline{\mathbf{m}_{\mathrm{P}}} \underline{\text { are derived from elements }} m_{i} \underline{\text { of }} \mathbf{m}_{\mathrm{P}} \underline{\text { using equation (3): }}$

$$
\begin{equation*}
\underline{m}_{i} ?(\mathrm{j})^{i} ? m_{i} \text { for all } i ? 1, \ldots, P \tag{3}
\end{equation*}
$$

Hence, the elements \underline{m}_{i} of the complex basic midamble code are alternating real and imaginary.
$\underline{\text { To derive the required training sequences, this vector }} \underline{\mathbf{m}}_{\mathrm{P}} \underline{\text { is periodically extended to the size: }}$

$$
\begin{equation*}
i_{\max } ? L_{m} ?(K ? 1) W \tag{4}
\end{equation*}
$$

Notes on equation (4):
K and W are taken from Annex B. 1

So we obtain a new vector $\underline{\mathbf{m}}$ containing the periodic basic midamble sequence:

$$
\underline{\mathbf{m}} ?{ }^{\prime} \underline{m}_{1}, \underline{m}_{2}, \ldots, \underline{m}_{i_{\max }}!?!\underline{m}_{1}, \underline{m}_{2}, \ldots, \underline{m}_{L_{m}} ?(K ? 1) W \text { ! }
$$

The first P elements of this vector $\underline{\mathbf{m}}$ are the same ones as in vector $\underline{\mathbf{m}}_{\mathrm{P}}$, the following elements repeat the beginning:

$$
\underline{m}_{i} ? \underline{m}_{i ? P} \text { for the subset } i ?(P ? 1), \ldots, i_{\max }
$$

Using this periodic basic midamble sequence $\underline{\mathbf{m}}$ for each user k a midamble $\underline{\mathbf{m}}^{(k)}$ of length L_{m} is derived, which can be written as a user specific vector:

$$
\begin{equation*}
\underline{\mathbf{m}}^{(k)} ? \underline{\eta}_{1}^{(k)}, \underline{m}_{2}^{(k)}, \ldots, \underline{m}_{L_{m}}^{(k)} ? \tag{7}
\end{equation*}
$$

$\underline{\text { The } \mathrm{L}_{\mathrm{m}}} \underline{\text { midamble elements }} \underline{m}_{i}^{(k)} \underline{\text { are generated for each midamble of the } \mathrm{k} \text { users }(\mathrm{k}=1, \ldots, \mathrm{~K}) \text { based on: }}$

$$
\underline{m}_{i}^{(k)} ? \underline{m}_{i ?(K ? k) W} \underline{\text { with }} i ? 1, \ldots, L_{m} \underline{\text { and }} k ? 1, \ldots, K
$$

The midamble sequences derived according to equations (7) to (8) have complex values and are not subject to channelisation or scrambling process, i.e. the elements $\underline{m}_{i}^{(k)}$ represent complex chips for usage in the pulse shaping process at modulation.
$\underline{\text { The term 'a midamble code set' or 'a midamble code family' denotes } \mathrm{K} \text { specific midamble codes }} \underline{\underline{\mathbf{m}^{(k)}}} ; \underline{\mathrm{k}=1, \ldots . \mathrm{K}}$, based on a single basic midamble code \mathbf{m}_{P} according to (1).

6.2.4 Beamforming

Beamforming is same as that of the 3.84Mcps TDD, cf. [5.2.4 Beamforming].

6.3 Common physical channels

6.3.1 Primary common control physical channel (P-CCPCH)

The BCH as described in section 4.1.2 'Common Transport Channels' is mapped onto the Primary Common Control Physical Channels (P-CCPCH1 and P-CCPCH2). The position (time slot / code) of the P-CCPCHs is fixed in the 1.28 Mcps TDD. The P-CCPCHs are mapped onto the first two code channels of timeslot\#0 with spreading factor of 16. The P-CCPCH is always transmitted with an antenna pattern configuration that provides whole cell coverage.

6.3.1.1 P-CCPCH Spreading

The P-CCPCH uses fixed spreading with a spreading factor $\mathrm{SF}=16$. The $\mathrm{P}-\mathrm{CCPCH} 1$ and $\mathrm{P}-\mathrm{CCPCH} 2$ always use channelisation code $c_{Q ? 16}^{(k ? 1)}$ and $c_{Q ? 16}^{(k ? 2)}$ respectively.

6.3.1.2 P-CCPCH Burst Format

The burst format as described in section 6.2.2 is used for the P-CCPCH. No TFCI is applied for the P-CCPCH.

6.3.1.3 P-CCPCH Training sequences

The training sequences, i.e. midambles, as described in subclause 6.2.3 are used for the P-CCPCH. For timeslots\#0 in which the P-CCPCH is transmitted, the midambles $\mathrm{m}^{(1)}$ and $\mathrm{m}^{(2)}$ are reserved for P-CCPCH in order to support Block STTD antenna diversity and the beacon function, see 6.4 and 6.5. The use of midambles depends on whether Block STTD is applied to the P-CCPCH:

- If no antenna diversity is applied to P-CCPCH, $\mathrm{m}^{(1)}$ is used and $\mathrm{m}^{(2)}$ is left unused.
- If Block STTD antenna diversity is applied to P-CCPCH, $\mathrm{m}^{(1)}$ is used for the first antenna and $\mathrm{m}^{(2)}$ is used for the diversity antenna.

6.3.2 Secondary common control physical channel (S-CCPCH)

PCH and FACH as described in subclause 4.1.2 are mapped onto one or more secondary common control physical channels (S-CCPCH). In this way the capacity of PCH and FACH can be adapted to the different requirements. The time slot and codes used for the S-CCPCH are broadcast on the BCH.

6.3.2.1 S-CCPCH Spreading

The S-CCPCH uses fixed spreading with a spreading factor $\mathrm{SF}=16$. The S-CCPCHs (S-CCPCH 1 and S-CCPCH 2) are always used in pairs, mapped onto two code channels with spreading factor 16. There can be more than one pair of S-CCPCHs in use in one cell.

6.3.2.2 S-CCPCH Burst Format

The burst format as described in section 6.2.2 is used for the S-CCPCH. TFCI may be applied for S-CCPCHs.

6.3.2.3 S-CCPCH Training sequences

The training sequences, i.e. midambles, as described in the subclause 6.2.3 are also used for the S-CCPCH.

6.3.3 Fast Physical Access CHannel (FPACH)

The Fast Physical Access CHannel (FPACH) is used by the Node B to carry, in a single burst, the acknowledgement of a detected signature with timing and power level adjustment indication to a user equipment. FPACH makes use of one resource unit only at spreading factor 16, so that its burst is composed by 44 symbols. The spreading code, training sequence and time slot position are configured by the network and signalled on the BCH.

6.3.3.1 FPACH burst

The FPACH burst contains 32 information bits. Table 19 reports the content description of the FPACH information bits and their priority order:

Table 19: FPACH information bits description

Information field	Length (in bits)
Signature Reference Number	$\underline{3(M S B)}$
Relative Sub-Frame Number	$\underline{2}$
Received starting position of the UpPCH (UpPCHpos?	$\underline{11}$
$\frac{\text { Transmit Power Level Command for }}{\text { RACH message }}$	$\underline{7}$

Reserved bits	9(LSB)
(default value: 0)	

In the use and generation of the information fields is explained in [9].

6.3.3.1.1 Signature Reference Number

The reported number corresponds to the numbering principle for the cell signatures as described in [8].
The Signature Reference Number value range is $0-7$ coded in 3 bits such that:
bit sequence (000) corresponds to the first signature of the cell; ...; bit sequence (1111) corresponds to the $8^{\text {th }}$ signature of the cell.

6.3.3.1.2 Relative Sub-Frame Number

The Relative Sub-Frame Number value range is $0-3$ coded such that: bit sequence (00) indicates one sub-frame difference;; bit sequence (11) indicates 4 sub-frame difference.

6.3.3.1.3 Received starting position of the UpPCH (UpPCHpos)

The received starting position of the UpPCH value range is $0-2047$ coded such that:
bit sequence $(00 \ldots 000)$ indicates the received starting position zero chip; ...; bit sequence ($11 \ldots 1$ 11) indicates the received starting position $2047^{*} 1 / 8$ chip.

6.3.3.1.4 Transmit Power Level Command for the RACH message

The transmit power level command is transmitted in 7 bits.

6.3.3.2 FPACH Spreading

The FPACH uses only spreading factor $\mathrm{SF}=16$ as described in subclause 6.3.3. The set of admissible spreading codes for use on the FPACH is broadcast on the BCH.

6.3.3.2 FPACH Burst Format

The burst format as described in section 6.2.2 is used for the FPACH.

6.3.3.3 FPACH Training sequences

The training sequences, i.e. midambles, as described in subclause 6.2.3 are used for FPACH.

6.3.3.4 FPACH timeslot formats

The FPACH uses slot format \#0 of the DL time slot formats given in subclause 6.2.2.4.1.1.

6.3.4 The physical random access channel (PRACH)

The RACH as described in subclause 4.1.2 is mapped onto one or more uplink physical random access channels (PRACH). In such a way the capacity of RACH can be flexibly scaled depending on the operators need.

6.3.4.1 PRACH Spreading

The uplink PRACH uses either spreading factor $\mathrm{SF}=16, \mathrm{SF}=8$ or $\mathrm{SF}=4$ as described in subclause 6.2.1. The set of admissible spreading codes for use on the PRACH and the associated spreading factors are broadcast on the BCH (within the RACH configuration parameters on the BCH).

6.3.4.2 PRACH Burst Format

The burst format as described in section 6.2.2 is used for the PRACH.

6.3.4.3 PRACH Training sequences

The training sequences, i.e. midambles, of different users active in the same time slot are time shifted versions of a single periodic basic code. The basic midamble codes as described in subclause 6.2.3 are used for PRACH.

6.3.4.4 PRACH timeslot formats

The PRACH uses the following time slot formats taken fromthe uplink timeslot formats described in sub-clause 6.2.2.4.1.2:

Spreading Factor	$\frac{\text { Slot Format }}{\underline{\#}}$
$\underline{16}$	$\underline{10}$
$\underline{8}$	$\underline{10}$
$\underline{4}$	$\underline{25}$

6.3.4.5 Association between Training Sequences and Channelisation Codes

The association between training sequences and channelisation codes of PRACH in the 1.28 McpsTDD is same as that of the DPCH.

6.3.5 The synchronisation channels (DwPCH, UpPCH)

There are two dedicated physical synchronisation channels - DwPCH and UpPCH in each 5ms sub-frame of the 1.28 Mcps TDD. The DwPCH is used for the down link synchronisation and the UpPCH is used for the uplink synchronisation.

The position and the contents of the DwPCH are equal to the DwPTS as described in the subclause 6.1., while the position and the contents of the UpPCH are equal to the UpPTS.

The DwPCH is transmitted at each sub-frame with an antenna pattern configuration which provides whole cell coverage. Furthermore it is transmitted with a constant power level which is signalled by higher layers.

The burst structure of the DwPCH (DwPTS) is described in the figure 26.

Figure 26: burst structure of the DwPCH (DwPTS)
Note:' GP' for 'Guard Period'

The burst structure of the UpPCH (UpPTS) is described in the figure 27.

Figure 27: burst structure of the UpPCH (UpPTS)

The SYNC DL code in DwPCH and the SYNC UL code in UpPCH are not spreaded. The details about the SYNC DL and SYNC UL code are described in the corresponding subclause and annex in [8].

6.3.6 Physical Uplink Shared Channel (PUSCH)

For Physical Uplink Shared Channel (PUSCH) the burst structure of DPCH as described in subclause 6.2 shall be used. User specific physical layer parameters like power control, timing advance or directive antenna settings are derived from the associated channel (FACH or DCH). PUSCH provides the possibility for transmission of TFCI in uplink.

6.3.7 Physical Downlink Shared Channel (PDSCH)

For Physical Downlink Shared Channel (PDSCH) the burst structure of DPCH as described in subclause 6.2 shall be used. User specific physical layer parameters like power control or directive antenna settings are derived from the associated channel (FACH or DCH). PDSCH provides the possibility for transmission of TFCI in downlink.

To indicate to the UE that there is data to decode on the DSCH, three signalling methods are available:

1) using the TFCI field of the associated channel or PDSCH;
2) using on the DSCH user specific midamble derived from the set of midambles used for that cell;
3) using higher layer signalling.

When the midamble based method is used, the UE shall decode the PDSCH if the PDSCH was transmitted with the midamble assigned to the UE by UTRAN, see 6.6.1.1.2 . For this method no other physical channels may use the same time slot as the PDSCH and only one UE may share the PDSCH time slot at the same time.

6.3.8 The Page Indicator Channel (PICH)

The Paging Indicator Channel (PICH) is a physical channel used to carry the Paging Indicators. The PICH is always transmitted at the same reference power level and with the same antenna pattern configuration as the P-CCPCH.

There are always two codes with $\mathrm{SF}=16$ used for PICH. Figure [28] depicts the PICH structure and the numbering order of the transported bits, $\mathrm{N}_{\text {PIB }}$, where $\mathrm{N}_{\text {PIB }}$ is equal to 176 bits.

Figure 28: Transmission and numbering of paging indicators carrying bits on the PICH burst
In each PICH burst, N $_{\text {PI }}$ paging indicators are transmitted, using $L_{p I}=2$, $L_{p I}=4$ or $L_{p I}=8$ symbols. $L_{p I I}$ is called the paging indicator length. The number of paging indicators $\mathrm{N}_{\text {PI }}$ per PICH burst is given by the paging indicator length, which are both known by higher layer signalling. In table [20] this number is shown for the different possibilities of burst types and paging indicator lengths.

Table [20] : Number NPI of paging indicators in a PICH burst for the different paging indicator lengths (L니)

	$\underline{L}_{P 1}=2$	$\underline{L}_{P 1}=4$	$\underline{L}_{P 1}=8$
Number of Pl per timeslot	$\underline{N}_{P 1}=44$	$\underline{N}_{P \mid}=22$	$\underline{N}_{P 1}=11$

As shown in figure [20], the paging indicators of $\mathrm{N}_{\text {PICH }}$ consecutive sub-frames form a PICH block, $\mathrm{N}_{\text {PICH }}$ is configured by higher layers. Thus, $\mathrm{N}_{\mathrm{P}}=\mathrm{N}_{\text {PICH }} * \mathrm{~N}_{\text {PI }}$ paging indicators are transmitted in each PICH block.

Sub-Frame \#i Sub-Frame \#(i+1) ... Sub-Frame \#(i+NPICH-2) Sub-Frame \#(i+NPICH-1)

Figure [29]: Structure of a PICH block

The value $\mathrm{PI}\left(\mathrm{PI}=0, \ldots, \mathrm{~N}_{\mathrm{P}}-1\right)$ calculated by higher layers for use for a certain UE, see [15], is associated to the paging indicator P_{q} in the $\mathrm{n}^{\text {th }}$ frame of one PICH block, where q is given by
$\mathrm{q}=\mathrm{PI} \bmod \mathrm{N}_{\mathrm{pl}} ;$
$\underline{\mathrm{n}=\mathrm{PI} \operatorname{div} \mathrm{NPI} .}$
The PI bitmap in the PCH data frames over Iub contains indication values for all possible higher layer PI values, see [16]. Each bit in the bitmap indicates if the paging indicator P_{q} associated with that particular PI shall be set to 0 or 1 . Hence, the calculation in the formulas above is to be performed in Node B to make the association between PI and P_{q}.

The coding of Paging Indicator for 1.28Mcps TDD is same as that for 3.84Mcps TDD, cf.[5.3.7 ${ }^{\text { }}$ The Paging Indicator Channel (PICH)'].

6.4 Transmit Diversity for DL Physical Channels

Table 21 summarizes the different transmit diversity schemes for different downlink physical channel types in 1.28Mcps TDD that are described in [9].

Table 21: Application of Tx diversity schemes on downlink physical channel types in 1.28Mcps TDD "X" - can be applied, "-" - must not be applied

Physical channel type	Open loop TxDiversity		Closed loop TxDiversity
	$\underline{\text { TSTD }}$	$\underline{\text { Block STTD }}$	
P-CCPCH	\underline{X}	\underline{X}	$\overline{=}$
DwPCH	\underline{X}	$\overline{ }$	$\overline{\bar{X}}$
DPCH	\underline{X}	\bar{x}	

6.5 Beacon characteristics of physical channels

For the purpose of measurements, physical channels at particular locations (time slot, code) shall have particular physical characteristics, called beacon characteristics. Physical channels with beacon characteristics are called beacon channels. The location of the beacon channels is called beacon location. The beacon channels shall provide the beacon
function, i.e. a reference power level at the beacon location, regularly existing in each subframe. Thus, beacon channels must be present in each subframe.

6.5.1 Location of beacon channels

The beacon location is described as follows:
The beacon function shall be provided by the physical channels that are allocated to channelisation code $c_{Q ? 16}^{(k ? 1)}$ and $c_{Q ? 16}^{(k ? 2)}$ in Timeslot\#0.

Note that by this definition the P-CCPCH always has beacon characteristics.

6.5.2 Physical characteristics of the beacon function

The beacon channels shall have the following physical characteristics.
They:

- are transmitted with reference power;
- are transmitted without beamforming;
- use midamble $\mathrm{m}^{(1)}$ and $\mathrm{m}^{(2)}$ exclusively in this time slot

The reference power corresponds to the sum of the power allocated to both midambles $\mathrm{m}^{(1)}$ and $\mathrm{m}^{(2)}$. Two possibilities exist:

- If no Block STTD antenna diversity is applied to P-CCPCH, all the reference power of any beacon channel is allocated to $\mathrm{m}^{(1)}$.
- If Block STTD antenna diversity is applied to P-CCPCH, for any beacon channel midambles $\mathrm{m}^{(1)}$ and $\mathrm{m}^{(2)}$ are each allocated half of the reference power. Midamble $\mathrm{m}^{(1)}$ is used for the first antenna and $\mathrm{m}^{(2)}$ is used for the diversity antenna. Block STTD encoding is used for the data in P-CCPCH, see [9]; for all other beacon channels identical data sequences are transmitted on both antennas.

6.6 Midamble Allocation for Physical Channels

The midamble allocation schemes for physical channels are the same as in the 3.84 Mcps TDD option. The associations between channelisation codes and midambles for the default and common midamble allocation differ from the 3.84 Mcps TDD option. The associations are given in Annex B. 2 [Association between Midambles and channelisation Codes] and D [Signalling of the number of channelisation codes for the DL common midamble case for 1.28 Mcps TDD] respectively

6.6.1 Midamble Allocation for DL Physical Channels

Beacon channels shall always use the reserved midambles $\mathrm{m}^{(1)}$ and $\mathrm{m}^{(2)}$, see 6.5 . For the other DL physical channels that are located in timeslot $\# 0$, midambles shall be allocated based on the default midamble allocation scheme, using the association for $\mathrm{K}=8$ midambles. For all other DL physical channels, the midamble is explicitly assigned by higher layers or allocated by layer 1.

6.6.1.1 Midamble Allocation by signalling from higher layers

The midamble allocation by signalling is the same like in the 3.84 Mcps TDD cf. [5.6.1.1 Midamble allocation by signalling from higher layers]

6.6.1.2 Midamble Allocation by layer 1

6.6.1.2.1 Default midamble

The default midamble allocation by layer 1 is the same like in the 3.84 Mcps TDD cf. [5.6.1.2.1 Default midamble]. The associations between midambles and channelisation codes are given in Annex B. 2 [Association between Midambles and channelisation Codes].

6.6.1.2.2 Common Midamble

The common midamble allocation by layer 1 is the same like in the 3.84 Mcps TDD cf. [5.6.1.2.2 Common midamblel. The respective associations are given in Annex D [Signalling of the number of channelisation codes for the DL common midamble case for 1.28 Mcps TDDI.

6.6.2 Midamble Allocation for UL Physical Channels

The midamble allocation for UL Physical Channels is the same as in the 3.84 Mcps TDD cf. [5.6.2 Midamble allocation for UL Physical Channels]

6.7 Midamble Transmit Power

The setting of the midamble transmit power is done as in the 3.84 Mcps TDD option cf. 5.7 'Midamble Transmit Power'
$6 \underline{7}$ Mapping of transport channels to physical channels for the 3.84 Mcps option

8 Mapping of transport channels to physical channels for the 1.28 Mcps option

This clause describes the way in which the transport channels are mapped onto physical resources, see figure X1.

Transport channels	Physical channels
$\underline{\text { DCH }}$	Dedicated Physical Channel (DPCH)
$\underline{B C H}$	Primary Common Control Physical Channels (P-CCPCH)
$\underline{\text { PCH }}$	$\underline{\text { Secondary Common Control Physical Channels(S-CCPCH) }}$
$\underline{\text { FACH }}$	$\underline{\text { Secondary Common Control Physical Channels(S-CCPCH) }}$
	$\underline{\text { PICH }}$
$\underline{\text { RACH }}$	$\underline{\text { USCH }}$
$\underline{\text { DSCH }}$	Physical Random Access Channel (PRACH)
	Physical Downlink Shared Channel (PDSCH)
	$\underline{\text { Down link Pilot Channel (DwPCH) }}$
	$\underline{\text { UPACH link Pilot Channel (UpPCH) }}$

Figure 23: Transport channel to physical channel mapping for 1.28Mcps TDD

8.1 Dedicated Transport Channels

The mapping of transport blocks to physical bearers is in principle the same as in 3.84 Mcps TDD but due to the subframe structure the coded bits are mapped onto each of the subframes within the given TTI.

Figure 30 : Mapping of Transport Blocks onto the physical bearer (TTI=20ms)

8.2 Common Transport Channels

8.2.1 The Broadcast Channel (BCH)

There are two P-CCPCHs, P-CCPCH 1 and P-CCPCH 2 which are mapped onto timeslot\#0 using the channelisation codes $c_{Q ? 16}^{(k ? 1)}$ and $c_{Q ? 16}^{(k ? 2)}$ with spreading factor 16 . The BCH is mapped onto the P-CCPCH1+P-CCPCH2.

The position of the P-CCPCHs is indicated by the relative phases of the bursts in the DwPTS with respect to the PCCPCHs midamble sequences, see [8]. One special combination of the phase differences of the burst in the DwPTS with respect to the P-CCPCH midamble indicates the position of the P-CCPCH in the multi-frame and the start position of the interleaving period.

8.2.2 The Paging Channel (PCH)

8.2.2.1 $\mathrm{PCH} / \mathrm{PICH}$ Association

8.2.3 The Forward Channel (FACH)

The FACH is mapped onto one or several S-CCPCHs. The location of the FACH is indicated on the BCH and both, capacity and location can be changed, if required. FACH may or may not be power controlled.

8.2.4 The Random Access Channel (RACH)

The RACH has intraslot interleaving only and is mapped onto PRACH. More than one slot per frame may be administered for the PRACH. The location of slots allocated to PRACH is broadcast on the BCH. The uplink sync codes (SYNC-UL sequences) used by the UEs for UL synchronisation have a well known association with the PRACHs, as broadcast on the BCH. On the PRACH, both power control and uplink synchronisation control are used.

8.2.5 The Uplink Shared Channel (USCH)

8.2.6 The Downlink Shared Channel (DSCH)

Annex A (normative):
Basic Midamble Codes for the 3.84 Mcps option

Annex B (normative):

Basic Midamble Codes for the 1.28 Mcps option

B. 1 Basic Midamble Codes

The midamble has a length of $\mathrm{L}_{\mathrm{m}}=144$, which is corresponding to:
$\mathrm{K}=2,4,6,8,10,12,14,16, \ldots ? \stackrel{?}{?} \frac{P}{?} \frac{?}{?}, \stackrel{\mathrm{P}=128}{?}$

Note: that $? x$? denotes the largest integer number less or equal to x.

Depending on the possible delay spread cells are configured to use midambles which are generated from the Basic Midamble Codes (see table C.1). The cell configuration is broadcas t on BCH.

The mapping of these Basic Midamble Codes to Cell Parameters is shown in [8].

Table B.1: Basic Midamble Codes m_{p} according to equation (5) from subclause 6.2.3

Code ID	Basic Midamble Codes m_{P} of length $\mathrm{P}=128$
$\underline{\mathrm{mp}} 0$	B2AC420F7C8DEBFA69505981BCD028C3
$\underline{\mathrm{mp}} 1$	0C2E988E0DBA046643F57B0EA6A435E2
$\underline{\underline{m}}{ }^{\text {2 }}$	D5CEC680C36A4454135F86DD37043962
$\underline{\mathrm{mp}} 3$	E150D08CAC2A00FF 9B32592A631CF85B
$\underline{\mathrm{m}} 4$	E0A9C3A8F6E40329B2F2943246003D44
$\underline{\text { MP5 }}$	FE22658100A3A683EA759018739BD690
$\underline{\mathrm{m}} \mathrm{m}^{\text {b }}$	B46062F89BB2A1139D76A1EF32450DA0
$\underline{\mathrm{MP}} 7$	EE63D75CC099092579400D956A90C3E0
$\underline{\mathrm{mp}}$	D9C0E040756D427A2611DAA35E6CD614
$\underline{\mathrm{M}} 9$	EB56D03A4 98EC4FEC98AE220BC390450
$\underline{\mathrm{m}} 10$	F598703DB0838112ED0BABB98642B665
$\underline{\mathrm{m}} \mathrm{P}_{11}$	A0BC26A992D4558B9918986C14861EFF
$\underline{\mathrm{M}} \mathrm{P}_{12}$	541350 D 109 F 1 DD 68099796637 B 824 F 88
$\underline{\mathrm{m}} 13$	892D344A962314662F01F9455F7BC302
$\underline{\mathrm{m}} 14$	49F270E29CCD742A40480DD4215E1632
$\underline{\mathrm{M}} 15$	6A5C0410C6C39AA04E77423C355926DE
$\underline{\mathrm{MP}} 16$	$7976615538203103 \mathrm{D} 4 \mathrm{DBCC219B16A9E1}$
$\underline{\mathrm{m}}^{17}$	A6C3C3175845400BD2B738C43EE2645F
$\underline{\mathrm{m}} \mathrm{P}_{18}$	A0FD56258D228642C6F641851C3751ED
$\underline{\underline{\mathrm{m}}}{ }_{19}$	EFA48C3FC84AC625783C6C9510A2269A
$\underline{\mathrm{M}} \mathrm{P}^{20}$	62A8EB1A420334B23396E8D76BC19740
$\underline{\mathrm{M}} \mathrm{P}^{11}$	9E96235699D5D41C9816C921023BC741
$\underline{\mathrm{m}} \mathrm{P}_{22}$	$4362 \mathrm{AE} 4 \mathrm{CAE} 0 \mathrm{DCC32D60A3FED1341A848}$
$\underline{\mathrm{m}} 23$	$454 \mathrm{C068E6C4F190942E0904B95D61DFB}$
$\underline{\mathrm{M}} \mathrm{L}^{4}$	607FEEA6E2E99206718A49C0D6A25034
$\underline{\mathrm{m}} 25$	E1D1BCDA39A09095B5C81645103A077C
$\underline{\mathrm{M}} \mathrm{P}^{\text {26 }}$	$994 \mathrm{B4} 45 \mathrm{E} 55344 \mathrm{DE} 211 \mathrm{C} 286 \mathrm{DDD} 3 \mathrm{D} 1 \mathrm{~A} 3$
$\underline{\mathrm{m}} \mathrm{P}^{27}$	C15233273581417638906ADB61FDCA3C
$\underline{\mathrm{M}} 28$	8B79A274D542F096FB1388098230F8A1
$\underline{\mathrm{m}} \mathrm{P}^{29}$	DF58AC1C5F44B2A40266385CE1DA5640
$\underline{\mathrm{m}} 30$	B5949A1CC69962C464401D05FF5C1A7A
$\underline{\text { mp31 }}$	85AC489841ED3EAA2D83BBB0039CC707

$\underline{m p 32}$	AE371CC144BC95923CA8108D8B49FE82
mp32	7F188484A649D1C22BDA1F09D49B5117
$\underline{\text { mp34 }}$	ADAA3C657089DEF 7 C0284903A491C9B0
$\underline{\text { mp }} 35$	C3F96893C7504DC3B51488604AF64F4C
$\underline{M P 36}^{1}$	B4002F5AE0CE8623AC979D368E9148C1
$\underline{\text { PP37 }}$	0EEBCC0C795C02A106C24ABB36D08C6E
$\underline{\text { Pr }} 38$	4B0F537E384A893F58971580D9894433
$\underline{\mathrm{M}} 39$	08E0035AB29B7ECC53C15DAA0687CC8F
$\underline{\mathrm{mp}} 40$	8611ACBC4C82781D77654EE862506D60
$\underline{\mathrm{m}}_{\mathrm{P}} 41$	63315261 A8F1CB02549802DBFD197C07
$\underline{\mathrm{m}} 42$	9A2609A434F43E7DCADC0E22B2EF4012
$\underline{\mathrm{m}} 43$	F4C9F0A127A88461209ABF8C69CE4D00
$\underline{\underline{m}} \mathbf{P 4}$	C79124EE3FFC28C5C4524D2B01670D42
$\underline{\mathrm{m}} 45$	C91985C4FED53D09361914354BA80E79
$\underline{\mathrm{m}} 46$	82AA517260779ECFF26212C1A10BDC29
$\underline{\mathrm{m}} 47$	$561 \mathrm{DE} 2040 \mathrm{ACB458E0DBD} 354 \mathrm{E} 43 \mathrm{E111D9}$
$\underline{\mathrm{M}} 48$	2E58C7202D17392BC1235782CEFABB09
$\underline{\mathrm{m}} 49$	C4FAA121C698047650F6503126A577C1
$\underline{\mathrm{MP} 50}$	E7B75206A9B410E44346E0DAE842A23C
$\underline{\mathrm{m}} \mathrm{P}_{51}$	3F8B1C32682B28D098D3805ED130EA7F
$\underline{\mathrm{M}} \mathrm{P}_{5}$	8D5FC2C1C6715F824B401434C8D4BB82
$\underline{\mathrm{M}} 53$	0B2A43453ACC028FE6EB6E1CB0740B59
$\underline{\mathrm{MP}} 54$	BC56948FC700BA4883262EE73E12D82A
$\underline{\mathrm{M}} 55$	558D136710272912FA4F183D1189A7FD
$\underline{\underline{m}}{ }^{\text {5 }}$	5709 E F82DC6500B7B12A3072D182645
$\underline{\mathrm{m}} 57$	86D4F161C844AE5E20EE39FD5493B044
$\underline{\text { mp } 58}$	8729B6EDC382B152185885F013DAE222
$\underline{\mathrm{M}} 59$	154C45B50720F4C362C14C77FE8335A1
$\underline{M P 60}$	C6A0962890351F4EB802DE43A7662C9E
$\underline{\mathrm{M}} \mathrm{6}^{1}$	D19D69D6B380B4B22457CB80033519F0
$\underline{\mathrm{m} 62}$	C7D89509FB0DAE9255998E0A00C2B262
$\underline{\mathrm{m}}$ 6 6	DFD481C652C0C905D61D66F1732C4AA2
$\underline{\mathrm{m}} 64$	$06 \mathrm{C} 848619 \mathrm{AF} 1 \mathrm{D} 6 \mathrm{C} 910 \mathrm{~A} 8 \mathrm{EAC4B622FC06}$
$\underline{\mathrm{m}} 65$	$0635 \mathrm{E} 29 \mathrm{4E} 4 \mathrm{AC} 8 \mathrm{ABC189890241F45ECA}$
$\underline{\mathrm{M}}$ 66	B272B020586AAD7B093AC2F459076638
$\underline{\text { mp67 }}$	B608ACE46E1A6BC96181EEDD88B54140
$\underline{\mathrm{m}} 68$	0A516092B3ED7849B168AFE223B8670E
$\underline{\underline{\text { m }} 69}$	D1A658C5009E04D0D7D5E9205EE663E8
$\underline{\text { MP70 }}$	AC316DC39B91EB60B1AABD8280740432
$\underline{\underline{M} 71}$	E3F06825476A026CD287625E514519FC
$\underline{\mathrm{M}} 72$	A56D092080DDE8994F387C175CC56833
$\underline{\text { mp73 }}$	15EA799DE587C506D0CD99A408217B05
$\underline{\mathrm{MP}} 74$	A59C020BAB 9AF 6D3F813C391CA244CD2
$\underline{\mathrm{M}} 75$	74B0101EB9F3167434B94BABC8378882
$\underline{\mathrm{MP}} 76$	CE752975C8DA9B0100386DB82A8C3D20
$\underline{\mathrm{M}} 77$	BBB38DCDB1E9118570AC147DC05241A4
$\underline{\mathrm{M}} 78$	$944 \mathrm{ABBF} 0866098101 \mathrm{~F} 6971731 \mathrm{AB2E986}$
$\underline{\mathrm{M} 79}$	2BB147B2A30C68B4853F90481A166EB6
$\underline{\text { mp } 80}$	444840 ACCF 3F23C45B56D7704BF18283
$\underline{\mathrm{M}} 81$	$87604 \mathrm{~F} 7450 \mathrm{D} 1 \mathrm{AD188C452981A5C7FC9B}$
$\underline{\mathrm{M}} 82$	8C3842EBC948A65BC4C8B387F11B7090
$\underline{\mathrm{M}} 83$	10B4767D071CF5DB2288E4029576135A
$\underline{\mathrm{MP} 84}$	6F07AAB697CD0089572C6B062E2018E4
$\underline{\underline{M P}} 85$	D3D65B442057E613A8655060C8D29E27
$\underline{\mathrm{m}} 86$	5EDA330514C604BF4E0894E09EC57A74
$\underline{\underline{M}} 88$	B0899CD094060724DED82AE85F18A43A
$\underline{\mathrm{MP}} 88$	B2D999B86DF902BC25015CAE3A0823C4
$\underline{\text { mp89 }}$	C23CD40F04242B92D46EED82CD9A9A18

$\underline{\text { mp9 }}$	D22DDCC5CB82960125DD24655F3C8788
$\mathrm{mp}_{\mathrm{0}} 1$	54987218 FBD 99 AE 4340 FD 4 C 9458 E 9850
$\underline{\text { mp92 }}$	BE4341822997A7B11EA1E8A1A2767005
$\underline{\text { mp93 }}$	$255200 F B A 6 E E 48 E 6 D E 0 A 82 B 0461$ B8D0F
$\underline{\mathrm{m}} 94$	6FBD58A663932423503690CF9C171701
$\underline{\text { MP95 }}$	D215033A4AA87EC1C232BAC7EDA09370
$\underline{\text { mp96 }}$	CA0959B01AE48E80204F1E4A3F29CE55
$\underline{\text { mp97 }}$	582043413 B 9 B 825903 E 3 A3545ED59463
$\underline{\text { mp98 }}$	5016541922971 C 703 D 16 E 284 CBDF 633 B
$\underline{\mathrm{m}} \mathrm{P9} 9$	$7347 \mathrm{EF} 160 \mathrm{Al733CA98D43608A83A920B}$
$\underline{\mathrm{m}} 100$	908 B 22 AD 433 CCA 00 B 3 FD 47 C 691 F 1 A 290
$\underline{\mathrm{M}} 101$	BB22A272FC6923DF1B43BA4118806570
$\underline{\mathrm{m}} 102$	0FA75C87474836B47DC7624D61193802
$\underline{\underline{\mathrm{m}}} 103$	A22EBA0658A4D0FF1E9CA5030A65CC06
$\underline{\text { mp104 }}$	6C9C51CA15F1F4981F4C46180A6A6697
$\underline{\mathrm{m}}^{105}$	4C847ACF 8 BC15359C405322851C9BDE2
$\underline{\mathrm{m}} 106$	C1D29499C0082C9DE473ED15B14D63E0
$\underline{\mathrm{m}} 107$	7E85ECC98AC761005076C5572869A431
$\underline{\mathrm{m}}$ P108	D8F11121595B8F49F78A7039E44126A0
$\underline{\underline{m}}{ }^{\text {109 }}$	1A0BC814445FD71C8E5B1A9163ED2059
$\underline{\mathrm{m}} 110$	A7591F27F8B0C00C68CC41697954FA04
$\underline{\mathrm{m}} 111$	6CA2CE595E7406D79C4840183D41B9D0
$\underline{\mathrm{m}}_{\text {P1 }} 12$	C093D3CC701FC20E66F5AB22516C5460
$\underline{\mathrm{mp} 113}$	D0E0CDE 9B595546B96C4F8066B469020
$\underline{\text { mp1 }} 14$	E99F743A451431C8B427054A4E6F2007
$\underline{\mathrm{mp}} 115$	C0D21A344A2C07DF2A6EBE6250C7B91E
$\underline{\underline{m}}{ }^{\text {P1 }} 16$	F031223E282CF7A4D8EF174A908668AE
$\underline{\underline{m}} 117$	E4BD244AC16C55C7137FB068FD44280C
$\underline{\mathrm{m}}_{\text {P1 }} 18$	C44920DE2028F19FC2AAB36A0DCFDAD 0
$\underline{\mathrm{m}} 119$	3FA7054E77135250699E6C8A11600742
$\underline{\mathrm{m}} 120$	D5740B4D8870C1C5B5A214C4266FC537
$\underline{\mathrm{m}}_{\mathrm{P} 121}$	F0B7942D43BB6F38446442EB8126AB80
$\underline{\mathrm{m}}_{\mathrm{P} 122}$	83DB9534EAD 6238 FA 8968798 CDF 04848
$\underline{\text { mp } 123}$	EB9663CDDC2B291690703125BABCB800
$\underline{\text { MP124 }}$	84D547225D4BBD20DEF1A583240C6E0F
$\underline{\text { mp } 125 ~}$	B51F6A771838BE934724AEA6A2669802
$\underline{\text { MP126 }}$	D92AC05E10496794BBDC115233B1C068
$\underline{\mathrm{m}}_{\mathrm{P} 127}$	D3ACF0078EDA9856BBB0AF 8651132103

B. 2 Association between Midambles and Channelisation Codes

The following mapping schemes apply for the association between midambles and channelisation codes if no midamble is allocated by higher layers. Secondary channelisation codes are marked with (*). These associations apply for both UL and DL.

B.2.1 Association for $\mathrm{K}=16$ Midambles

Figure B.2.1: Association of Midambles to Spreading Codes for $\mathrm{K}=16$

B.2.2 Association for $\mathrm{K}=14$ Midambles

Figure B.2.2: Association of Midambles to Spreading Codes for $\mathrm{K}=14$

B.2.3 Association for $\mathrm{K}=12$ Midambles

Figure B.2.3: Association of Midambles to Spreading Codes for $\mathrm{K}=12$

B.2.4 Association for $\mathrm{K}=10$ Midambles

Figure B.2.4: Association of Midambles to Spreading Codes for $\mathrm{K}=10$

B.2.5 Association for $\mathrm{K}=8$ Midambles

Figure B.2.5: Association of Midambles to Spreading Codes for $\mathrm{K}=8$

B.2.6 Association for $\mathrm{K}=6$ Midambles

Figure B.2.6: Association of Midambles to Spreading Codes for $\mathrm{K}=6$

B.2.7 Association for $\mathrm{K}=4$ Midambles

Figure B.2.7: Association of Midambles to Spreading Codes for $\mathrm{K}=4$

B.2.8 Association for $\mathrm{K}=2$ Midambles

Figure B.2.8: Association of Midambles to Spreading Codes for $\mathrm{K}=2$

Annex B- \underline{C} (normative)
Signalling of the number of channelisation codes for the DL common midamble case for 3.84 Mcps TDD

Annex D (normative)

Signalling of the number of channelisation codes for the DL common midamble case for 1.28 Mcps TDD

The following mapping schemes shall apply for the association between the number of channelisation codes employed in a timeslot and the use of a particular midamble shift in the DL common midamble case. In the following tables the presence of a particular midamble shift is indicated by ' 1 '. Midamble shifts marked with ' 0 ' are left unused.

D. 1 Mapping scheme for $\mathrm{K}=16$ Midambles

m1	m2	m3	m4	m5	m6	M7	M8	m9	m10	m11	m12	M13	m14	m15	m16	
1	$\underline{0}$	1 code														
$\underline{0}$	1	$\underline{0}$	2 codes													
$\underline{0}$	$\underline{0}$	1	$\underline{0}$	3 codes												
$\underline{0}$	$\underline{0}$	$\underline{\underline{0}}$	1	$\underline{0}$	$\underline{\underline{0}}$	$\underline{0}$	$\underline{\underline{0}}$	$\underline{0}$	4 codes							
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	1	$\underline{0}$	5 codes										
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	1	$\underline{0}$	6 codes									
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	1	$\underline{0}$	7 codes								
$\underline{0}$	1	$\underline{0}$	8 codes													
$\underline{0}$	$\underline{0}$	$\underline{\underline{0}}$	$\underline{0}$	$\underline{0}$	$\underline{\underline{0}}$	$\underline{0}$	$\underline{\underline{0}}$	1	$\underline{0}$	9 codes						
$\underline{0}$	1	0	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	10 codes								
$\underline{0}$	1	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	11 codes									
$\underline{0}$	1	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	12 codes										
$\underline{0}$	1	$\underline{0}$	$\underline{0}$	$\underline{0}$	13 codes											
$\underline{0}$	1	$\underline{0}$	$\underline{0}$	14 codes												
$\underline{0}$	$\underline{0}$	$\underline{\underline{0}}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{\underline{0}}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	1	$\underline{0}$	15 codes
$\underline{0}$	0	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	1	16 codes								

D. 2 Mapping scheme for $\mathrm{K}=14$ Midambles

m1	m2	m3	m4	m5	m6	M7	M8	m9	m10	m11	m12	M13	m14	
1	$\underline{0}$	$\underline{0}$	$\underline{\underline{0}}$	$\underline{0}$	1 or 15 code(s)									
0	1	0	0	0	0	0	0	0	0	0	0	0	0	2 or 16 codes
$\underline{0}$	$\underline{0}$	1	$\underline{\underline{0}}$	$\underline{0}$	3 codes									
$\underline{0}$	$\underline{0}$	$\underline{0}$	1	$\underline{0}$	0	$\underline{0}$	4 codes							
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	1	0	$\underline{0}$	5 codes							
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	1	$\underline{0}$	6 codes							
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	1	$\underline{0}$	7 codes						
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	0	$\underline{0}$	1	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	0	8 codes
$\underline{0}$	1	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	9 codes							
$\underline{0}$	$\underline{\underline{0}}$	$\underline{0}$	1	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	10 codes						
0	$\underline{0}$	1	$\underline{0}$	$\underline{0}$	0	11 codes								
$\underline{0}$	1	$\underline{0}$	$\underline{0}$	12 codes										
$\underline{0}$	1	$\underline{0}$	13 codes											
$\underline{0}$	1	14 codes												

D. 3 Mapping scheme for $\mathrm{K}=12$ Midambles

m1	m2	m3	m4	m5	m6	M7	M8	m9	$\underline{\mathrm{m} 10}$	m11	$\underline{\mathrm{m} 12}$	
1	$\underline{0}$	$\underline{\underline{0}}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	1 or 13 code(s)						
$\underline{0}$	1	$\underline{0}$	2 or 14 codes									
0	0	1	0	0	0	0	0	0	0	0	0	3 or 15 codes
$\underline{0}$	$\underline{0}$	$\underline{0}$	1	$\underline{0}$	4 or 16 codes							
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	1	$\underline{0}$	5 codes						
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	1	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	6 codes
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{\underline{0}}$	$\underline{0}$	$\underline{0}$	1	$\underline{\underline{0}}$	$\underline{\underline{0}}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	7 codes
$\underline{0}$	0	$\underline{0}$	$\underline{0}$	0	0	$\underline{0}$	1	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	8 codes
$\underline{0}$	1	$\underline{0}$	$\underline{0}$	$\underline{0}$	9 codes							
0	0	0	0	0	0	0	0	$\underline{0}$	1	$\underline{0}$	0	10 codes
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	0	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	1	0	11 codes
$\underline{0}$	1	$\underline{12 \text { codes }}$										

D. 4 Mapping scheme for $\mathrm{K}=10$ Midambles

m1	m2	m3	m4	m5	m6	M7	M8	m9	m10	
1	$\underline{0}$	1 or 11 code(s)								
$\underline{0}$	1	$\underline{0}$	2 or 12 codes							
$\underline{0}$	$\underline{0}$	1	$\underline{0}$	3 or 13codes						
$\underline{0}$	$\underline{0}$	$\underline{0}$	1	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	4 or 14 codes
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	1	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	5 or 15 codes
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	1	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	6 or 16 codes
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	1	$\underline{0}$	$\underline{0}$	$\underline{0}$	7 codes
$\underline{0}$	1	$\underline{0}$	$\underline{0}$	8 codes						
$\underline{0}$	1	$\underline{0}$	9 codes							
$\underline{0}$	1	10 codes								

D. 5 Mapping scheme for $\mathrm{K}=8$ Midambles

m1	$\underline{\mathrm{m}}$	m3	m4	m5	m6	$\underline{\text { m }}$	m8	
1	0	$\underline{0}$	0	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	1 or 9 code(s)
$\underline{0}$	1	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	2 or 10 codes
$\underline{0}$	$\underline{0}$	1	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	3 or 11 codes
$\underline{0}$	$\underline{0}$	$\underline{0}$	1	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	4 or 12 codes
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	1	$\underline{0}$	$\underline{0}$	$\underline{0}$	5 or 13 codes
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	1	$\underline{0}$	$\underline{0}$	6 or 14 codes
$\underline{\underline{0}}$	$\underline{\underline{0}}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	1	$\underline{0}$	7 or 15 codes
0	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	1	8 or 16 codes

D. 6 Mapping scheme for $K=6$ Midambles

$\underline{\mathbf{m} 1}$	$\underline{\mathbf{m}} \mathbf{z}$	$\underline{\mathbf{m} 3}$	$\underline{\mathbf{m} 4}$	$\underline{\mathbf{m} 5}$	$\underline{\mathbf{m} 6}$	
$\underline{\mathbf{1}}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{1}$ or 7 or 13 code (s)
$\underline{0}$	$\underline{1}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{2}$ or 8 or 14 codes
$\underline{0}$	$\underline{0}$	$\underline{1}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{3}$ or 9 or 15 codes
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{1}$	$\underline{0}$	$\underline{0}$	$\underline{4}$ or 10 or 16 codes
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{1}$	$\underline{0}$	$\underline{5}$ or 11 codes
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{1}$	$\underline{6}$ or 12 codes

D. 7 Mapping scheme for $K=4$ Midambles

$\underline{\mathbf{m} 1}$	$\underline{\mathbf{m} 2}$	$\underline{\mathrm{~m} 3}$	$\underline{\mathbf{m} 4}$	
$\underline{1}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{1}$ or 5 or 9 or 13 code s$)$
$\underline{0}$	$\underline{1}$	$\underline{0}$	$\underline{0}$	$\underline{2}$ or 6 or 10 or 14 codes
$\underline{0}$	$\underline{0}$	$\underline{1}$	$\underline{0}$	$\underline{3 \text { or } 7 \text { or } 11 \text { or } 15 \text { codes }}$
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{1}$	$\underline{4 \text { or } 8 \text { or } 12 \text { or } 16 \text { codes }}$

D. 8 Mapping scheme for K=2 Midambles

$\underline{\mathbf{m} 1}$	$\underline{\mathbf{m} 2}$	
$\underline{\mathbf{1}}$	$\underline{0}$	$\underline{1}$ or 3 or 5 or 7 or 9 or 11 or 13 or 15 code (s)
$\underline{0}$	$\underline{1}$	$\underline{2}$ or 4 or 6 or 8 or 10 or 12 or 14 or 16 codes

Annex G-E (Informative): CCPCH Multiframe Structure for the 3.84 Mcps option

Annex G (Informative):

Examples of the association of DL TPC commands to UL uplink time slots for 1.28 Mcps TDD

In the following two examples of the association of UL TPC commands to UL time slots and CCTrCHs are shown (see 6.2.2.2):

Table X Two examples of the association of DL TPC commands to UL uplink time slots with $N_{U L s l o t}=3$

Case 1: $N_{U L_{-} T P C \text { Ssymbols }}=2$; Case 2: $N_{U L_{-} T P C \text { csymbols }}=4$

$\begin{array}{c}\text { Sub- } \\ \text { Frame } \\ \text { Nu mber }\end{array}$	$\begin{gathered} \text { Case } 1 \\ \underline{(2 \text { UL TPC }} \\ \text { symbols }) \end{gathered}$		The order of the served UL time slot and CCTrCH$\frac{\text { pairs (UL time }}{\text { slot and CCTrCH }}$number)	$\begin{gathered} \underline{\text { Case } 2} \\ (4 \text { UL TPC } \\ \text { symbols }) \end{gathered}$		
	The order of UL TPC symbols			The order of UL TPC symbols		
	$\underline{\underline{\left(1^{\mathrm{st}}\right.}}$		$\rightarrow \underline{0(\mathrm{TS} 3)}$	$\underline{0}$	$\frac{\left(1^{\mathrm{st}}\right.}{\left.\underline{U L_{p o s}}=0\right)}$	
			$\underline{2(T S 5)} 4$	$\underline{2}$		
			$\underline{0(T S 3)}{ }^{4}$	$\underline{3}$		
$\underline{\mathrm{SFN}^{\prime}=1}$	$\frac{\left(1^{\mathrm{st}}\right.}{\left.\underline{\mathrm{U}} \underline{L}_{p o s}=2\right)}$	$\underline{0}$	$\frac{\underline{0(\mathrm{TS} 3)}}{1(\mathrm{TS} 4)}$		$\frac{\left(1^{\mathrm{st}}\right.}{\underline{\left.U L_{p o s}=1\right)}}$	
$\underline{\text { SFN' }=2}$	$\underline{\underline{\left(1^{\mathrm{st}}\right.}}$				$\frac{\left(1^{\mathrm{st}}\right.}{\left.\underline{\mathrm{U}} \underline{p o s}_{\text {pos }}=2\right)}$	
\pm	$=$		\pm		\pm	
$=$	-		\pm		$=$	
$=$	=		\pm		$=$	

Annex D-H(informative):
Change history

