A²IR - An Asynchronous and Adaptive HARQ Scheme for HSDPA

RAN WG1 #18 Boston, MA January 15-19, 2001

Lucent Technologies

Asynchronous and Adaptive IR

- An Asynchronous and Adaptive IR (A²IR) scheme that allows to fully exploit the multi-user diversity gains has been proposed for HSDPA [R1-00-1382].
- This contribution provides more details on A²I R.

Fully Asynchronous Operation (A²I R)

- A²IR Supports fully asynchronous operation by using Code Block I dentifiers (log2(N) bits for N parallel channels)
- A²I R provides lower delays and better throughput by fully exploiting multi-user diversity.

A²I R versus Synchronous I R -An example

Ec/Nt	Throughput [b/s]		AAIR Gain [%]
	SIR	AAIR	
-14	42678	52919	24.00
-12	61013	82287	34.87
-10	86338	131831	52.69
-8	125951	207491	64.74
-6	171450	305618	78.25
-4	235652	445914	89.23
-2	318462	623044	95.64
0	458056	871827	90.33
2	658045	1180479	79.39
4	1076828	1487446	38.13
6	1607128	1819044	13.19
8	1968539	2094262	6.39
10	2214917	2240818	1.17

1.25 MHz carriercode block size of 3072 bits8 usersMax. rate user first30Hz Doppler

A²IR provides up to 95% throughput gain over synchronous IR

The performance of partially asynchronous scheme is expected to be between synchronous and fully asynchronous scheme (A²I R)

The CBI (2 bits) overhead in A²I R is only 0.3% for a code block of size 2560 bits [assumes 4 times higher E_b/N_o for CBI bits]

Why Adaptive Operation? (1)

- The power available for HS-DSCH is continuously changing (on a slotby-slot basis) due to e.g., large variations in the power used by powercontrolled circuit switched users.
- The C/I seen by a user is also varying quickly due to varying interference from neighboring cells and/or large changes in channel quality due to fading etc.
- With asynchronous I R operation, the time between the transmissions/retransmissions could be longer because a retransmission to a user can be preempted by a transmission/retransmission to another user.
- Therefore, it is highly likely that the channel conditions, available power and Walsh code space are different between transmissions/retransmissions that need to be I R/combined.

Why Adaptive Operation? (2)

- With fast cell site selection (within a Node B or between Node Bs), the channel conditions, available power and the code space will be different in the new cell.
- With N-channel HARQ, it is highly likely that some of the code blocks will have pending recovery (from the old cell) while FCS is performed.
- Under these conditions, non-adaptive schemes that do not allow change of MCS on retransmissions will have to abort transmission that will result in degraded system performance.
- A true HARQ scheme should be able to do I R/combining across transmissions/retransmissions at different MCS within the same cell and across cell sites.

Lucent Technologies Bell Labs Innovations

Key features of A²I R

- The scheme supports fully asynchronous operation in order to exploit the multi-user diversity gains.
- The scheme provides the flexibility to perform I R/Combining across different rates (different modulation and coding schemes including MIMO).
- The scheme also allows the flexibility of selecting different code block sizes (number of Transport blocks per TTI) for the same data rate in order to avoid the frame-fill inefficiency.
- The scheme can be operated in pure rate controlled (link adaptation) mode [8/10 different MCS are provided].
- The scheme operates transparently with Fast Cell Site Selection i.e., any modulation and coding scheme can be used to recover outstanding (ongoing transmission) code blocks in the new cell.

Encoding and sub-block formation (Example)

Mapping of sub-blocks to slots

Data Rate [Kb/s]	sub-block size [bits]	Modulation	Repetition factor	Modulated symbols	Symbols after spreading	Number of slots/sub- block
480	25600	QPSK	2	25600	40960	16
960	25600	QPSK	1	12800	20480	8
1920	12800	QPSK	1	6400	10240	4
3840	6400	QPSK	1	3200	5120	2
7680	6400	16-QAM	1	1600	2560	1

Modulation and coding schemes (non-MIMO)

				Transmis	sion Time I	nterval (TT	I) [number
MCS	Data	Modulatio	Effective	of slots]			
1989	Rate	n	coding rate	16	8	4	2
1997 - AS	[Kb/s]		100	Transpo rt blocks	Transpo rt blocks	Transpo rt blocks	Transport
			[actual	per TTI	per TTI	per TTI	per TTI
			coding +	[code	[code	[code	[code
			repetition]	block =	block =	block =	block =
-				5120 bite1	2560 bite1	1280	640 bits]
1				Ditsj	DitSj	DIISJ	
1	60	QPSK	0.0125				16
			010120				10
2	120	QPSK	0.0250	1		16	8
3	240	QPSK	0.0500		16	8	4
4	480	QPSK	0.1000	16	8	4	2
5	960	QPSK	0.2000	8	4	2	1
6	1920	QPSK	0.4000	4	2	1	J.
7	3840	QPSK	0.8000	2	1		46
8	7680	16-QAM	0.8000	1	- 181	1	
				ucent	lecuu	ologie	5

Modulation and coding schemes (MIMO - 2 Receive Antennas)

ſ	MCS	Data Rate [Kb/s]	Data Rate [Kb/s] # of transmit antennas Modulatio n Effective coding rate [actual coding +	Data	# of	Modulatio Effective		Transmission (TTI) [numl	Time Interval per of slots]
P				transmit antennas	n	coding rate [actual coding +	32Transport blocks per TTI	16 Transport blocks per TTI	
					repetition]	[code block = 10240 bits]	[code block = 5120 bits]		
	4	480	1	QPSK	0.1		16		
	5	960	1	QPSK	0.2	16	8		
	6	1920	1	QPSK	0.4	8	4		
	7	3840	1	QPSK	0.8	4	2		
	8	7680	2	QPSK	0.8	2	1		
	9	15360	2	16-QAM	0.8	1			

A²IR also allows HARQ (IR/combining) operation across MIMO and non-MIMO modulation and coding schemes.

Sub-block rate (SBR)

Supportable rate	Sub-block rate (SBR)
[Kb/s]	[Kb/s]
15	60
30	120
60	240
120	480
240	960
480, 960	1920
1920	3840
3840	7680
7680	7680

Lucent Technologies Bell Labs Innovations

Operation Across Different MCS

Parallel code block Transmission (Example)

R1-01-0081

2-bit Code Block I dentifier (CBI) is used to distinguish up to 4 parallel transmissions (N-channel) from the same user.

2-bit sub-block sequence number (SBSN) is used to identify the sub-blocks (generalized New/Continue indication).

The Early ACK feature of the A²IR scheme can reduce the transmission times and improve throughput for cases where the sub-block transmission time is greater than the ACK/NACK feedback delay.

> Lucent Technologies Bell Labs Innovations

Summary of Key features

- The scheme supports fully asynchronous operation in order to exploit the multi-user diversity gains.
- The scheme provides the flexibility to perform I R/Combining across different rates (different modulation and coding schemes including MI MO).
- The scheme also allows the flexibility of selecting different code block sizes (number of Transport blocks per TTI) for the same data rate in order to minimize the frame-fill inefficiency.
- The scheme can be operated in pure rate controlled (link adaptation) mode [8/10 different MCS are provided].
- The scheme operates transparently with Fast Cell Site Selection i.e., any modulation and coding scheme can be used to recover outstanding (ongoing transmission) code blocks in the new cell.