## Agenda item:

## Source: NTT DoCoMo

## Title: $\quad$ Editorial corrections in TS 25.212 and TS 25.222 <br> Document for: Decision

This document includes CRs on both TS 25.212 and TS 25.222 which to correct wording in abbreviations, CRC attachment, $1^{\text {st }}$ interleaving and $2^{\text {nd }}$ interleaving section, and to clarify bits padding and pruning for rectangular matrix of $2^{\text {nd }}$ interleaving. Through these corrections, the CRC attachment operation itself and the channel interleaving algorithm itself are not changed at all. The major corrections, which should be applied for both TS 25.212 and TS 25.222 commonly, are as follows:

## Section 3.3 Abbreviations (only for 25.212)

- The abbreviation of CRC was corrected to "Cyclic Redundancy Check" instead "Cyclic Redundancy Code".


## Section 4.2.1 CRC attachment (corrected title)

- To align how to entitle with the other sub-sections in the "Transport channel coding/multiplexing" section, i.e. the transmitter side operation basis, the title of this sub-section was changed to "CRC attachment" because the current title "Error detection" basically indicates the operation at the receiver side.
- Exact words of "size of CRC parity" were described to clarify what is signalled from higher layers.


## Section 4.2.1.1 CRC Calculation

- $\quad L_{i}$, was explained as the number of parity bits.
- Editorial corrections were made for the variable i.e. "D" should be italic letters.

Section 4.2.1.2 Relation between input and output of the CRC attachment block (corrected section number and title)

- The title of this section was corrected to the exact name of the functional block in figure 1 and 2, i.e. "CRC attachment block" instead "Cyclic Redundancy Check".


## Section 4.2.5.2 $1^{\text {st }}$ interleaver operation

- The description about the number of input bits was corrected.
- The numbering of columns and rows were clarified for the interleaving matrix.


## Section 4.2.11 $\quad 2^{\text {nd }}$ interleaving

- The description about padding bits to be pruned at output of $2^{\text {nd }}$ interleaving, which was missing in the current specification, was added.
- The numbering of columns and rows were clarified for the interleaving matrix.
- The notation of the inter-column permutation pattern P2 was aligned with the preferred mathematical notation shown in TS 25.201 Annex A.


### 25.212 CR 100r1 <br> Current Version: 3.4.0

? CR number as allocated by MCC support team
GSM (AA.BB) or 3G (AA.BBB) specification number ?

For submission to: RAN \#10
list expected approval meeting \# here


Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Formv2.doc
Proposed change affects: $\quad(\mathrm{U}) \mathrm{SIM} \square \quad \mathrm{ME} \quad \mathbf{X} \quad$ UTRAN / Radio $\overline{\mathbf{X}}$ Core Network $\square$
(at least one should be marked with an $X$ )
Source: NTT DoCoMo
Date: 21-Nov.-2000
Subject: $\quad$ Editorial corrections in TS 25.212

## Work item:


$\begin{array}{ll}\text { Reason for } & \text { To correct wording in CRC attachment, } 1^{\text {st }} \text { interleaving and } 2^{\text {nd }} \text { interleaving sections. } \\ \text { change: } & \text { To clarify bits padding and pruning for rectangular matrix of } 2^{\text {nd }} \text { interleaving. } \\ & \text { To align mathematical notations with preferred notations shown in TS 25.201 Annex A. }\end{array}$
Clauses affected: $\quad 3.3,4.2 .1,4.2 .1 .1,4.2 .1 .1 .1,4.2 .5 .2$ and 4.2 .11 of TS 25.212


## Other <br> comments:

TrCH number: Transport channel number represents a TrCH ID assigned to L1 by L2. Transport channels are multiplexed to the CCTrCH in the ascending order of these IDs.

### 3.2 Symbols

For the purposes of the present document, the following symbols apply:

| ? $x$ ? | round towards ?, i.e. integer such that $x$ ? $? x$ ? $<x+1$ |
| :---: | :---: |
| ? $x$ ? | round towards -?, i.e. integer such that $x-1<? x$ ? ? $x$ |
| ? $x$ ? | absolute value of $x$ |
| $\operatorname{sgn}(x)$ | $\text { signum function, i.e. } \operatorname{sgn}(x) \stackrel{?}{\stackrel{?}{?}} ? \frac{1 ;}{?} \quad x ? 0$ |
| $N_{\text {first }}$ | The first slot in the TG, located in the first compressed radio frame if the TG spans two frames. |
| $N_{\text {last }}$ | The last slot in the $T G$, located in the second compressed radio frame if the TG spans two frames. |
| $N_{t r}$ | Number of transmitted slots in a radio frame. |

Unless otherwise is explicitly stated when the symbol is used, the meaning of the following symbols is:

```
i TrCH number
j TFC number
k Bit number
l TF number
m Transport block number
ni}\quad\mathrm{ Radio frame number of TrCH i.
p PhCH number
r Code block number
I Number of TrCHs in a CCTrCH.
Ci Number of code blocks in one TTI of TrCH i.
Fi Number of radio frames in one TTI of TrCH i.
Mi Number of transport blocks in one TTI of TrCHi
Ndata,j Number of data bits that are available for the CCTrCH in a radio frame with TFC j.
N data,j Number of data bits that are available for the CCTrCH in a compressed radio frame with TFC j.
P Number of PhCHs used for one CCTrCH.
PL Puncturing Limit for the uplink. Signalled from higher layers
RMi Rate Matching attribute for TrCH i. Signalled from higher layers.
```

Temporary variables, i.e. variables used in several (sub)clauses with different meaning.

```
x, X
y, Y
z, Z
```


### 3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

| ARQ | Automatic Repeat Request |
| :--- | :--- |
| BCH | Broadcast Channel |
| BER | Bit Error Rate |
| BLER | Block Error Rate |
| BS | Base Station |
| CCPCH | Common Control Physical Channel |
| CCTrCH | Coded Composite Transport Channel |
| CFN | Connection Frame Number |
| CRC | Cyclic Redundancy CheckCode |
| DCH | Dedicated Channel |
| DL | Downlink (Forward link) |
| DPCCH | Dedicated Physical Control Channel |
| DPCH | Dedicated Physical Channel |


| DPDCH | Dedicated Physical Data Channel |
| :--- | :--- |
| DS-CDMA | Direct-Sequence Code Division Multiple Access |
| DSCH | Downlink Shared Channel |
| DTX | Discontinuous Transmission |
| FACH | Forward Access Channel |
| FDD | Frequency Division Duplex |
| FER | Frame Error Rate |
| GF | Galois Field |
| MAC | Medium Access Control |
| Mcps | Mega Chip Per Second |
| MS | Mobile Station |
| OVSF | Orthogonal Variable Spreading Factor (codes) |
| PCCC | Parallel Concatenated Convolutional Code |
| PCH | Paging Channel |
| PhCH | Physical Channel |
| PRACH | Physical RandomAccess Channel |
| RACH | Random Access Channel |
| RSC | Recursive Systematic Convolutional Coder |
| RX | Receive |
| SCH | Synchronisation Channel |
| SF | Spreading Factor |
| SFN | System Frame Number |
| SIR | Signal-to-Interference Ratio |
| SNR | Signal to Noise Ratio |
| TF | Transport Format |
| TFC | Transport Format Combination |
| TFCI | Transport Format Combination Indicator |
| TPC | Transmit Power Control |
| TrCH | Transport Channel |
| TTI | Transmission Time Interval |
| TX | Transmit |
| UL | Uplink (Reverse link) |
|  |  |

### 4.2.1 CRC attachmentError detection

Error detection is provided on transport blocks through a Cyclic Redundancy Check(CRC). The size of the CRC is 24, $16,12,8$ or 0 bits and it is signalled from higher layers what CRC lengthsize that should be used for each TrCH.

### 4.2.1.1 CRC Calculation

The entire transport block is used to calculate the CRC parity bits for each transport block. The parity bits are generated by one of the following cyclic generator polynomials:

- $\mathrm{g}_{\mathrm{CRC} 24}(\mathrm{D} \underline{D})=\mathrm{D} \underline{D}^{24}+\mathrm{D} \underline{D}^{23}+\mathrm{D} \underline{D}^{6}+\mathrm{D} \underline{D}^{5}+\mathrm{D} \underline{D}+1 ;$
- $\mathrm{g}_{\mathrm{CRC16}}(\mathrm{D} \underline{D})=\mathrm{D} \underline{D}^{16}+\mathrm{D} \underline{D}^{12}+\mathrm{D} \underline{D}^{5}+1 ;$
- $\mathrm{g}_{\mathrm{CRC12}}(\mathrm{P} \underline{D})=\mathrm{D} \underline{D}^{12}+\mathrm{D} \underline{D}^{11}+\mathrm{Q} \underline{D}^{3}+\mathrm{D} \underline{D}^{2}+\mathrm{Q} \underline{D}+1$;
- $\mathrm{g}_{\mathrm{CRC8}}(\mathrm{~B} \underline{D})=\boxminus \underline{D}^{8} \underline{8}+\boxminus \underline{D}^{7}+\square \underline{D}^{4}+\square \underline{D}^{3}+\boxminus \underline{D}+1$.

Denote the bits in a transport block delivered to layer 1 by $a_{i m 1}, a_{i m 2}, a_{i m 3}, \square, a_{i m A_{i}}$, and the parity bits by $p_{i m 1}, p_{i m 2}, p_{i m 3}, \square, p_{i m L_{i}} . A_{i}$ is the lengthsize of a transport block of $\operatorname{TrCH} i, m$ is the transport block number, and $L_{i} L_{i}$ is the number of parity bits. $L_{i}$ can take the values $24,16,12,8$, or 0 depending on what is signalled from higher layers.

The encoding is performed in a systematic form, which means that in $\operatorname{GF}(2)$, the poly nomial:
$a_{i m 1} D^{A_{i} ? 23} ? a_{i m 2} D^{A_{i} ? 22} ? \square ? a_{i m A_{i}} D^{24} ? p_{i m 1} D^{23} ? p_{i m 2} D^{22} ? \square ? p_{i m 23} D^{1} ? p_{i m 24}$
yields a remainder equal to 0 when divided by $g_{\text {CRC24 }}(\mathrm{P} \underline{D})$, polynomial:
$a_{i m 1} D^{A_{i} ? 15} ? a_{i m 2} D^{A_{i} ? 14} ? \square ? a_{i m A_{i}} D^{16} ? p_{i m 1} D^{15} ? p_{i m 2} D^{14} ? \square ? p_{i m 15} D^{1} ? p_{i m 16}$
yields a remainder equal to 0 when divided by $\mathrm{g}_{\mathrm{CRC} 16}(\mathrm{P} \underline{D})$, polynomial:

$$
a_{i m 1} D^{A_{i} ? 11} ? a_{i m 2} D^{A_{i} ? 10} ? \square ? a_{i m A_{i}} D^{12} ? p_{i m 1} D^{11} ? p_{i m 2} D^{10} ? \square ? p_{i m 11} D^{1} ? p_{i m 12}
$$

yields a remainder equal to 0 when divided by $g_{C R C 12}(\underline{D} \underline{D})$ and polynomial:

$$
a_{i m 1} D^{A_{i} ? 7} ? a_{i m 2} D^{A_{i} ? 6} ? \square ? a_{i m A_{i}} D^{8} ? p_{i m 1} D^{7} ? p_{i m 2} D^{6} ? \square ? p_{i m 7} D^{1} ? p_{i m 8}
$$

yields a remainder equal to 0 when divided by $\mathrm{g}_{\mathrm{CRC}}(\mathrm{D} \underline{D})$.
If no transport blocks are input to the CRC calculation $\left(M_{i}=0\right)$, no CRC attachment shall be done. If transport blocks are input to the CRC calculation $\left(M_{i}\right.$ ? 0$)$ and the size of a transport block is zero $\left(A_{i}=0\right), \mathrm{CRC}$ shall be attached, i.e. all parity bits equal to zero.

### 4.2.1.24.2.1.1.1 Relation between input and output of the CRC attachment blockCyclic Rodundancy-Chock

The bits after CRC attachment are denoted by $b_{i m 1}, b_{i m 2}, b_{i m 3}, \square, b_{i m B_{i}}$, where $B_{i}=A_{i}+L_{i}$. The relation between $a_{i m k}$ and $b_{i m k}$ is:

$$
\begin{aligned}
& b_{i m k} ? a_{i m k} \quad k=1,2,3, \ldots, A_{i} \\
& b_{i m k} ? p_{i m\left(L_{i} ? 1 ?\left(k ? A_{i}\right)\right)} \quad k=A_{i}+1, A_{i}+2, A_{i}+3, \ldots, A_{i}+L_{i}
\end{aligned}
$$

$N p_{i, \max }^{T T I, m}$ is defined in the Rate Matching subclause 4.2.7.
$\mathrm{P1}_{F i}(\mathrm{x})$ defines the inter column permutation function for a TTI of length $F_{i}$ ? 10 ms , as defined in Table 3 in section 4.2.5.2. $\mathrm{Pl}_{F i}(\mathrm{x})$ is the Bit Reversal function of x on $\log _{2}\left(F_{i}\right)$ bits.

NOTE 1: $\mathrm{C}[\mathrm{x}], \mathrm{x}=0$ to $F_{i}-1$, the number of bits p which have to be inserted in each of the $F_{i}$ segments of the TTI, where x is the column number before permutation, i.e. in each column of the first interleaver. $\mathrm{C}\left[\mathrm{P} 1_{F i}(\mathrm{x})\right]$ is equal to $N p_{i, \text { max }}^{m ? F_{i} ? x}$ for x equal 0 to $F_{i}-1$ for fixed positions. It is noted $N p_{i}^{m ? F_{i} ? x}$ in the following initialisation step.

NOTE 2: $\operatorname{cbi}[\mathrm{x}], \mathrm{x}=0$ to $F_{i}-1$, the counter of the number of bits p inserted in each of the $F_{i}$ segments of the TTI, i.e. in each column of the first interleaver $x$ is the column number before permutation.
$\mathrm{col}=0$
while col $<F_{i}$ do -- here col is the column number after column permutation

$$
\mathrm{C}\left[\mathrm{P} 1_{F i}(\mathrm{col})\right]=N p_{i}^{m ? F_{i} ? c o l} \quad-- \text { initialisation of number of bits } \mathrm{p} \text { to be inserted in each of the } F_{i} \text { segments of }
$$

$$
\text { the TTI number } m
$$

$$
\operatorname{cbi}\left[\mathrm{P} 1_{F i}(\mathrm{col})\right]=0 \quad-- \text { initialisation of counter of }
$$

number of bits p inserted in each of the $F_{i}$ segments of the TTI

$$
\mathrm{col}=\mathrm{col}+1
$$

end do
$\mathrm{n}=0, \mathrm{~m}=0$
while $\mathrm{n}<X_{i}$ do $\quad-$ from here col is the column number before column permutation

$$
\mathrm{col}=n \bmod \mathrm{~F}_{\mathrm{i}}
$$

if $\mathrm{cbi}[\mathrm{col}]<\mathrm{C}[\mathrm{col}]$ do

$$
\begin{array}{ll}
x_{i, n}=\mathrm{p} & \text {-- insert one } \mathrm{p} \text { bit } \\
\mathrm{cbi}[\mathrm{col}]=\mathrm{cbi}[\mathrm{col}]+1 & \text {-- update counter of number of bits } \mathrm{p} \text { inserted } \\
\text { else } & \text {-- no more } \mathrm{p} \text { bit to insert in this segment }
\end{array}
$$

$$
\begin{aligned}
& x_{i, n}=z_{i, m} \\
& \mathrm{~m}=\mathrm{m}+1
\end{aligned}
$$

endif

$$
\mathrm{n}=\mathrm{n}+1
$$

## end do

### 4.2.5.2 $\quad 1^{\text {st }}$ interleaver operation

The $1^{\text {st }}$ interleaving is a block interleaver with inter-column permutations. The input bit sequence to the $4^{s+}$-block interleaver is denoted by $x_{i, 1}, x_{i, 2}, x_{i, 3}, \square, x_{i, X_{i}}$, where $i$ is TrCH number and $X_{i}$ the number of bits (at this stage-Here $X_{i}$ is assumed and guaranteed to be an integer multiple of the number of radio frames in the TTF). The output bit sequence from the block interleaver is derived as follows:
(1) Select the number of columns C 1 from table 4 depending on the TTI. The columns are numbered $0,1, \ldots, \mathrm{C} 1-1$ from left to right.
(2) Determine the number of rows of the matrix, R1 defined as:

$$
\mathrm{R} 1=X_{i} / \mathrm{C} 1_{2}
$$

The rows of the matrix are numbered $0,1, \ldots, \mathrm{R} 1-1$ from top to bottom.
(3) Write the input bit sequence into the R1 ? C1 rectangular-matrix row by row starting with bit $x_{i, 1}$ in first column $\underline{0}$ of the firstrow $\underline{0}$ and ending with bit $x_{i,(\mathrm{R} 1 ? \mathrm{Cl})}$ in column $\mathrm{C} 1-1$ of row R1-1 :

(4) Perform the inter-column permutation for the matrix based on the pattern $\left\langle\mathrm{P} 1_{\mathrm{C} 1} ? j\right\rangle_{j ?}$ ? ?0,1,D, , Cl ?1? ${ }^{\text {shown in table }}$ 4, -where $\mathrm{P} 1_{\mathrm{C} 1}(j)$ is the original column position of the $j$-th permuted column. After permutation of the columns, the bits are denoted by $y_{i k}$ :

(5) Read the output bit sequence $y_{i 1}, y_{i 2}, y_{i 3}, \square, y_{i,(\mathrm{Cl} ? \mathrm{RI})} y_{i, 1}, y_{i, 2}, y_{i, 3}, \square, y_{i,(\mathrm{Cl} \text { ? R1) }}$ of the $4^{+4}-$ block interleavering column by column from the inter-column permuted R1! C1 matrix. Bit $y_{i, 1}$ corresponds to the first-row $\underline{0}$ of the firstcolumn $\underline{0}$ and bit $y_{i,(\mathrm{R} 1 ? \mathrm{Cl})}$ corresponds to row R1 - 1 of column $\mathrm{C} 1 \underline{-1}$.

Table 4 Inter-column permutation patterns for 1st interleaving

| TTI | Number of columns C1 | Inter-column permutation patterns $\left\langle\mathrm{P}_{1} \mathrm{c}_{1}(0), \mathrm{P}_{1}{ }_{1}(1), \ldots, \mathrm{P}_{1} 1(\mathrm{C} 1-1)>\right.$ |
| :---: | :---: | :---: |
| 10 ms | 1 | <0> |
| 20 ms | 2 | <0,1> |
| 40 ms | 4 | <0,2,1,3> |
| 80 ms | 8 | <0,4,2,6,1,5,3,7> |

Bits on second PhCH after physical channel segmentation:

$$
u_{2, k}=x_{f(k+U)} \quad k=1,2, \ldots, U
$$

Bits on the $P^{\text {th }} \mathrm{PhCH}$ after physical channel segmentation:

$$
u_{P, k}=x_{f(k+(P-1) ? U)} \quad k=1,2, \ldots, U
$$

where $f$ is such that :

- for modes other than compressed mode by puncturing, $x_{f(k)}=x_{k}$, i.e. $f(k)=k$, for all $k$.
- for compressed mode by puncturing, bit $u_{l, l}$ corresponds to the bit $x_{k}$ with smallest index $k$ when the bits p are not counted, bit $u_{l, 2}$ corresponds to the bit $x_{k}$ with second smallest index $k$ when the bits p are not counted, and so on for bits $u_{1,3}, \ldots u_{1, U}, u_{2,1}, u_{2,2}, \ldots u_{2, U}, \ldots u_{P, 1}, u_{P, 2, \ldots} u_{P, U}$.


### 4.2.10.1 Relation between input and output of the physical segmentation block in uplink

The bits input to the physical segmentation are denoted by $s_{1}, s_{2}, s_{3}, \square, s_{S}$. Hence, $x_{k}=s_{k}$ and $Y=S$.

### 4.2.10.2 Relation between input and output of the physical segmentation block in downlink

The bits input to the physical segmentation are denoted by $w_{1}, w_{2}, w_{3}, \square, w_{(P U)}$. Hence, $x_{k}=w_{k}$ and $Y=P U$.

### 4.2.11 $2^{\text {nd }}$ interleaving

The $2^{\text {nd }}$ interleaving is a block interleaver and consists of bits input to a matrix with padding, withthe inter-column permutations for the matrix and bits output from the matrix with pruning. The bits input to the $z^{\text {nd }}$-block interleaver are denoted by $u_{p, 1}, u_{p, 2}, u_{p, 3}, \square, u_{p, U}$, where $p$ is PhCH number and $U$ is the number of bits in one radio frame for one PhCH . The output bit sequence from the block interleaver is derived as follows:
(1) Set the number columns Assign $\mathrm{C} 2=30$ to be the number of columns of the matrix. The columns of the $\underline{\text { matrix }}$ are numbered $0,1,2, \ldots, \mathrm{C} 2{ }_{-}-1$ from left to right.
(2) Determine the number of rows of the matrix, $R 2$, by finding minimum integer R 2 such that:

U? R2_? C2.
The rows of rectangular matrix are numbered $0,1,2, \ldots, \mathrm{R} 2-1$ from top to bottom.
(3) Write Tthe bits-input bit sequence $u_{p, 1}, u_{p, 2}, u_{p, 3}, \square, u_{p, U}$ the $2^{\text {nd }}$ interleaving are written into the R2 ? C2 rectangular-matrix row by row- starting with bit $y_{p, 1}$ in column 0 of row 0 :

where $y_{p, k} ? u_{p, k}$ for $k=1,2, \ldots, U$ and if $\mathrm{R} 2 ? \mathrm{C} 2>U$, the dummy bits are padded such that $y_{p, k}=0$ or 1 $\underline{\text { for } k=U+1, U+2, \ldots, \mathrm{R} 2 \text { ? } \mathrm{C} 2 \text {. These dummy bits are pruned away from the output of the matrix after the }}$ inter-column permutation.
(4) Perform the inter-column permutation for the matrix based on the pattern $\operatorname{P2}(j)(j=0,1, \ldots, C 2-1)$ $\langle\mathrm{P} 2 ? j ?\rangle_{j ? ? 0,1, \mathrm{D}, \mathrm{C} 2 ? 1 ?}$ that is shown in table 7, where $\mathrm{P} 2(j)$ is the original column position of the $j$-th permuted column. After permutation of the columns, the bits are denoted by $y_{p k} y_{p, k}^{\prime}$.

(5) The output of the $z^{\text {nd }}$-block interleavering is the bit sequence read out column by column from the inter-column permuted R2 '? C2 matrix. The output is pruned by deleting dummy bits that were not presentpadded into the input bit sequenceof the matrix before the inter-column permutation, i.e. bits $y_{p \neq} y_{p, k}^{\prime}$ that corresponds to bits $u_{p j k} y_{p, k}$ with $k>U$ are removed from the output. The bits after $2^{\text {nd }}$ interleaving are denoted by $v_{p, 1}, v_{p, 2}, \square, v_{p, U}$, where $v_{p, 1}$ corresponds to the bit $y_{P, k} y_{p, k}^{\prime}$ with smallest index $k$ after pruning, $v_{p, 2}$ to the bit $y_{p, k} y_{p, k}$ with second smallest index $k$ after pruning, and so on.

Table 7 Inter-column permutation pattern for 2nd interleaving

| Number of columns C2 | Inter-column permutation pattern <br> < P2(0), P2(1), ..,_P2(29.C2-1) $>$ |
| :---: | :---: |
| 30 | $<0,20,10,5,15,25,3,13,23,8,18,28,1,11,21$, |
|  | $6,16,26,4,14,24,19,9,29,12,2,7,22,27,17>$ |

### 25.222 CR 053r1 <br> Current Version: 3.4.0

? CR number as allocated by MCC support team

For submission to: RAN \#10
list expected approval meeting \# here
(U)SIM $\square$ ME $\quad \mathrm{X}$
UTRAN / Radio $\square$ Core Network $\square$


Proposed change affects:
(at least one should be marked with an $X$ )

Source: NTT DoCoMo
Subject: $\quad$ Editorial corrections in TS 25.222

## Work item:


$\begin{array}{ll}\text { Reason for } & \text { To correct wording in CRC attachment, } 1^{\text {st }} \text { interleaving and } 2^{\text {nd }} \text { interleaving sections. } \\ \text { change: } & \text { To clarify bits padding and pruning for rectangular matrix of } 2^{\text {nd }} \text { interleaving. } \\ & \text { To align mathematical notations with preferred notations shown in TS 25.201 Annex A. }\end{array}$
Clauses affected: $\quad 4.2 .1,4.2 .1 .1,4.2 .1 .2,4.2 .5$ and 4.2.10 of TS 25.222

| Other specs | Other 3G core specifications | List of CRs: |
| :---: | :---: | :---: |
| affected: | Other GSM core specifications | List of CRs: |
|  | MS test specifications | List of CRs: |
|  | BSS test specifications | List of CRs: |
|  | O\&M specifications | List of CRs: |

## Other <br> comments:

Primarily, transport channels are multiplexed as described above, i.e. into one data stream mapped on one or several physical channels. However, an alternative way of multiplexing services is to use multiple CCTrCHs (Coded Composite Transport Channels), which corresponds to having several parallel multiplexing chains as in figure 1, resulting in several data streams, each mapped to one or several physical channels.

### 4.2.1 CRC attachmentError detection

Error detection is provided on transport blocks through a Cyclic Redundancy Check (CRC). The size of the CRC is 24, $16,12,8$ or 0 bits and it is signalled from higher layers what CRC lengthsize that should be used for each TrCH .

### 4.2.1.1 CRC Calculation

The entire transport block is used to calculate the CRC parity bits for each transport block. The parity bits are generated by one of the following cyclic generator polynomials :

- $\mathrm{g}_{\mathrm{CRC} 24}(\mathrm{D} \underline{D})=\mathrm{D} \underline{D}^{24}+\mathrm{D} \underline{D}^{23}+\mathrm{D} \underline{D}^{6}+\mathrm{D} \underline{D}^{5}+\mathrm{D} \underline{D}+1 ;$
- $\mathrm{g}_{\text {CRC16 }}(\mathrm{D} \underline{D})=\mathrm{D} \underline{D}^{16}+\mathrm{D} \underline{D}^{12}+\mathrm{D} \underline{D}^{5}+1 ;$
- $\mathrm{g}_{\mathrm{CRCl2}}(\mathrm{D} \underline{D})=\mathrm{D} \underline{D}^{12}+\mathrm{D} \underline{D}^{11}+\mathrm{D} \underline{D}^{3}+\mathrm{D} \underline{D}^{2}+\mathrm{D} \underline{D}+1 ;$
- $\mathrm{g}_{\mathrm{CRC}}(\mathrm{D} \underline{D})=\mathrm{D} \underline{D}^{8} \underline{8}+\mathrm{D} \underline{D}^{7}+\mathrm{D} \underline{D}^{4}+\mathrm{D} \underline{D}^{3}+\mathrm{D} \underline{D}+1$.

Denote the bits in a transport block delivered to layer 1 by $a_{i m 1}, a_{i m 2}, a_{i m 3}, \square, a_{i m A_{i}}$, and the parity bits by $p_{i m 1}, p_{i m 2}, p_{i m 3}, \square, p_{i m L_{i}} . A_{i}$ is the lengthsize of a transport block of $\operatorname{TrCH} i, m$ is the transport block number, and $L_{i} L_{i}$ is the number of parity bits. $L_{i}$ can take the values $24,16,12,8$, or 0 depending on what is signalled from higher layers.

The encoding is performed in a systematic form, which means that in $\mathrm{GF}(2)$, the polynomial:
$a_{i m 1} D^{A_{i} ? 23} ? a_{i m 2} D^{A_{i} ? 22} ? \square ? a_{i m A_{i}} D^{24} ? p_{i m 1} D^{23} ? p_{i m 2} D^{22} ? \square ? p_{i m 23} D^{1} ? p_{i m 24}$
yields a remainder equal to 0 when divided by $g_{\operatorname{CRC} 24}(\boxplus \underline{D})$, polynomial:
$a_{i m 1} D^{A_{i} ? 15} ? a_{i m 2} D^{A_{i} ? 14} ? \square ? a_{i m A_{i}} D^{16} ? p_{i m 1} D^{15} ? p_{i m 2} D^{14} ? \square ? p_{i m 15} D^{1} ? p_{i m 16}$
yields a remainder equal to 0 when divided by $\mathrm{g}_{\mathrm{CRC16}}(\mathrm{\oplus} \underline{D})$, polynomial:
$a_{i m 1} D^{A_{i} ? 11} ? a_{i m 2} D^{A_{i} ? 10} ? \square a_{i m A_{i}} D^{12} ? p_{i m 1} D^{11} ? p_{i m 2} D^{10} ? \square ? p_{i m 11} D^{1} ? p_{i m 12}$
yields a remainder equal to 0 when divided by $\mathrm{g}_{\mathrm{CRC} 12}(\mathrm{D} \underline{D})$ and polynomial:
$a_{i m 1} D^{A_{i} ? 7} ? a_{i m 2} D^{A_{i} ? 6} ? \square ? a_{i m A_{i}} D^{8} ? p_{i m 1} D^{7} ? p_{i m 2} D^{6} ? \square ? p_{i m 7} D^{1} ? p_{i m 8}$
yields a remainder equal to 0 when divided by $g_{\text {CRC }}(\mathrm{D} \underline{D})$.
If no transport blocks are input to the CRC calculation ( $M_{i}=0$ ), no CRC attachment shall be done. If transport blocks are input to the CRC calculation $\left(M_{i} ? 0\right)$ and the size of a transport block is zero $\left(A_{i}=0\right), \mathrm{CRC}$ shall be attached, i.e. all parity bits equal to zero.

### 4.2.1.2 Relation between input and output of the CRC attachment blockCyclic Redundancy Check

The bits after CRC attachment are denoted by $b_{i m 1}, b_{i m 2}, b_{i m 3}, \square, b_{i m B_{i}}$, where $B_{i}=A_{i}+L_{i}$. The relation between $a_{i m k}$ and $b_{i m k}$ is:

$$
b_{i m k} ? a_{i m k} \quad k=1,2,3, \ldots, A_{i}
$$

$$
b_{i m k} ? p_{i m\left(L_{i} ? 1 ?\left(k ? A_{i}\right)\right)} k=A_{i}+1, A_{i}+2, A_{i}+3, \ldots, A_{i}+L_{i}
$$

### 4.2.3.3 Concatenation of encoded blocks

After the channel coding for each code block, if $C_{i}$ is greater than 1, the encoded blocks are serially concatenated so that the block with lowest index $r$ is output first from the channel coding block, otherwise the encoded block is output from channel coding block as it is. The bits output are denoted by $c_{i 1}, c_{i 2}, c_{i 3}, \square, c_{i E_{i}}$, where $i$ is the $\operatorname{TrCH}$ number and $E_{i}=$ $C_{i} Y_{i}$. The output bits are defined by the following relations:

$$
\begin{aligned}
& c_{i k} ? y_{i 1 k} \quad k=1,2, \ldots, Y_{i} \\
& c_{i k} ? y_{i, 2,\left(k ? Y_{i}\right)} \quad k=Y_{i}+1, Y_{i}+2, \ldots, 2 Y_{i} \\
& c_{i k} ? y_{i, 3,\left(k ? 2 Y_{i}\right)} \quad k=2 Y_{i}+1,2 Y_{i}+2, \ldots, 3 Y_{i} \\
& \sqcup \\
& c_{i k} ? y_{i, C_{i},\left(k ?\left(C_{i} ? 1\right) Y_{i}\right)} \quad k=\left(C_{i}-1\right) Y_{i}+1,\left(C_{i}-1\right) Y_{i}+2, \ldots, C_{i} Y_{i}
\end{aligned}
$$

If no code blocks are input to the channel coding $\left(C_{i}=0\right)$, no bits shall be output from the channel coding, i.e. $E_{i}=0$.

### 4.2.4 Radio frame size equalisation

Radio frame size equalisation is padding the input bit sequence in order to ensure that the output can be segmented in $F_{i}$ data segments of same size as described in the subclause 4.2.6.

The input bit sequence to the radio frame size equalisation is denoted by $c_{i 1}, c_{i 2}, c_{i 3}, \square, c_{i E_{i}}$, where $i$ is $\operatorname{TrCH}$ number and $E_{i}$ the number of bits. The output bit sequence is denoted by $t_{i 1}, t_{i 2}, t_{i 3}, \square, t_{i T_{i}}$, where $T_{i}$ is the number of bits. The output bit sequence is derived as follows:
$t_{i k}=c_{i k}$, for $\mathrm{k}=1 \ldots E_{i}$ and
$t_{i k}=\{0,1\}$ for $\mathrm{k}=E_{i}+1 \ldots T_{i}$, if $E_{i}<T_{i}$
where
$\mathrm{T}_{i}=F_{i} * N_{i}$ and
$N_{i} ? ? E_{i} / F_{i}$ ? is the number of bits per segment after size equalisation.

### 4.2.5 1st interleaving

The $1^{\text {st }}$ interleaving is a block interleaver with inter-column permutations. The input bit sequence to the $4^{\text {st }}$-block interleaver is denoted by $x_{i, 1}, x_{i, 2}, x_{i, 3}, \square, x_{i, X_{i}}$, where $i$ is $\operatorname{TrCH}$ number and $X_{i}$ the number of bits $X_{i}$ is assumed and guaranteed to be an integer multiple of the number of radio frames in the TTI). The output bit sequence from the block interleaver is derived as follows:

1) select the number of columns C 1 from table $4 ;$ depending on the TTI. The columns are numbered $0,1, \ldots, \mathrm{C} 1-1$ from left to right.
2) determine the number of rows of the matrix, R 1 defined as
$-\mathrm{R} 1_{-}=X_{-}-\underline{X}_{i} /-\mathrm{Cl}_{-} \dot{\bar{\prime}}$
The rows of the matrix are numbered $0,1, \ldots, \mathrm{R} 1-1$ from top to bottom.
3) write the input bit sequence into the R1? C1 rectangular matrix row by row starting with bit $x_{i, 1}$ in the first column $\underline{0}$ of the firstrow $\underline{0}$ and ending with bit $x_{i,(R 1 ? C 1)} x_{i,(\mathrm{R} 1 ? \mathrm{C} 1)}$ in column $\subset \underline{\mathrm{C} 1-1}$ of row $\mathrm{R} 1 ; \underline{\mathrm{R} 1-1 \text { : }}$

4) Perform the inter-column permutation for the matrix based on the pattern $\left\langle\mathrm{P} 1_{\mathrm{C} 1} ? j ?_{j ? ? 0,1, \square, \mathrm{C} 1 ? 1 \text { ? }}\right.$ shown in table 4, where $\mathrm{P} 1_{\mathrm{Cl}}(j)$ is the original column position of the $j$-th permuted column. After permutation of the columns, the bits are denoted by $y_{i, k}$ :

5) Read the output bit sequence $y_{i 1}, y_{i 2}, y_{i 3}, \square, y_{i,(\mathrm{Cl} ? \mathrm{RI})} y_{i, 1}, y_{i, 2}, y_{i, 3}, \square, y_{i,(\mathrm{Cl} \text { ? R1) }}$ of the $4^{+4}-$ block
interleavering column by column from the inter-column permuted R1! C1 matrix. Bit $y_{i, 1}$ corresponds to the firstrow $\underline{0}$ of the firstcolumn $\underline{0}$ and bit $y_{i,(\mathrm{R} 1 ? \mathrm{C} 1)}$ corresponds to row R1-1 of column $\mathrm{C} 1 \underline{-1}$.

The bits input to the $1^{\text {s }}$ interleaving are denoted by $t_{i, 1}, t_{i, 2}, t_{i, 3}, \square, t_{i, T_{i}}$, where $i$ is the $\operatorname{TrCH}$ number and $T_{i}$ the number of bits. Hence, $x_{i, k}=t_{i, k}$ and $X_{i}=T_{i}$ -

The bits output from the $1^{\text {st }}$ interleaving are denoted by $d_{i, 1}, d_{i, 2}, d_{i, 3}, \square, d_{i, T_{i}}$, and $d_{i, h l}=y_{i, k}$
Table 4 Inter-column permutation patterns for 1st interleaving

| TTI | Number of columns C1 | Inter-column permutation patterns <br> <P1c1(0), P1 <br> c1 $\left.1 \mathbf{1}), \ldots, \mathbf{P 1}_{\mathbf{c} 1}(\mathbf{C 1} 1 \mathbf{1})\right\rangle$ |
| :---: | :---: | :---: |
| 10 ms | 1 | $<0\rangle$ |
| 20 ms | 2 | $<0,1\rangle$ |
| 40 ms | 4 | $<0,2,1,3\rangle$ |
| 80 ms | 8 | $<0,4,2,6,1,5,3,7\rangle$ |

### 4.2.5.1 Relation between input and output of $1^{\text {st }}$ interleaving

The bits input to the $1^{\text {st }}$ interleaving are denoted by $t_{i, 1}, t_{i, 2}, t_{i, 3}, \square, t_{i, T_{i}}$ where $i$ is the $\operatorname{TrCH}$ number and $T_{i}$ the number of bits. Hence, $x_{i, k}=t_{i, k}$ and $X_{i}=T_{i}$

The bits output from the $1^{\text {st }}$ interleaving are denoted by $d_{i, 1}, d_{i, 2}, d_{i, 3}, \square, d_{i, T_{i}}$, and $d_{i, k}=y_{i, k=}$
end do
end if
A repeated bit is placed directly after the original one.

### 4.2.8 $\quad$ TrCH multiplexing

Every 10 ms , one radio frame from each TrCH is delivered to the TrCH multiplexing. These radio frames are serially multiplexed into a coded composite transport channel ( CCTrCH ).

The bits input to the $\operatorname{TrCH}$ multiplexing are denoted by $f_{i, 1}, f_{i, 2}, f_{i, 3}, \square, f_{i, V_{i}}$, where $i$ is the $\operatorname{TrCH}$ number and $V_{i}$ is the number of bits in the radio frame of $\operatorname{TrCH} i$. The number of $\operatorname{TrCH}$ s is denoted by $I$. The bits output from $\operatorname{TrCH}$ multiplexing are denoted by $s_{1}, s_{2}, s_{3}, \square, s_{S}$, where $S$ is the number of bits, i.e. $S$ ? ? $V_{i}$. The $\operatorname{TrCH}$ multiplexing is defined by the following relations:

$$
\begin{aligned}
& s_{k} ? f_{1, k} \quad k=1,2, \ldots, V_{1} \\
& s_{k} ? f_{2,\left(k ? V_{1}\right)} \quad k=V_{1}+1, V_{1}+2, \ldots, V_{1}+V_{2} \\
& s_{k} ? f_{3,\left(k ?\left(V_{1} ? V_{2}\right)\right)} \quad k=\left(V_{1}+V_{2}\right)+1,\left(V_{1}+V_{2}\right)+2, \ldots,\left(V_{1}+V_{2}\right)+V_{3} \\
& \\
& s_{k} ? f_{I,\left(k ?\left(V_{1} ? V_{2} ? \square ? V_{t-1)}\right)\right.} \quad k=\left(V_{1}+V_{2}+\ldots+V_{I-1}\right)+1,\left(V_{1}+V_{2}+\ldots+V_{I-1}\right)+2, \ldots,\left(V_{1}+V_{2}+\ldots+V_{I-1}\right)+V_{I}
\end{aligned}
$$

### 4.2.9 Physical channel segmentation

When more than one PhCH is used, physical channel segmentation divides the bits among the different PhCHs. The bits input to the physical channel segmentation are denoted by $s_{1}, s_{2}, s_{3}, \square, s_{S}$, where S is the number of bits input to the physical channel segmentation block. The number of PhCHs is denoted by $P$.

The bits after physical channel segmentation are denoted $u_{p, 1}, u_{p, 2}, u_{p, 3}, \square, u_{p, U_{p}}$, where $p$ is PhCH number and $U_{p}$ is the in general variable number of bits in the respective radio frame for each PhCH . The relation between $\mathrm{S}_{k}$ and $u_{p, k}$ is given below.

Bits on first PhCH after physical channel segmentation:

$$
u_{1, k} ? s_{k} \quad k=1,2, \ldots, U_{1}
$$

Bits on second PhCH after physical channel segmentation:

$$
u_{2, k} ? s_{\left(k ? U_{1}\right)} \quad k=1,2, \ldots, U_{2}
$$

Bits on the $P^{t h} \mathrm{PhCH}$ after physical channel segmentation:

$$
u_{P, k} ? s_{\left(k ? U_{1} ? \square ? U_{P ? 1}\right)} \quad k=1,2, \ldots, U_{P}
$$

### 4.2.10 2nd interleaving

The $2^{\text {nd }}$ interleaving is a block interleaver and consists of bits input to a matrix with padding, the inter-column
permutation for the matrix and bits output from the matrix with pruning. The 2 nd interleaving can be applied jointly to all data bits transmitted during one frame, or separately within each timeslot, on which the CCTrCH is mapped. The selection of the 2nd interleaving scheme is controlled by higher layer.

### 4.2.10.1 Frame related 2nd interleaving

In case of frame related $\underline{2}^{\text {nd }}$ interleaving, the bits input to the $2^{\text {nd }}-\underline{\text { block interleaver are denoted by }} x_{1}, x_{2}, x_{3}, \square, x_{U}$, where $U$ is the total number of bits after TrCH multiplexing transmitted during the respective radio frame with

$$
S ? U ? ?_{p} U_{p}
$$

The relation between $x_{k}$ and the bits $u_{p, k}$ in the respective physical channels is given below:

$$
\begin{aligned}
& x_{k} ? u_{1, k} \quad k=1,2, \ldots, U_{1} \\
& x_{\left(k ? U_{1}\right)} ? u_{2, k} \quad \quad k \underline{k}=1,2, \ldots, \mathrm{U}_{2} \underline{U}_{2} \\
& \ldots \\
& x_{\left(k ? U_{1} ? \ldots ? U_{P ? 1}\right)} ? u_{P, k} \quad \notin \underline{k}=1,2, \ldots, U_{\mathrm{D}} \underline{U_{\mathrm{P}}}
\end{aligned}
$$

The following steps have to be performed once for each CCTrCH :
(1) Set the number of colummsAssign $\mathrm{C} 2=30$ to be the number of columns of the matrix. The columns of the $\underline{\text { matrix }}$ are numbered $0,1,2, \ldots, \mathrm{C} 2--1$ from left to right.
(2) Determine the number of rows of the matrix, R2, by finding minimum integer R2 such that:

U $\underline{U}$ ? R2 X C2.
The rows of rectangular matrix are numbered $0,1,2, \ldots, \mathrm{R} 2-1$ from top to bottom.
(3) Write Tthe bits-input bit sequence $x_{1}, x_{2}, x_{3}, \square, x_{U}$ to the $2^{\text {nd }}$ interleaving are written into the R2 ? C2 rectangular matrix row by row- starting with bit $y_{1}$ in column 0 of row 0 :

| $? \quad x_{1}$ | $x_{2}$ | $x_{3}$ | $\square$ | $x_{30}$ |  | $y_{1}$ | $y_{2}$ | $y_{3}$ | $\square$ | $y_{\text {C2 }}$ ? |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\cdots$ | $x_{32}$ | $x_{33}$ | $\square$ | $x_{60}$ | ?? | $y_{(C 2 ? 1)}$ | $y_{(C 2 ? 2)}$ | $y_{(C 223)}$ | $\square$ | $y_{(2 ? C 2)}$ ? |
| ? $\quad \square$ | $\square$ | $\square$ | $\square$ | $\square$ | ?? | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ ? |
| $\stackrel{?}{?} x_{(R 2 ? 1) 3091}$ | $x_{(R 2 ? 1) ? 30 ? 2}$ | $x_{(R 2 ? 1) ? 3093}$ | $\square$ | $x_{\text {R2230 }}$ |  |  | $y_{(\text {(R2? } 11) ? \mathrm{C} 2 ? 2)}$ | $y_{(\text {(R2 ? } 11) \text { ? } 2 \text { ?3) }}$ | $\square$ | $y_{(\mathrm{R} 2 ? \text { C2 })} \stackrel{?}{\text { ? }}$ |

where $y_{k} ? x_{k}$ for $k=1,2, \ldots, U$ and if $\mathrm{R} 2 ? \mathrm{C} 2>U$, the dummy bits are padded such that $y_{k}=0$ or 1 for $k=$ $\underline{U+1, U+2, \ldots, \mathrm{R} 2 \text { ? } \mathrm{C} 2 \text {. These dummy bits are pruned away from the output of the matrix after the inter- }}$ column permutation.
(4) Perform the inter-column permutation for the matrix based on the pattern $\{P 2(j)\}(j=0,1, \ldots, C 2-1)$ $\langle\mathrm{P} 2 ? j\rangle_{j ? ? 0,1, \square, \mathrm{c} 2 ? 1 ?}$ that is shown in table 7, where $\mathrm{P}_{2}\left(\mathrm{j}_{\mathrm{j}}\right)$ is the orig inal column position of the $\dot{j} \dot{2}$-th permuted


(5) The output of the $z^{\text {nd }}$-block interleavering is the bit sequence read out column by column from the inter-column permuted R2 ? C2 matrix. The output is pruned by deleting dummy bits that were not presentpadded into the
input bit sequenceof the matrix before the inter-column permutation, i.e. bits $y_{k} y_{k}^{\prime}$ that corresponds to bits $\#_{k} y_{k}$ with $k \underline{k}>-\cup \underline{U}$ are removed from the output. The bits after frame related $2^{\text {nd }}$ interleaving are denoted by $v_{1}, v_{2}, \square, v_{U}$, where $\not \underline{v}_{1}$ corresponds to the bit $\dot{y}_{k} y_{k}^{\prime}$ with smallest index $\underline{k} \underline{k}$ after pruning, $¥ \underline{v_{2}}$ to the bit $y_{k} y_{k}^{\prime}$ with second smallest index $k \underline{k}$ after pruning, and so on.

### 4.2.10.2 Timeslot related $2^{\text {nd }}$ interleaving

In case of timeslot related $2^{\text {nd }}$ interleaving, the bits input to the $2^{\text {nd }}$-block interleaver are denoted by $x_{t, 1}, x_{t, 2}, x_{t, 3}, \square, x_{t, U_{t}}$, where $t$ refers to a certain timeslot, and $U_{t}$ is the number of bits transmitted in this timeslot during the respective radio frame.

In each timeslot $t$ the relation between $X_{t, k}$ and $u_{t, p, k}$ is given below with $P_{t} \underline{P}_{t}$ refering to the number of physical channels within the respective timeslot:

$$
\begin{aligned}
& x_{t, k} ? u_{t, 1, k} \quad k=1,2, \ldots, U_{t 1} \\
& x_{t,\left(k ? U_{t 1}\right)} ? u_{t, 2, k} \quad k=1,2, \ldots, U_{t 2} \\
& \ldots \\
& x_{t,\left(k ? U_{t 1} ? \ldots ? U_{t} ? P_{t} ? 1!\right)} ? u_{t, P_{t}, k} \quad k=1,2, \ldots, U_{t P_{t}}
\end{aligned}
$$

The following steps have to be performed for each timeslot $t$, on which the respective CCTrCH is mapped:
(1) Set the number of columns Assign $C 2=30$ to be the number of columns of the matrix. The columns of the $\underline{\text { matrix }}$ are numbered $0,1,2, \ldots, \mathrm{C} 2-1$ from left to right.
(2) Determine the number of rows of the matrix, $R 2$, by finding minimum integer $R 2$ such that:
$U_{4} \underline{U}_{t}$ ? R2_? C2.
The rows of rectangular matrix are numbered $0,1,2, \ldots, \mathrm{R} 2-1$ from top to bottom.
(3) Writhe Tthe bits-input bit sequence $x_{t, 1}, x_{t, 2}, x_{t, 3}, \square, x_{t, U_{t}} 2^{\text {nd }}$ interleaving are written into the R2 ! C2 rectangular matrix row by row=starting with bit $y_{t, 1}$ in column 0 of row 0 :


| $?$ | $y_{t, 1}$ | $y_{t, 2}$ | $y_{t, 3}$ | $\square$ | $y_{t, \mathrm{C} 2}$ | $?$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $?$ |  |  |  |  |  |  |
| $?$ | $y_{t,(\mathrm{C} 2 ? 1)}$ | $y_{t,(\mathrm{C} 2 ? 2)}$ | $y_{t,(\mathrm{C} 2 ? 3)}$ | $\square$ | $y_{t,(2 ? \mathrm{C} 2)}$ | $?$ |
| $?$ | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ | $?$ |
| $?$ | $\square$ | $y_{t,(\mathrm{R} 2 ? 1) ? \mathrm{C} 2 ? 1)}$ | $y_{t,((\mathrm{R} 2 ? 1) ? \mathrm{C} 2 ? 2)}$ | $y_{t,((\mathrm{R} 2 ? 1) ? \mathrm{C} 2 ? 3)}$ | $\square$ | $y_{t,(\mathrm{R} 2 ? \mathrm{C} 2)}$ |

where $y_{t, k} ? x_{t, k}$ for $k=1,2, \ldots, U_{t}$ and if R2? $\mathrm{C} 2>U_{t}$, the dummy bits are padded such that $y_{t, k}=0$ or 1 for $\underline{k}=U_{t}+1, U_{t}+2, \ldots, \mathrm{R} 2$ ? C 2 . These dummy bits are pruned away from the output of the matrix after the intercolumn permutation.
(4) Perform the inter-column permutation for the matrix based on the pattern $\mathrm{P} 2(j)(j=0,1, \ldots, \mathrm{C} 2-1)$ $\underline{\langle\mathrm{P} 2 ? j\rangle_{j ? ? 0,1, \square}, \mathrm{C} 2 ? 1 ?}{ }^{\text {that }}$ that shown in table 7, where $\mathrm{P} 2(i \dot{j})$ is the original column position of the $j$-th permuted column. After permutation of the columns, the bits are denoted by $y_{t, k} y_{t, k}^{\prime}$.

| $?{ }_{\text {? }} y_{t, 1}$ | $y_{t,(R 2 ? 1)}$ | $y_{t,(2 ? R 2 ? 1)}$ | $\square$ | $y_{t,(29 ? R 2 ? 1)}$ | ? ? ${ }^{\text {a }}{ }^{\prime}{ }_{t, 1}$ | $y_{t,(\mathrm{R} 2 \text { ? } 1)}^{\prime}$ | $y_{t,(2 ? R 2 ? 1)}^{\prime}$ | $\square y^{\prime} t_{t,(\text { C2-1)? } 22 ? 1)} ?$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{?}{?} y_{t, 2}$ | $y_{t,(\text { R2? })}$ | $y_{t,(2 ? R 2 ? 2)}$ | $\square$ | $y_{t,(29 ? R 2 ? 2)}$ | $\stackrel{?}{?}{ }^{\text {? }} y^{\prime}{ }_{t, 2}$ | $y_{t,(\mathrm{R} 2 ? 2)}^{\prime}$ | $y_{t,(2 ? R 2 ? 2)}^{\prime}$ | $\square$ | $y_{t,(\text { (C2-1)? } 2 \text { 2 ? }}^{\prime}$ ? |  |
| ? ${ }_{\text {? }}$ | $\square$ | $\square$ | $\square$ | $\square$ | ? ? | $\square$ | $\square$ | $\square$ | $\square$ | $?$ |
| ? $y_{t, R 2}$ | $y_{t,(2 ? R 2)}$ | $y_{t,(3 ? R 2)}$ | $\square$ | $y_{t,(30 ? R 2)}$ | ? ? ${ }^{\text {? }} y_{t, \mathrm{R} 2}^{\prime}$ | $y_{t,(2 ? \mathrm{R} 2)}^{\prime}$ | $y_{t,(3 ? \mathrm{R} 2)}^{\prime}$ | $\square$ | $y_{t,(\text { C2?R2 })}^{\prime}$ | ? |

(5) The output of the $z^{\text {nd }}$-block interleavering is the bit sequence read out column by column from the inter-column permuted R2 '? C2 matrix. The output is pruned by deleting dummy bits that were not presentpadded into the input bit sequenceof the matrix before the inter-column permutation, i.e. bits $y_{t, k}^{\prime} y_{t, k}^{\prime}$ that corresponds to bits $\mathbb{F}_{t, k} y_{t, k}$ with $k_{-}>U_{t}$ are removed from the output. The bits after time slot $2^{\text {nd }}$ interleaving are denoted by $v_{t, 1}, v_{t, 2}, \square, v_{t, U_{t}}$, where $v_{t, 1}$ corresponds to the bit $y_{t, k} y_{t, k}^{\prime}$ with smallest index $k$ after pruning, $v_{t, 2}$ to the bit $Y_{t, k} y_{t, k}^{\prime}$ with second smallest index $k$ after pruning, and so on.

Table 7Inter-column permutation pattern for 2nd interleaving

| Number of Columns <br> number C2 | Inter-column permutation pattern <br> $\langle\mathbf{P 2 ( 0 )}, \mathbf{P 2}(\mathbf{1 )}, \ldots, \mathbf{P 2}(\mathbf{2 9} \mathbf{C 2 - 1})\rangle$ |
| :---: | :---: |
| 30 | $<0,20,10,5,15,25,3,13,23,8,18,28,1,11,21$, |
|  | $6,16,26,4,14,24,19,9,29,12,2,7,22,27,17\rangle$ |

