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1 Introduction

In order to achieve mapping of services such as speech with a SF of 256 in DL it was considered to use blind transport format detection (BTFD) with flexible positions. 

In this paper, in a first section we describe in detail how this can work, in a second section we summarise the impact. Then we conclude on how to proceed.

In the annexe we give RM pattern parameter determination algorithms for the so called method 1 to be introduced in this paper.

2 References

[1]
TS25.212 ver 3.4.0 3GPP TSG RAN Multiplexing and channel coding (FDD)
3 Abbreviations

RM
Rate Matching

DTX bit
an indication of DTX

BTFD
Blind Transport Format Detection, that is the R1 official designation of Blind Rate Detection

4 Description of the CCTrCH chain for flexible position BTFD

Main principles of sequential detection

The main principle is that the detection is sequential. TF of TrCH 1 is first detected, then based on the knowedged of the TF of TrCH 1, the TF of TrCH 2 can be detected, and so on.

Exemple of simple sequential detection

This is exemplified on the figure 1 below. On this figure we consider a CCTrCH with 3 TrCHs, namely 1, 2, and 3. For the sake of explanation we assume that the three TrCHs have a TTI of 10ms.

TrCH 1 is in white and has 2 TFs, TrCH 2 is in light grey and has 2 TFs, and TrCH 3 is in dark grey and has 4 TFs.

The amount of data per radio frame for each TrCH and per each corresponding TF is represented in the upper part of the figure. This amount of data for transport channel i and transport format l is denoted Hi,l. This is represented by the length of the rectangles on the figure.

On the bottom left part of the figure we represent the 13 possible TFCs of the CCTrCH.

Now on the bottom right part is exemplified the steps of sequential detection. In the example we assume that a radio frame with TFC = 1 was received. 

· At step ( a pointer p is positioned at the beginning of the received frame. And a set R is set to {0, 1, …, 12}, that is to say all the possible TFC are remaining.

· At step ( an amount of data H is determined as 
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 is the set of potential TFs for TrCH 1 when the TFC is in R . In other words, R containing all the TFCs, we have 
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. A block of data B is extracted from the frame : it is taken at position p and with a size of H.

· At step ( the blind rate detection is carried out on block B. This allows to detect that transport format of TrCH 1 is TF1=0, 

· At step ( we take into account the detection that gave the TF1=0. So, 

· pointer p is moved forward by an amount of 
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· R is updated to 
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 denotes the set of TFC for which the TF of TrCH 1 is 0. The new value of R is therefore {0,1,…,6} after the update.

· Step ( is the similar to step ( but for TrCH 2. H is determined as 
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, that is to say 
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 because both TF 0 and 1 are taken for TrCH 2 when TFC in {0,1,…,6}, so H is determined as 
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, and a bloc B is extracted from the received frame at position p and with size H.

· Step ( is similar to step ( but for TrCH 2 : BTFD is  carried out on block B, and this determines that TF2 = 0.

· Step ( is similar to step ( but for TrCH 2. Having determined that TF2 = 0 :

· p is moved forward by an amount of 
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· R is updated to 
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 are excluded from R. R is therefore {0,1,2,3} after the update.

· Step ( is similar to step ( and step ( but for TrCH 3. 
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. So a block B is extracted from the received frame from position p and with size H.

· Finally step ( is similar to ( and step ( but for TrCH 3. BTFD is carried out on block B for TrCH 3, which allows to detect that TF3=1.
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figure 1 sequential detection of TF

In view of this example it can be concluded that the TrCH are ordered in ascending order of TTI duration (Fi). As a matter of fact TF of TrCH i can be detected only every 
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 tens of ms because you need to have detected TF of TrCH 1, 2, …,i-1 before you can detect TF of TrCH i.

Example of double sequential detection

Simple sequential detection has several drawbacks :

· Operations cannot be carried out in parallel. For instance you cannot de-1st-IL or de-rate match TrCH 2 while you channel decode TrCH 1. This means longer processing delays.

· A TF detection error on TrCH i affects decoding of TrCH i+1, i+2, …, I.

In order to mitigate these drawbacks, we propose to use double sequential detection as described below :

The set of TrCHs comprised in the CCTrCH is partitioned into two subsets, namely G and D. 

We use the following notations :

I = IG+ID
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The TrCHs are in ascending order of TTI duration in both G and D, but there is no order relation between elements of G and D.

In other words :
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 is not required.

The multiplexing of TrCH and the 2nd insertion of DTX indication bits is modified as shown on figure 2 below :
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figure 2 TrCH multiplexing and second DTX insertion

TrCH blocks of G are concatenated as usual, and the concatenate block is placed in the beginning of the frame.

TrCH blocks of D are concatenated as usual, then the concatenate block is bit reversed, and then the bit reversed block is placed in the end of the frame.

DTX indication bits are inserted between data from G and data from D. Note that when D is empty there is no change compared to current scheme multiplexing. 

Moreover, simple detection is a particular case of double detection for which set D is empty (i.e. ID = 0 and IG = I).

On figure 3 we compare sequential detection versus double sequential detection. This figure is to be compared to figure 1. On the bottom left part we see the frames in case of sequential detection, whereas on the bottom right part we see the frames in case of double sequential detection with 
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figure 3 Sequential detection versus double sequential detection

General sequential detection algorithm

Below on figure 4, we give the generic algorithm for simple sequential detection. 

For double sequential detection the algorithm is run twice in parallel, once for G and once for D.

When run for G, the algorithm is modified such that in step ( comparison 
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When run for D, the algorithm is modified such that :

· in step ( initialisation 
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· step ( is modified as follows

for k := 0 to Fi-1 do
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end for
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figure 4
More comments on ordering of TrCHs

Let us assume that there exists some integer UG (resp. UD) such that 
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It is to be noted that in a sequential detection, when the TFs of the 
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or respectively :
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but within 
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When this happens, the algorithms of figure 4 is carried out only on the 
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Usage of 1st interleaver

On figure 5 below we show what happens with TrCH 1, where TrCH 1 has a TTI of 20ms, and two TF 0 and 1 such that

· 
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On the figure, hatching represents DTX bits, or bits from other TrCHs.

We see that 1st interleaving is carried out with a depth of 
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, while de-1st interleaving is carried out with a depth of 
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. In other words we don’t use the same channel interleaver at transmission and at reception!

This can work only thanks to the good properties of the 1st interleaver. If RAN WG1 had selected the complex 1st IL + simple 2nd IL concept instead of the simple 1st IL + complex 2nd IL concept, surely today blind rate detection in flexible position would not be possible at acceptable cost.
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figure 5
Usage of rate matching and of 1st DTX insertion

In order to be able to de-rate match without knowing the TF it is necessary to have a fixed RM pattern. In the following we consider only the RM pattern for the convolutional coding scheme, as BTFD is not considered for other coding schemes.

General on current RM pattern.

Generally speaking the RM pattern is parametrised by a pattern parameter vector 
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 is to be found depends on the RM pattern determination algorithm. For instance, with the well established Siemens RM pattern determination algorithm we have
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eini, eplus and eminus  are the well known parameters, whereas we denotes by s the implicit  tri-state parameter such that :

· s = 1 when repetition is used

· s = 0 when no RM is done (same output as input)

· s = - 1 when puncturing is done

J can therefore be defined as the set of quartet 
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 of integers such that :

s = 0, and eini = eplus = eminus = 1,

or
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Given the size N of the input block to the rate matching, the size variation 
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 that is got is a function f of N and of the pattern parameter vector 
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A study of the Siemens RM pattern determination algorithm can show that in this case a simple analytical formula exists as we have :
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We define the function sgn(x) that will be needed later as follows :
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In the classical flexible position, a pattern parameter vector 
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 is defined for each transport format as follows :
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We these parameters we have exactly 
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In the flexible position for BRD we cannot do so, because this could lead to slight difference of the pattern according to the TF. So we have two solutions, hereinafter called method 1 and method 2

RM and DTX insertion with method 1.

In method 1, the solution is to find the a set E of parameters that don’t overstep the wanted variation 
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 we can complete the variation by inserting a number 
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 of DTX bits in the 1st DTX insertion module. These DTX bits don’t help at all the Eb/I balancing, however they are good for the radio frame size equalisation function, and they won’t bother too much the Eb/I balancing if they are few enough. 

The determination of the RM pattern is therefore all about selecting the element of E that minimise a criteria that is representative of the number of inserted DTX bits.

E is defined as follows :
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Once 
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 selected, it is still possible that for some TF l the got variation 
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. So the 1st DTX insertion step is used to insert 
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The exact algorithm to determined 
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 in method 1 is given in annexe.

The big advantage of method 1 is that we keep exactly the same RM pattern determination and we insert no new step, as the 1st DTX insertion already exists.

The drawback is that these DTX bits are useless. The upper bound on the number of inserted DTX bits is roughly 
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. So this is not very harmful when 
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 is in the order of magnitude of 100. However, for very small bit rate, method 1 could be somewhat risky.

RM and DTX insertion with method 2

In method 2 we change the RM pattern determination algorithm. The new algorithm however calls the Siemens algorithm as a sub-routine.

Let us assume that we have a TrCH i with a TFC set 
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By convention, though TF l = 0 is not defined, we set that 
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Alternatively we can consider a TrCH i with a TFC set 
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Let us now assume that we have a data block B of size N>0. It is possible to find the greatest integer k in 
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. So we segment block B into k+1 blocks B1, B2, …, Bk, Bk+1 of respective sizes 
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. The segmentation is a plain serial segmention, that is to say concatenation is the inverse operation.

Each block Bk is then separately rate-matched with the well known Siemens algorithm thus configured to obtain a size variation of 
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Finally the resulting blocks are concatenated.

Note : the parametrisation of Siemens algorithm for RM of block Bk is the following :

· 
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· eini = 1
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5 Summary of impacts

for the transmitter

items
impact
comment

CRC attachment, channel coding

1st IL, radio frame segmentation, 2nd IL, physical channel segmentation, mapping to physical channel
none


RM (RM method 1)
The pattern parameters 
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 are determined in a new way
eini can be different from 1. eplus and eminus can be odd, 
[image: image114.wmf]e

r

 does not depend on TF l


1st DTX insertion (RM method 1)
Can be used to insert few DTX bits, this has mainly the merits of maintaining the radio frame equalisation.
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 DTX indication bits are inserted.

RM (RM method 2)
new pattern determination algorithm, different from Siemens algorithm. The new algorithm makes an RM pattern by concatenating several RM patterns that are determined by Siemens algorithm.


1st DTX insertion (RM method 2)
none


TrCH multiplexing and 2nd DTX insertion
when the double sequential detection is used, then an additional bit reversal function is necessary for the TrCHs from set D.
We believe that additional complexity is null. However the change is too significant and unforeseen to be accepted at this stage of the project.

for the receiver

items
impact
comment

inverses of 

CRC attachment, 

2nd IL, physical channel segmentation, mapping to physical channel
none


channel decoding
the same scheme as in fixed position BTFD can be used


inverse RM (method 1)
see transmitter about pattern parameters 
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de rate matching is carried out assuming TF l maximising 
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inverse RM (method 2)
see transmitter part.


inverse

1st DTX insertion
no such thing = this is done during channel decoding, as in fixed positions


inverse 1st IL
the depth can be different from that of transmission
we believe that this is no problem, as the current IL fortunately copes with that.

inverse

TrCH multiplexing, radio frame segmentation, 2nd DTX insertion
TrCH are extracted sequentially, instead of being demultiplexed
We believe that this is a significant impact and that flexible positions BTFD cannot be accepted for release ‘99

parallelism
Decoding TrCh in parallel is seriously impaired.


6 Conclusion

In this paper we have made a study of the BTFD in flexible position. We propose this scheme for release 4 or 5.

7 Annexe : determination of RM pattern parameters in method 1

Determination of s

This is simply done as follows :
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The rational of this formula is that if at least for one TF we need to puncture then we need to puncture for all.

When the determined s is null, eini, eplus and eminus are simply set to 1. Otherwise we proceed as follows

Determination of eplus when s ( 0
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Note that this is only the least value that can do the job. Any greater or equal value could also do the job. There might be some advantage for instance in taking eplus  as a power of 2.

The rationale for this formula is that, according to the expression of 
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Determination of eini and eminus when s ( 0

In the following, for the sake of simplicity, in the definition of the set J of rate matching pattern parameters vectors, we have substituted the condition 
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Algorithm 1

Given the values of eplus and s already determined eini and eminus are determined as follows:

We denote El the set of couple 
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And E is here the intersection of the sets El :
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So generally speaking E is can be determined as follows :

01:
first_time := true

202:

 definir rln_pour_tt_l_top_level_phase_a  
2

for all l in 
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303:

 definir rln_determ_El  
3

détermine El

04:
if first_time then

505:

 definir rln_set_E_El  
5

E := El

06:
first_time := false

07:
else

808:

 definir rln_E_sect_El  
8

E := E ( El

09:
end if

10:
end for

It can be noted that at line 2 TF l such that 
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 is monotonic it is possible to show that E, El and any intersection of El’s can be defined as a region limited by a graph. This region as the look given by the figure 6 below. The region is the greyed surface, whereas the graph is the bold staircase curve.
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figure 6
So, henceforth we use, instead of sets E and El, arrays G and GL of eplus integers, indexed from 1 to eplus, and storing the graph.

So the step of determining El in line 3 can be done as follows:

10 seq ln_det_GL\#"0#:" \r 
10:

A := 
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11:
Q := A div 
[image: image141.wmf]TTI

,

l

i

N


--
Euclidian division, 
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12:
R := A mod 
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13

1313:

 definir rln_set_e_minus_1st 
eminus := Q 

1414:

 definir rln_set_e_ini_1st  
14

eini := -R

15:
stop := false

16:
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 := 1

1717:

 definir rln_début_boucle_par_marche 
17

repeat

18:
eminus := eminus + 1

19:
eini := eini+ 
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20:
if eini ( eplus then

21:
stop := true

22:
eini := eplus

23: 24:
end if

2525:

 definir rln_début_boucle_de_marche  
25

while 
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27:
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2828:

 definir rln_fin_boucle_de_marche  
28

end while

2929:

 definir rln_fin_boucle_par_marche 
29

until stop

The algorithm above can be explained as follows: graph GL is indeed the curve in the (eini , eminus) plan defined by the  following equation :
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This graph has the shape of a staircase of constant stair-step size such that each stair-step in the stair corresponds to incrementing eminus by one,  and eini by 
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. Therefore in lines 13 and 14 a point (eini,eminus) is determined on the edge of a stair-step. At each iteration of the loop lying from line 17 to line 29, a new stair-step is determined. And at each iteration of the loop lying from line 25 to line 28 a point is determined in the stair-step under determination.

Assigning El to E at line 5 simply consists in copying graph GL into graph G as follows :

for eini := 1 to eplus,i do
G[eini] := GL[eini]

end for

The intersection of E and El at line 8 consists for each value of eini to take the greater value of eminus in case of puncturing, et the less one in case of repetition. This is in more details below :

for eini := 1 to eplus,i do
if s(G[eini] > s(GL[eini] then

G[eini] := GL[eini]

end if

end for

Once graph G is determined, set E is available as illustrated on figure 6. So a point in E is chosen by minmising a criteria C that is representative of the number of DTX inserted . For instance this criteria is the maximum over all the TF of the ratio between the number of DTX inserted and the number of bits before rate matching:
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Since the criteria to be used is a monotonic function increasing with the number of DTX to be inserted, and as 
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 is also monotonic, it is not necessary to compute it on all the points in E, but it suffices to compute it on the graph G edging set E, as we are sure that the intersection between the set of minima of 
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 is done below:

Table 11

 definir tb_maximisation_C  
1

101:

 definir rln_set_meill_crit_moins_infini  
1

best_criteria := +(

202:

 definir rln_pour_e_ini_max_C 
2

for eini := 1 à eplus do

03:
eminus := G[eini]

04:
new_criteria := C(eini, eminus, eplusi, s)

505:

 definir rln_cmp_meil_vs_nouv_crit 
5

if new_criteria < best_criteria then

06:
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07:
end if

08:
end for

09:
eini := best_eini

10:
eminus := G[best_eini]

Note that in case there are several minima on the graph G, table 1 ensures that the one chosen is that for which eini is minimum.

Complexity of algorithm 1

Generally speaking, 
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 is in the order of magnitude of hundred, and therefore so is the determined eplus. So, it seems at a first glance that algorithm 1 is rather complex as you have to handle an array G of eplus elements. In fact, it is possible to implement algorithm 1 with less complexity: as a matter of fact, the ratio 
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 is generally in the order of magnitude of several units, or tens. So the graphs G and GL comprise a number of stair-steps in the order of magnitude of 
[image: image159.wmf](

)

(

)

(

)

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

×

¹

Î

Î

l

i

N

i

TFS

l

l

i

i

TFS

l

N

N

i

TFS

l

i

,

0

,

,

min

max

#

 that can be substantially less than eplus. So instead of storing all the points with 
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, one can store only those point that are at edges of stair steps. 

The same reasoning can be applied to the algorithm of table 1. One can determine for each stair step of graph G those values of of eini for which the number of DTX bits can vary for at least one TF. The criteria can then be computed only for these points. 

Algorithm 2

Finally, one can use the simpler sub-optimal algorithm of table 2 hereinafter. We have not yet completely evaluated the impact of the simplification, but on the few example we have considered we could not find any degradation in terms of greater number of DTX bits inserted.

The simplification is illustrated on figure 7 below. 
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figure 7
Instead of considering the complete set El (resp. E) edged by a graph, we consider only a rectangular region that is a subset of El (resp. E). This retangular region is greyed on figure 7. 

The simplification is that to store the region instead of storing all the graph, you need just to store one corner of the rectangle, that is to say only one point.

On table 2, the consider subset of El  est defined the point (new_eini, new_eminus), whereas the subset of E is defined by the point (eini, eminus). So, lines 6 and 7 are analogous to the determination of El, lines 9 and 10 analogous to the assignment of El to E, and lines 13 to 18 analogous to the intersecting de E et El. 

The final value of (eini, eminus), once all intersecting have been done is the found solution.

Table 22

 definir tb_eini_eminus_def  
2

01:
first_time :=true;

02:
for all l in 
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03:
A := 
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 ;

04:
Q := A div 
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05:
R := A mod 
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6

606:

 definir ln_eim_set_eminus 
new_eminus := Q+1 

7

707:

 definir ln_eim_set_eini 
new_eini := Ni,l-R

8

808:

 definir ln_eim_extr_begin 
if first_time then

09:
eminus := new_eminus

10:
eini := new_eini

11:
first_time := false;

12:
else

13:
if 
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 then

14:
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end for
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