MITSUBISHI ELECTRIC FRANCE
Erreur! Il n'y a pas de texte répondant à ce style dans ce document.
Mobile Communication Research and Development
Erreur! Il n'y a pas de texte répondant à ce style dans ce document.

RAN WG1 meeting #16
TSGR1#16(00) 1299

Place
:
Pusan

Date
:
October.

Title
:
Proposal for flexible position BTFD
Source
:
Mitsubishi Electric
(Trium R&D)

Paper for
:
Discussion

1 Introduction

In order to achieve mapping of services such as speech with a SF of 256 in DL it was considered to use blind transport format detection (BTFD) with flexible positions.

In this paper, in a first section we describe in detail how this can work, in a second section we summarise the impact. Then we conclude on how to proceed.

In the annexe we give RM pattern parameter determination algorithms for the so called method 1 to be introduced in this paper.

2 References

[1]
TS25.212 ver 3.4.0 3GPP TSG RAN Multiplexing and channel coding (FDD)
3 Abbreviations

RM
Rate Matching

DTX bit
an indication of DTX

BTFD
Blind Transport Format Detection, that is the R1 official designation of Blind Rate Detection

4 Description of the CCTrCH chain for flexible position BTFD

Main principles of sequential detection

The main principle is that the detection is sequential. TF of TrCH 1 is first detected, then based on the knowedged of the TF of TrCH 1, the TF of TrCH 2 can be detected, and so on.

Exemple of simple sequential detection

This is exemplified on the figure 1 below. On this figure we consider a CCTrCH with 3 TrCHs, namely 1, 2, and 3. For the sake of explanation we assume that the three TrCHs have a TTI of 10ms.

TrCH 1 is in white and has 2 TFs, TrCH 2 is in light grey and has 2 TFs, and TrCH 3 is in dark grey and has 4 TFs.

The amount of data per radio frame for each TrCH and per each corresponding TF is represented in the upper part of the figure. This amount of data for transport channel i and transport format l is denoted Hi,l. This is represented by the length of the rectangles on the figure.

On the bottom left part of the figure we represent the 13 possible TFCs of the CCTrCH.

Now on the bottom right part is exemplified the steps of sequential detection. In the example we assume that a radio frame with TFC = 1 was received.

· At step (a pointer p is positioned at the beginning of the received frame. And a set R is set to {0, 1, …, 12}, that is to say all the possible TFC are remaining.

· At step (an amount of data H is determined as
[image: image1.wmf]l

R

l

H

H

,

1

1

max

Î

=

 where
[image: image2.wmf](

)

R

TF

R

1

1

=

 is the set of potential TFs for TrCH 1 when the TFC is in R . In other words, R containing all the TFCs, we have
[image: image3.wmf]{

}

1

,

0

1

=

R

, and so
[image: image4.wmf]1

,

1

H

H

=

. A block of data B is extracted from the frame : it is taken at position p and with a size of H.

· At step (the blind rate detection is carried out on block B. This allows to detect that transport format of TrCH 1 is TF1=0,

· At step (we take into account the detection that gave the TF1=0. So,

· pointer p is moved forward by an amount of
[image: image5.wmf]0

,

1

TF

,

1

1

H

H

=

, and

· R is updated to
[image: image6.wmf]{

}

(

)

0

1

1

-

Ç

TF

R

, where
[image: image7.wmf]{

}

(

)

0

1

1

-

TF

 denotes the set of TFC for which the TF of TrCH 1 is 0. The new value of R is therefore {0,1,…,6} after the update.

· Step (is the similar to step (but for TrCH 2. H is determined as
[image: image8.wmf]l

R

l

H

H

,

2

2

max

Î

=

, where
[image: image9.wmf](

)

R

TF

R

2

2

=

, that is to say
[image: image10.wmf]{

}

1

,

0

2

=

R

 because both TF 0 and 1 are taken for TrCH 2 when TFC in {0,1,…,6}, so H is determined as
[image: image11.wmf]1

,

2

H

H

=

, and a bloc B is extracted from the received frame at position p and with size H.

· Step (is similar to step (but for TrCH 2 : BTFD is carried out on block B, and this determines that TF2 = 0.

· Step (is similar to step (but for TrCH 2. Having determined that TF2 = 0 :

· p is moved forward by an amount of
[image: image12.wmf]0

,

2

TF

,

2

2

H

H

=

,

· R is updated to
[image: image13.wmf]{

}

(

)

0

1

2

-

Ç

TF

R

, that is to say TFC j for which
[image: image14.wmf](

)

0

2

¹

j

TF

 are excluded from R. R is therefore {0,1,2,3} after the update.

· Step (is similar to step (and step (but for TrCH 3.
[image: image15.wmf](

)

{

}

3

,

2

,

1

,

0

3

3

=

=

R

TF

R

, and so H is determined as
[image: image16.wmf]3

,

3

,

3

3

max

H

H

H

l

R

l

=

=

Î

. So a block B is extracted from the received frame from position p and with size H.

· Finally step (is similar to (and step (but for TrCH 3. BTFD is carried out on block B for TrCH 3, which allows to detect that TF3=1.

[image: image17.wmf]TF

1

=

0

TF

2

=0

TF

3

=1

TF

1

=

0

TF

1

=

0

TF

2

=0

TF

3

=1

TF

2

=0

TF

1

=

0

TF

1

=1

TF

2

=1

TF

2

=0

TF

3

=3

TF

3

=1

TF

3

=0

TF

3

=2

TF

1

=

0

TF

2

=1

TF

3

=1

TF

1

=

0

TF

2

=0

TF

3

=3

TF

1

=

0

TF

2

=1

TF

3

=0

TF

3

=2

TF

1

=

0

TF

2

=1

TF

1

=

0

TF

3

=0

TF

2

=0

TF

1

=

0

TF

2

=0

TF

3

=1

TF

1

=

0

TF

2

=0

TF

3

=2

TF

1

=1

TF

3

=0

TF

2

=0

TF

1

=1

TF

3

=1

TF

2

=0

TF

1

=1

TF

3

=2

TF

2

=0

TF

1

=1

TF

3

=0

TF

2

=1

TF

1

=1

TF

3

=1

TF

2

=1

TF

1

=1

TF

3

=2

TF

2

=1

TFC=0

 TFC=3

 TFC=4

 TFC=5

 TFC=6

 TFC=7

 TFC=8

 TFC=9

 TFC=10

 TFC=11

 TFC=12

TFC=

1

 TFC=2

TF

1

=

0

TF

2

=0

TF

3

=1

TF

3

=1

2

1

4

5

8

7

3

6

9

figure 1 sequential detection of TF

In view of this example it can be concluded that the TrCH are ordered in ascending order of TTI duration (Fi). As a matter of fact TF of TrCH i can be detected only every
[image: image18.wmf]{

}

i

F

F

F

,

,

,

max

2

1

K

 tens of ms because you need to have detected TF of TrCH 1, 2, …,i-1 before you can detect TF of TrCH i.

Example of double sequential detection

Simple sequential detection has several drawbacks :

· Operations cannot be carried out in parallel. For instance you cannot de-1st-IL or de-rate match TrCH 2 while you channel decode TrCH 1. This means longer processing delays.

· A TF detection error on TrCH i affects decoding of TrCH i+1, i+2, …, I.

In order to mitigate these drawbacks, we propose to use double sequential detection as described below :

The set of TrCHs comprised in the CCTrCH is partitioned into two subsets, namely G and D.

We use the following notations :

I = IG+ID

[image: image19.wmf]{

}

G

I

G

,

,

2

,

1

K

=

 and
[image: image20.wmf]{

}

I

I

I

D

G

G

,

,

2

,

1

K

+

+

=

The TrCHs are in ascending order of TTI duration in both G and D, but there is no order relation between elements of G and D.

In other words :

[image: image21.wmf]G

I

F

F

F

£

£

£

L

2

1

 and
[image: image22.wmf]I

I

I

F

F

F

G

G

£

£

£

+

+

L

2

1

,

but
[image: image23.wmf]1

+

£

G

G

I

I

F

F

 is not required.

The multiplexing of TrCH and the 2nd insertion of DTX indication bits is modified as shown on figure 2 below :

[image: image24.wmf]block

concatenation

TrCH 1

TrCH 2

TrCH

I

L

block

concatenation

TrCH

I

L

+2

TrCH

I

L

+1

TrCH

I

bit reversal

block

concatenation

DTX

L

U

figure 2 TrCH multiplexing and second DTX insertion

TrCH blocks of G are concatenated as usual, and the concatenate block is placed in the beginning of the frame.

TrCH blocks of D are concatenated as usual, then the concatenate block is bit reversed, and then the bit reversed block is placed in the end of the frame.

DTX indication bits are inserted between data from G and data from D. Note that when D is empty there is no change compared to current scheme multiplexing.

Moreover, simple detection is a particular case of double detection for which set D is empty (i.e. ID = 0 and IG = I).

On figure 3 we compare sequential detection versus double sequential detection. This figure is to be compared to figure 1. On the bottom left part we see the frames in case of sequential detection, whereas on the bottom right part we see the frames in case of double sequential detection with
[image: image25.wmf]{

}

2

,

1

=

G

 and
[image: image26.wmf]{

}

3

=

D

. We can notice that the border between data from G and D is flexibly moving according to the TFC.

[image: image27.wmf]TF

1

=

0

TF

2

=0

-

33-

TF

1

=1

TF

3

=2

TF

2

=1

TF

1

=

0

TF

2

=1

TF

3

=1

TF

1

=

0

TF

2

=1

TF

3

=0

TF

3

=2

TF

1

=

0

TF

2

=1

TF

1

=

0

TF

3

=0

TF

2

=0

TF

3

=1

TF

1

=

0

TF

2

=0

TF

3

=3

TF

1

=

0

TF

2

=0

TF

1

=1

TF

3

=0

TF

2

=0

TF

1

=1

TF

3

=1

TF

2

=0

TF

1

=1

TF

3

=2

TF

2

=0

TF

1

=1

TF

3

=0

TF

2

=1

TF

1

=1

TF

3

=1

TF

2

=1

TF

1

=

0

TF

1

=1

TF

2

=1

TF

2

=0

TF

3

=3

TF

3

=1

TF

3

=0

TF

3

=2

TF

1

=

0

TF

2

=1

TF

3

=1

TF

1

=

0

TF

2

=0

TF

3

=3

TF

1

=

0

TF

2

=1

TF

3

=0

TF

3

=2

TF

1

=

0

TF

2

=1

TF

1

=

0

TF

3

=0

TF

2

=0

TF

1

=

0

TF

2

=0

TF

3

=1

TF

1

=

0

TF

2

=0

TF

3

=2

TF

1

=1

TF

3

=0

TF

2

=0

TF

1

=1

TF

3

=1

TF

2

=0

TF

1

=1

TF

3

=2

TF

2

=0

TF

1

=1

TF

3

=0

TF

2

=1

TF

1

=1

TF

3

=1

TF

2

=1

TF

1

=1

TF

3

=2

TF

2

=1

TFC=0

 TFC=3

 TFC=4

 TFC=5

 TFC=6

 TFC=7

 TFC=8

 TFC=9

 TFC=10

 TFC=11

 TFC=12

TFC=1

 TFC=2

TFC 0 bit

order

 TFC 0 bit

order

figure 3 Sequential detection versus double sequential detection

General sequential detection algorithm

Below on figure 4, we give the generic algorithm for simple sequential detection.

For double sequential detection the algorithm is run twice in parallel, once for G and once for D.

When run for G, the algorithm is modified such that in step (comparison
[image: image28.wmf]I

i

£

 is replaced by comparison
[image: image29.wmf]G

I

i

£

.

When run for D, the algorithm is modified such that :

· in step (initialisation
[image: image30.wmf]1

:

=

i

 is replaced by initialisation
[image: image31.wmf]1

:

+

=

G

I

i

, and

· step (is modified as follows

for k := 0 to Fi-1 do

[image: image32.wmf](

)

(

)

[

]

(

)

(

)

[

]

(

)

(

)

[

]

1

1

,

,

,

1

1

,

1

:

1

H-

p

N

MF

p

N

MF

p

N

MF

B

k

n

data

k

n

k

n

data

k

n

k

n

data

k

n

k

F

i

+

-

-

+

-

-

-

-

=

-

-

-

-

-

-

-

-

K

K

end for

[image: image33.wmf]receive frame

MF

n

p

n

:=

 0

(

n

+1)

mod

F

i

 = 0

determine set

R

i

 of TF possible for

TrCH

i

no

for

k

:=

 0

to

F

i

-1

do

[

]

[

]

[

]

1

,

,

1

,

1

H-

p

MF

p

MF

p

MF

B

k

n

k

n

k

n

k

n

k

n

k

n

k

F

i

+

+

=

-

-

-

-

-

-

-

-

K

:

end for

H

:=

l

i

R

l

H

i

,

max

Î

de-1

st

 IL block

B

de-rate-match block

B

(

)

1

1

0

,

,

,

concat

-

=

i

F

B

B

B

B

K

:

channel decoding & BTFD on block B

H

:=

H

i

,

l

 , where

l

 has been detected

for

k

:=

 0

to

F

i

-1

do

H

p

p

k

n

k

n

+

=

-

-

:

end for

i

 :=

i

 +1

i

£

 I

yes

n

:=

n

+ 1

n

 :=0

no

yes

i

:=

 1

�

‚

ƒ

figure 4
More comments on ordering of TrCHs

Let us assume that there exists some integer UG (resp. UD) such that
[image: image34.wmf]G

G

I

U

<

£

1

 (resp.
[image: image35.wmf]D

D

I

U

<

£

1

).

It is to be noted that in a sequential detection, when the TFs of the
[image: image36.wmf]G

G

U

I

-

 (resp.
[image: image37.wmf]D

D

U

I

-

) can be determined with the sole knowledge of the TFs of the
[image: image38.wmf]G

U

 (resp.
[image: image39.wmf]D

U

) first TrCH, then the order of the TTI durations of the
[image: image40.wmf]G

G

U

I

-

 (resp.
[image: image41.wmf]D

D

U

I

-

) last TrCH needs not to be ascending. We need only that :

[image: image42.wmf]G

U

F

F

F

£

£

£

L

2

1

 and
[image: image43.wmf]{

}

G

U

i

G

G

F

F

I

U

i

³

+

Î

"

,

,

1

K

or respectively :

[image: image44.wmf]D

G

G

G

U

I

I

I

F

F

F

+

+

+

£

£

£

L

2

1

 and
[image: image45.wmf]{

}

D

G

U

I

i

D

G

F

F

I

U

I

i

+

³

+

+

Î

"

,

,

1

K

.

but within
[image: image46.wmf]{

}

G

G

I

U

,

,

1

K

+

 (resp.
[image: image47.wmf]{

}

I

U

I

D

G

,

,

1

K

+

+

)
[image: image48.wmf]i

F

 needs not to be monotonic.

When this happens, the algorithms of figure 4 is carried out only on the
[image: image49.wmf]G

U

 (resp.
[image: image50.wmf]D

U

) first TrCHs, and the
[image: image51.wmf]G

G

U

I

-

 (resp.
[image: image52.wmf]D

D

U

I

-

) last TrCH are de-multiplexed, de-radio-frame-segmented, and de-1st-interleaved as in the classical flexible positions, that is to say in knowledge of the respective TFs. Step (of figure 4 is modified so that the comparison is replaced by
[image: image53.wmf]G

U

i

£

(resp.
[image: image54.wmf]D

G

U

I

i

+

£

).

Usage of 1st interleaver

On figure 5 below we show what happens with TrCH 1, where TrCH 1 has a TTI of 20ms, and two TF 0 and 1 such that

·
[image: image55.wmf]10

2

0

,

1

0

,

1

0

,

1

=

×

=

D

+

H

N

N

TTI

TTI

·
[image: image56.wmf]16

2

1

,

1

1

,

1

1

,

1

=

×

=

D

+

H

N

N

TTI

TTI

On the figure, hatching represents DTX bits, or bits from other TrCHs.

We see that 1st interleaving is carried out with a depth of
[image: image57.wmf]10

2

0

,

1

=

×

H

, while de-1st interleaving is carried out with a depth of
[image: image58.wmf]16

2

0

,

1

=

×

H

. In other words we don’t use the same channel interleaver at transmission and at reception!

This can work only thanks to the good properties of the 1st interleaver. If RAN WG1 had selected the complex 1st IL + simple 2nd IL concept instead of the simple 1st IL + complex 2nd IL concept, surely today blind rate detection in flexible position would not be possible at acceptable cost.

[image: image59.wmf]s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s0

s2

s4

s6

s8

s1

s3

s5

s7

s9

s0

s2

s4

s6

s8

s0

s2

s4

s6

s8

s1

s3

s5

s7

s9

s1

s3

s5

s7

s9

+

+

s0

s2

s4

s6

s8

s1

s3

s5

s7

s9

+

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s0

s2

s4

s6

s8

s1

s3

s5

s7

s9

1

st

interleaving

Radio

frame

segmentation

multiplexing of

TrCH

and 2

nd

 DTX

insertion

TrCH extraction

De -radio

frame segmentation

De-1

st

interleaving

figure 5
Usage of rate matching and of 1st DTX insertion

In order to be able to de-rate match without knowing the TF it is necessary to have a fixed RM pattern. In the following we consider only the RM pattern for the convolutional coding scheme, as BTFD is not considered for other coding schemes.

General on current RM pattern.

Generally speaking the RM pattern is parametrised by a pattern parameter vector
[image: image60.wmf]e

r

. The set J in which
[image: image61.wmf]e

r

 is to be found depends on the RM pattern determination algorithm. For instance, with the well established Siemens RM pattern determination algorithm we have

[image: image62.wmf](

)

, s

, e

, e

e

e

minus

plus

ini

=

r

eini, eplus and eminus are the well known parameters, whereas we denotes by s the implicit tri-state parameter such that :

· s = 1 when repetition is used

· s = 0 when no RM is done (same output as input)

· s = - 1 when puncturing is done

J can therefore be defined as the set of quartet
[image: image63.wmf](

)

, s

, e

, e

e

e

minus

plus

ini

=

r

 of integers such that :

s = 0, and eini = eplus = eminus = 1,

or

[image: image64.wmf]1

-

=

s

,
[image: image65.wmf]1

³

plus

e

,
[image: image66.wmf]{

}

1

,...,

2

,

1

-

Î

plus

minus

e

e

, and
[image: image67.wmf]{

}

minus

ini

e

e

,...,

2

,

1

Î

or

[image: image68.wmf]1

=

s

,
[image: image69.wmf]1

³

plus

e

,
[image: image70.wmf]1

³

minus

e

, and
[image: image71.wmf]{

}

minus

ini

e

e

,...,

2

,

1

Î

.

Given the size N of the input block to the rate matching, the size variation
[image: image72.wmf]got

N

D

 that is got is a function f of N and of the pattern parameter vector
[image: image73.wmf]e

r

 :

[image: image74.wmf](

)

e

N

N

r

,

f

got

=

D

A study of the Siemens RM pattern determination algorithm can show that in this case a simple analytical formula exists as we have :

[image: image75.wmf](

)

÷

÷

ø

ö

ç

ç

è

æ

ú

ú

û

ú

ê

ê

ë

ê

-

×

+

×

=

plus

ini

minus

e

e

N

e

s

e

N

1

,

f

r

We define the function sgn(x) that will be needed later as follows :

[image: image76.wmf](

)

ï

î

ï

í

ì

>

=

<

-

=

0

if

1

0

if

0

0

if

1

sgn

x

x

x

x

In the classical flexible position, a pattern parameter vector
[image: image77.wmf]e

r

 is defined for each transport format as follows :

[image: image78.wmf]

[image: image79.wmf](

)

TTI

,

sgn

l

i

N

s

D

=

[image: image80.wmf]1

=

ini

e

[image: image81.wmf]l

i

plus

N

e

,

2

×

=

,

or 1 if
[image: image82.wmf]0

,

=

l

i

N

[image: image83.wmf]TTI

,

2

l

i

minus

N

e

D

×

=

,
or 1 if
[image: image84.wmf]0

,

=

l

i

N

We these parameters we have exactly
[image: image85.wmf]TTI

got

l

i

N

N

,

D

=

D

In the flexible position for BRD we cannot do so, because this could lead to slight difference of the pattern according to the TF. So we have two solutions, hereinafter called method 1 and method 2

RM and DTX insertion with method 1.

In method 1, the solution is to find the a set E of parameters that don’t overstep the wanted variation
[image: image86.wmf]TTI

,

l

i

N

D

. If we don’t overstep the wanted variation
[image: image87.wmf]TTI

,

l

i

N

D

 we can complete the variation by inserting a number
[image: image88.wmf]got

TTI

l

i

l

i

N

N

,

,

D

-

D

 of DTX bits in the 1st DTX insertion module. These DTX bits don’t help at all the Eb/I balancing, however they are good for the radio frame size equalisation function, and they won’t bother too much the Eb/I balancing if they are few enough.

The determination of the RM pattern is therefore all about selecting the element of E that minimise a criteria that is representative of the number of inserted DTX bits.

E is defined as follows :

[image: image89.wmf](

)

(

)

{

}

TTI

,

f

such that

l

i

N

e

N,

i

TFS

l

J

e

E

D

£

Î

"

Î

=

r

r

Once
[image: image90.wmf]e

r

 selected, it is still possible that for some TF l the got variation
[image: image91.wmf](

)

e

,

N

N

l

i

l

i

r

,

,

f

=

D

got

 slightly differ from the wanted one
[image: image92.wmf]TTI

,

l

i

N

D

. So the 1st DTX insertion step is used to insert
[image: image93.wmf](

)

e

,

N

N

l

i

l

i

r

,

TTI

,

f

-

D

.

The exact algorithm to determined
[image: image94.wmf]e

r

 in method 1 is given in annexe.

The big advantage of method 1 is that we keep exactly the same RM pattern determination and we insert no new step, as the 1st DTX insertion already exists.

The drawback is that these DTX bits are useless. The upper bound on the number of inserted DTX bits is roughly
[image: image95.wmf]1

2

+

×

i

F

. So this is not very harmful when
[image: image96.wmf]TTI

l

i

N

,

 is in the order of magnitude of 100. However, for very small bit rate, method 1 could be somewhat risky.

RM and DTX insertion with method 2

In method 2 we change the RM pattern determination algorithm. The new algorithm however calls the Siemens algorithm as a sub-routine.

Let us assume that we have a TrCH i with a TFC set
[image: image97.wmf](

)

{

}

L

i

TFS

,

,

2

,

1

K

=

 such that :

[image: image98.wmf]TTI

TTI

TTI

L

i

i

i

N

N

N

,

2

,

1

,

0

<

<

<

<

L

By convention, though TF l = 0 is not defined, we set that
[image: image99.wmf]0

0

,

=

D

TTI

i

N

.

Alternatively we can consider a TrCH i with a TFC set
[image: image100.wmf](

)

{

}

L

i

TFS

,

,

2

,

1

,

0

K

=

 such that :

[image: image101.wmf]TTI

TTI

TTI

TTI

L

i

i

i

i

N

N

N

N

,

2

,

1

,

0

,

0

<

<

<

<

=

L

Let us now assume that we have a data block B of size N>0. It is possible to find the greatest integer k in
[image: image102.wmf]{

}

1

,

,

1

,

0

-

L

K

 such that
[image: image103.wmf]TTI

k

i

N

N

,

>

. So we segment block B into k+1 blocks B1, B2, …, Bk, Bk+1 of respective sizes
[image: image104.wmf]TTI

1

,

i

N

,
[image: image105.wmf](

)

TTI

TTI

1

,

2

,

i

i

N

N

-

,
[image: image106.wmf](

)

TTI

TTI

2

,

3

,

i

i

N

N

-

, …,
[image: image107.wmf](

)

TTI

TTI

2

,

1

,

-

-

-

k

i

k

i

N

N

,
[image: image108.wmf](

)

TTI

TTI

1

,

,

-

-

k

i

k

i

N

N

,
[image: image109.wmf](

)

TTI

k

i

N

N

,

-

. The segmentation is a plain serial segmention, that is to say concatenation is the inverse operation.

Each block Bk is then separately rate-matched with the well known Siemens algorithm thus configured to obtain a size variation of
[image: image110.wmf](

)

TTI

1

,

TTI

,

-

D

-

D

k

i

k

i

N

N

.

Finally the resulting blocks are concatenated.

Note : the parametrisation of Siemens algorithm for RM of block Bk is the following :

·
[image: image111.wmf](

)

TTI

1

,

TTI

,

sgn

-

D

-

D

=

k

i

k

i

N

N

s

· eini = 1

·
[image: image112.wmf]ï

ï

î

ï

ï

í

ì

ï

î

ï

í

ì

D

-

D

=

-

=

=

î

í

ì

=

=

-

-

otherwise

0

if

1

1

TTI

1

,

TTI

,

TTI

1

,

TTI

,

k

i

k

i

minus

k

i

k

i

plus

minus

plus

N

N

e

N

N

e

s

e

e

5 Summary of impacts

for the transmitter

items
impact
comment

CRC attachment, channel coding

1st IL, radio frame segmentation, 2nd IL, physical channel segmentation, mapping to physical channel
none

RM (RM method 1)
The pattern parameters
[image: image113.wmf](

)

, s

, e

, e

e

e

minus

plus

ini

=

r

 are determined in a new way
eini can be different from 1. eplus and eminus can be odd,
[image: image114.wmf]e

r

 does not depend on TF l

1st DTX insertion (RM method 1)
Can be used to insert few DTX bits, this has mainly the merits of maintaining the radio frame equalisation.

[image: image115.wmf](

)

e

,

N

N

l

i

l

i

r

,

TTI

,

f

-

D

 DTX indication bits are inserted.

RM (RM method 2)
new pattern determination algorithm, different from Siemens algorithm. The new algorithm makes an RM pattern by concatenating several RM patterns that are determined by Siemens algorithm.

1st DTX insertion (RM method 2)
none

TrCH multiplexing and 2nd DTX insertion
when the double sequential detection is used, then an additional bit reversal function is necessary for the TrCHs from set D.
We believe that additional complexity is null. However the change is too significant and unforeseen to be accepted at this stage of the project.

for the receiver

items
impact
comment

inverses of

CRC attachment,

2nd IL, physical channel segmentation, mapping to physical channel
none

channel decoding
the same scheme as in fixed position BTFD can be used

inverse RM (method 1)
see transmitter about pattern parameters
[image: image116.wmf](

)

, s

, e

, e

e

e

minus

plus

ini

=

r

.

de rate matching is carried out assuming TF l maximising
[image: image117.wmf]TTI

,

l

i

N

, like in fixed positions.

inverse RM (method 2)
see transmitter part.

inverse

1st DTX insertion
no such thing = this is done during channel decoding, as in fixed positions

inverse 1st IL
the depth can be different from that of transmission
we believe that this is no problem, as the current IL fortunately copes with that.

inverse

TrCH multiplexing, radio frame segmentation, 2nd DTX insertion
TrCH are extracted sequentially, instead of being demultiplexed
We believe that this is a significant impact and that flexible positions BTFD cannot be accepted for release ‘99

parallelism
Decoding TrCh in parallel is seriously impaired.

6 Conclusion

In this paper we have made a study of the BTFD in flexible position. We propose this scheme for release 4 or 5.

7 Annexe : determination of RM pattern parameters in method 1

Determination of s

This is simply done as follows :

[image: image118.wmf](

)

(

)

{

}

TTI

,

0

sgn

min

TTI

,

l

i

N

i

TFS

l

N

s

l

i

D

=

¹

Î

The rational of this formula is that if at least for one TF we need to puncture then we need to puncture for all.

When the determined s is null, eini, eplus and eminus are simply set to 1. Otherwise we proceed as follows

Determination of eplus when s (0

[image: image119.wmf](

)

{

}

TTI

,

max

2

1

l

i

i

TFS

l

plus

N

e

Î

×

+

=

Note that this is only the least value that can do the job. Any greater or equal value could also do the job. There might be some advantage for instance in taking eplus as a power of 2.

The rationale for this formula is that, according to the expression of
[image: image120.wmf](

)

e

N

r

,

f

, when eminus is incremented by one, then
[image: image121.wmf]got

N

D

 is incremented by roughly
[image: image122.wmf]plus

e

N

. In order to get a granularity of one on
[image: image123.wmf]got

N

D

 we need therefore that
[image: image124.wmf]N

e

plus

×

>

2

, the factor 2 is because of the rounding function
[image: image125.wmf]ë

û

x

x

a

 in the expression of
[image: image126.wmf](

)

e

N

r

,

f

.

Determination of eini and eminus when s (0

In the following, for the sake of simplicity, in the definition of the set J of rate matching pattern parameters vectors, we have substituted the condition
[image: image127.wmf]{

}

minus

ini

e

e

,...,

2

,

1

Î

, by the condition
[image: image128.wmf]{

}

1

,...,

2

,

1

-

Î

plus

ini

e

e

. This has no impact on the solution because among the point minimising the number of DTX inserted, we use a selection criteria that minimises eini.

Algorithm 1

Given the values of eplus and s already determined eini and eminus are determined as follows:

We denote El the set of couple
[image: image129.wmf](

)

minus

ini

e

e

,

 such that
[image: image130.wmf]TTI

,

l

i

N

D

 is not overstepped, in other words :

[image: image131.wmf](

)

(

)

(

)

(

)

{

}

TTI

,

TTI

,

,

,

,

,

f

and

,

,

,

such that

,

l

i

minus

plus

ini

l

i

plus

minus

ini

minus

ini

l

N

s

e

e

e

N

J

s

e

e

e

e

e

E

D

£

Î

=

And E is here the intersection of the sets El :

[image: image132.wmf](

)

I

i

TFS

l

l

E

E

Î

=

So generally speaking E is can be determined as follows :

01:
first_time := true

202:

 definir rln_pour_tt_l_top_level_phase_a
2

for all l in
[image: image133.wmf](

)

i

TFS

 such that
[image: image134.wmf]0

TTI

,

¹

l

i

N

 do

303:

 definir rln_determ_El
3

détermine El

04:
if first_time then

505:

 definir rln_set_E_El
5

E := El

06:
first_time := false

07:
else

808:

 definir rln_E_sect_El
8

E := E (El

09:
end if

10:
end for

It can be noted that at line 2 TF l such that
[image: image135.wmf]0

TTI

,

=

l

i

N

 are excluded. This has no impact on the result, because if
[image: image136.wmf]0

TTI

,

=

l

i

N

 then El contains all the other sets
[image: image137.wmf]l

E

¢

.

Because the function
[image: image138.wmf]ë

û

x

x

a

 is monotonic it is possible to show that E, El and any intersection of El’s can be defined as a region limited by a graph. This region as the look given by the figure 6 below. The region is the greyed surface, whereas the graph is the bold staircase curve.

[image: image139.wmf]e

ini

e

minus

e

plus

1

1

e

plus

s

 = -1

e

ini

e

minus

e

plus

1

1

e

plus

s

 = 1

figure 6
So, henceforth we use, instead of sets E and El, arrays G and GL of eplus integers, indexed from 1 to eplus, and storing the graph.

So the step of determining El in line 3 can be done as follows:

10 seq ln_det_GL\#"0#:" \r
10:

A :=
[image: image140.wmf]plus

l

i

e

N

s

×

D

×

TTI

,

11:
Q := A div
[image: image141.wmf]TTI

,

l

i

N

--
Euclidian division,
[image: image142.wmf]ë

û

TTI

TTI

div

il

il

N

A

N

A

=

12:
R := A mod
[image: image143.wmf]TTI

,

l

i

N

--
Remainder,
[image: image144.wmf]ë

û

TTI

TTI

TTI

mod

il

il

il

N

A

N

A

N

A

×

-

=

13

1313:

 definir rln_set_e_minus_1st
eminus := Q

1414:

 definir rln_set_e_ini_1st
14

eini := -R

15:
stop := false

16:

[image: image145.wmf]ini

e

¢

 := 1

1717:

 definir rln_début_boucle_par_marche
17

repeat

18:
eminus := eminus + 1

19:
eini := eini+
[image: image146.wmf]TTI

,

l

i

N

20:
if eini (eplus then

21:
stop := true

22:
eini := eplus

23: 24:
end if

2525:

 definir rln_début_boucle_de_marche
25

while
[image: image147.wmf]ini

ini

e

e

£

¢

do

26:

[image: image148.wmf][

]

minus

ini

e

e

GL

=

¢

:

27:

[image: image149.wmf]1

:

+

¢

=

¢

ini

ini

e

e

2828:

 definir rln_fin_boucle_de_marche
28

end while

2929:

 definir rln_fin_boucle_par_marche
29

until stop

The algorithm above can be explained as follows: graph GL is indeed the curve in the (eini , eminus) plan defined by the following equation :

[image: image150.wmf](

)

(

)

TTI

,

,

TTI

,

,

,

,

f

l

i

i

i

plus

minus

ini

il

N

s

e

e

e

N

D

=

This graph has the shape of a staircase of constant stair-step size such that each stair-step in the stair corresponds to incrementing eminus by one, and eini by
[image: image151.wmf]TTI

il

N

. Therefore in lines 13 and 14 a point (eini,eminus) is determined on the edge of a stair-step. At each iteration of the loop lying from line 17 to line 29, a new stair-step is determined. And at each iteration of the loop lying from line 25 to line 28 a point is determined in the stair-step under determination.

Assigning El to E at line 5 simply consists in copying graph GL into graph G as follows :

for eini := 1 to eplus,i do
G[eini] := GL[eini]

end for

The intersection of E and El at line 8 consists for each value of eini to take the greater value of eminus in case of puncturing, et the less one in case of repetition. This is in more details below :

for eini := 1 to eplus,i do
if s(G[eini] > s(GL[eini] then

G[eini] := GL[eini]

end if

end for

Once graph G is determined, set E is available as illustrated on figure 6. So a point in E is chosen by minmising a criteria C that is representative of the number of DTX inserted . For instance this criteria is the maximum over all the TF of the ratio between the number of DTX inserted and the number of bits before rate matching:

[image: image152.wmf](

)

(

)

(

)

÷

÷

ø

ö

ç

ç

è

æ

-

D

=

¹

Î

TTI

,

TTI

,

TTI

,

0

,

f

max

TTI

,

l

i

l

i

l

i

N

i

TFS

l

N

e

N

N

e

C

l

i

r

r

Since the criteria to be used is a monotonic function increasing with the number of DTX to be inserted, and as
[image: image153.wmf]ë

û

x

x

a

 is also monotonic, it is not necessary to compute it on all the points in E, but it suffices to compute it on the graph G edging set E, as we are sure that the intersection between the set of minima of
[image: image154.wmf](

)

e

C

r

 and the graph is not empty. This minimising of
[image: image155.wmf](

)

e

C

r

 is done below:

Table 11

 definir tb_maximisation_C
1

101:

 definir rln_set_meill_crit_moins_infini
1

best_criteria := +(

202:

 definir rln_pour_e_ini_max_C
2

for eini := 1 à eplus do

03:
eminus := G[eini]

04:
new_criteria := C(eini, eminus, eplusi, s)

505:

 definir rln_cmp_meil_vs_nouv_crit
5

if new_criteria < best_criteria then

06:

[image: image156.wmf](

)

(

)

ini

ini

e

criteria

new

e

best

criteria

best

,

_

:

_

,

_

=

07:
end if

08:
end for

09:
eini := best_eini

10:
eminus := G[best_eini]

Note that in case there are several minima on the graph G, table 1 ensures that the one chosen is that for which eini is minimum.

Complexity of algorithm 1

Generally speaking,
[image: image157.wmf](

)

l

i

i

TFS

l

N

,

max

Î

 is in the order of magnitude of hundred, and therefore so is the determined eplus. So, it seems at a first glance that algorithm 1 is rather complex as you have to handle an array G of eplus elements. In fact, it is possible to implement algorithm 1 with less complexity: as a matter of fact, the ratio
[image: image158.wmf](

)

(

)

l

i

N

i

TFS

l

l

i

i

TFS

l

N

N

l

i

,

0

,

,

min

max

¹

Î

Î

 is generally in the order of magnitude of several units, or tens. So the graphs G and GL comprise a number of stair-steps in the order of magnitude of
[image: image159.wmf](

)

(

)

(

)

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

×

¹

Î

Î

l

i

N

i

TFS

l

l

i

i

TFS

l

N

N

i

TFS

l

i

,

0

,

,

min

max

#

 that can be substantially less than eplus. So instead of storing all the points with
[image: image160.wmf]{

}

plus

ini

e

e

,...,

1

Î

, one can store only those point that are at edges of stair steps.

The same reasoning can be applied to the algorithm of table 1. One can determine for each stair step of graph G those values of of eini for which the number of DTX bits can vary for at least one TF. The criteria can then be computed only for these points.

Algorithm 2

Finally, one can use the simpler sub-optimal algorithm of table 2 hereinafter. We have not yet completely evaluated the impact of the simplification, but on the few example we have considered we could not find any degradation in terms of greater number of DTX bits inserted.

The simplification is illustrated on figure 7 below.

[image: image161.wmf]e

ini

e

minus

e

plus

1

1

e

plus

s

 = -1

e

ini

e

minus

e

plus

1

1

e

plus

s

 = 1

figure 7
Instead of considering the complete set El (resp. E) edged by a graph, we consider only a rectangular region that is a subset of El (resp. E). This retangular region is greyed on figure 7.

The simplification is that to store the region instead of storing all the graph, you need just to store one corner of the rectangle, that is to say only one point.

On table 2, the consider subset of El est defined the point (new_eini, new_eminus), whereas the subset of E is defined by the point (eini, eminus). So, lines 6 and 7 are analogous to the determination of El, lines 9 and 10 analogous to the assignment of El to E, and lines 13 to 18 analogous to the intersecting de E et El.

The final value of (eini, eminus), once all intersecting have been done is the found solution.

Table 22

 definir tb_eini_eminus_def
2

01:
first_time :=true;

02:
for all l in
[image: image162.wmf](

)

i

TFS

 such that
[image: image163.wmf]0

TTI

,

¹

l

i

N

 do

03:
A :=
[image: image164.wmf]plus

l

i

e

N

s

×

D

×

TTI

,

 ;

04:
Q := A div
[image: image165.wmf]il

N

05:
R := A mod
[image: image166.wmf]il

N

6

606:

 definir ln_eim_set_eminus
new_eminus := Q+1

7

707:

 definir ln_eim_set_eini
new_eini := Ni,l-R

8

808:

 definir ln_eim_extr_begin
if first_time then

09:
eminus := new_eminus

10:
eini := new_eini

11:
first_time := false;

12:
else

13:
if
[image: image167.wmf]minus

minus

e

s

e

new

s

×

<

×

_

 then

14:
eminus := eminus

15:
end if

16:
if
[image: image168.wmf]ini

ini

e

s

e

new

s

×

>

×

_

 then

17:
eini := new_eini

18:
end if

19:
end if

20:
end for

This confidential document is the property of MITSUBISHI ELECTRIC FRANCE and may not be copied or circulated without permission.
Erreur! Il n'y a pas de texte répondant à ce style dans ce document.
Erreur! Il n'y a pas de texte répondant à ce style dans ce document.

Page 7/19

This confidential document is the property of MITSUBISHI ELECTRIC FRANCE and may not be copied or circulated without permission.

_1004258364.unknown

_1004273408.unknown

_1004278121.unknown

_1004794188.unknown

_1004795812.unknown

_1004796203.unknown

_1004796326.unknown

_1004796662.unknown

_1004796688.unknown

_1004796645.unknown

_1004796216.unknown

_1004796166.unknown

_1004796189.unknown

_1004795836.unknown

_1004796159.unknown

_1004794655.unknown

_1004794766.unknown

_1004795163.unknown

_1004794742.unknown

_1004794424.unknown

_1004794630.unknown

_1004794382.unknown

_1004439140.unknown

_1004447406.unknown

_1004793887.unknown

_1004794180.unknown

_1004447448.unknown

_1004447467.unknown

_1004447390.unknown

_1004445619.unknown

_1004447307.unknown

_1004444031.doc
14

eini

eminus

eplus

eplus

1

1

s = -1

s = 1

eplus

1

1

eplus

eminus

eini

_1004445315.doc
15

eini

eminus

eplus

eplus

1

1

s = -1

s = 1

eplus

1

1

eplus

eminus

eini

_1004439148.unknown

_1004430398.unknown

_1004431112.unknown

_1004437905.unknown

_1004437955.unknown

_1004437854.unknown

_1004430970.unknown

_1004429765.unknown

_1004430130.unknown

_1004278215.unknown

_1004274562.unknown

_1004275763.unknown

_1004277116.unknown

_1004277417.unknown

_1004277099.unknown

_1004275680.unknown

_1004275711.unknown

_1004274821.unknown

_1004274206.unknown

_1004274457.unknown

_1004274485.unknown

_1004274431.unknown

_1004274069.unknown

_1004274094.unknown

_1004273429.unknown

_1004268374.unknown

_1004269430.unknown

_1004270318.unknown

_1004271461.unknown

_1004272691.unknown

_1004270326.unknown

_1004269727.unknown

_1004270079.unknown

_1004269476.doc

_1004269133.unknown

_1004269299.unknown

_1004269418.unknown

_1004269429.unknown

_1004269310.unknown

_1004269270.unknown

_1004268712.unknown

_1004268852.unknown

_1004268675.unknown

_1004266686.unknown

_1004267794.unknown

_1004268364.unknown

_1004268352.unknown

_1004266759.unknown

_1004267762.unknown

_1004267777.unknown

_1004266809.unknown

_1004266705.unknown

_1004258434.unknown

_1004258810.unknown

_1004258823.unknown

_1004266543.doc
[image: image1.bmp]6

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s9

s7

s5

s3

s1

s8

s6

s4

s2

s0

s9

s7

s5

s3

s1

s8

s6

s4

s2

s0

s9

s8

s6

s4

s2

s0

+

s9

s7

s5

s3

s1

s9

s8

s7

s6

s5

s4

s3

s2

s1

s0

TrCH extraction

multiplexing of TrCH and 2nd DTX insertion

Radio frame segmentation

De -radio frame segmentation

De-1st interleaving

1st interleaving

+

s7

+

s9

s7

s5

s3

s1

s8

s6

s4

s2

s0

s5

s3

s1

s8

s6

s4

s2

s0

_1004258452.unknown

_1004258403.unknown

_1004258384.unknown

_1004179038.unknown

_1004258148.unknown

_1004258216.unknown

_1004258326.unknown

_1004258355.unknown

_1004258303.unknown

_1004258196.unknown

_1004258208.unknown

_1004258155.unknown

_1004257981.unknown

_1004258040.unknown

_1004258053.unknown

_1004258031.unknown

_1004253306.unknown

_1004253928.unknown

_1004256796.unknown

_1004257970.unknown

_1004256463.doc
[image: image1.wmf]H

p

p

k

n

k

n

+

=

-

-

:

[image: image2.wmf](

)

1

1

0

,

,

,

concat

-

=

i

F

B

B

B

B

K

:

[image: image3.wmf]l

i

R

l

H

i

,

max

Î

[image: image4.wmf][

]

[

]

[

]

1

,

,

1

,

1

H-

p

MF

p

MF

p

MF

B

k

n

k

n

k

n

k

n

k

n

k

n

k

F

i

+

+

=

-

-

-

-

-

-

-

-

K

:

(

(

for k := 0 to Fi-1 do

� INCORPORER Equation.3 ���

end for

H := Hi,l , where l has been detected

i := 1

channel decoding & BTFD on block B

� INCORPORER Equation.3 ���

de-rate-match block B

de-1st IL block B

H :=�

� INCORPORER Equation.3 ����

�

for k := 0 to Fi-1 do

� INCORPORER Equation.3 ���

end for

yes

no

determine set Ri of TF possible for TrCH i

(n+1) mod Fi = 0

pn := 0

receive frame MFn

i := i +1

i (I

yes

no

(

n := n + 1

n :=0

_1003147120.unknown

_1003149602.unknown

_1004256466.unknown

_1003148517.unknown

_1003144687.unknown

_1004254027.unknown

_1004253479.unknown

_1004253913.unknown

_1004253340.unknown

_1004253449.unknown

_1004247186.doc
[image: image1.bmp]

� RENV fig \h ��TF3=1

� RENV fig \h ��TF3=1

TF2=0

� RENV fig \h ��TF3=3

TF2=0

TF1=� RENV fig \h ��0

TF1=� RENV fig \h ��0

TF1=� RENV fig \h ��0

� RENV fig \h ��TF3=0

TF2=1

TF1=� RENV fig \h ��0

� RENV fig \h ��TF3=2

� RENV fig \h ��TF3=2

TF2=1

TF1=� RENV fig \h ��0

� RENV fig \h ��TF3=2

TF2=1

TF1=� RENV fig \h ��0

TF2=1

TF2=0

TF1=1

TF2=1

TF2=0

� RENV fig \h ��TF3=0

� RENV fig \h ��TF3=1

TF2=0

TF2=1

� RENV fig \h ��TF3=1

TF1=� RENV fig \h ��0

TF1=� RENV fig \h ��0

� RENV fig \h ��TF3=3

� RENV fig \h ��TF3=0

TF2=0

TF1=� RENV fig \h ��0

� RENV fig \h ��TF3=1

TF2=0

TF2=0

TF1=1

TF2=1

TF1=� RENV fig \h ��0

� RENV fig \h ��TF3=1

TF1=� RENV fig \h ��0

TF2=0

� RENV fig \h ��TF3=2

� RENV fig \h ��TF3=0

� RENV fig \h ��TF3=2

TF1=1

� RENV fig \h ��TF3=1

TF1=1

TF1=1

TF2=0

� RENV fig \h ��TF3=1

TF1=1

� RENV fig \h ��TF3=0

TF1=1

TF2=0

TF1=� RENV fig \h ��0

-� RENV fig \h ��36-

TF2=0

� RENV fig \h ��TF3=1

� RENV fig \h ��TFC=0

� RENV fig \h �� TFC=3

� RENV fig \h �� TFC=4

� RENV fig \h �� TFC=5

� RENV fig \h �� TFC=6

� RENV fig \h �� TFC=7

� RENV fig \h �� TFC=8

� RENV fig \h �� TFC=9

� RENV fig \h �� TFC=10

� RENV fig \h �� TFC=11

� RENV fig \h �� TFC=12

TFC=� RENV fig \h ��1

� RENV fig \h �� TFC=2

� RENV fig \h ��2

� RENV fig \h ��9

� RENV fig \h ��7

� RENV fig \h ��8

� RENV fig \h ��5

� RENV fig \h ��6

� RENV fig \h ��3

� RENV fig \h ��4

� RENV fig \h ��1

_1004252849.unknown

_1004252878.unknown

_1004247740.doc
[image: image1.bmp]12

� RENV fig \h ��16� TFC=2

TFC=1

� RENV fig \h ��16� TFC=12

� RENV fig \h ��16� TFC=11

� RENV fig \h ��16� TFC=10

� RENV fig \h ��16� TFC=9

� RENV fig \h ��16� TFC=8

� RENV fig \h ��16� TFC=7

� RENV fig \h ��16� TFC=6

� RENV fig \h ��16� TFC=5

� RENV fig \h ��16� TFC=4

� RENV fig \h ��16� TFC=3

� RENV fig \h ��16�TF3=2

� RENV fig \h ��16�TF3=0

� RENV fig \h ��16�TF3=1

TFC=0

TF2=1

� RENV fig \h ��16�TF3=3

� RENV fig \h ��16�TF3=2

TF2=0

TF2=1

TF1=1

TF2=1

TF1=1

� RENV fig \h ��16�TF3=1

TF1=1

TF2=1

� RENV fig \h ��16�TF3=0

TF1=� RENV fig \h ��16�0

TF1=1

TF2=0

� RENV fig \h ��16�TF3=2

TF1=1

TF2=0

� RENV fig \h ��16�TF3=1

TF1=1

TF2=0

� RENV fig \h ��16�TF3=0

TF1=1

� RENV fig \h ��16�TF3=2

TF2=0

TF1=� RENV fig \h ��16�0

� RENV fig \h ��16�TF3=1

TF2=0

TF1=� RENV fig \h ��16�0

TF2=0

� RENV fig \h ��16�TF3=0

TF1=� RENV fig \h ��16�0

TF2=1

 TFC 0 bit order

TFC 0 bit order

TF2=1

� RENV fig \h ��16�TF3=2

TF1=1

TF2=1

TF1=� RENV fig \h ��16�0

� RENV fig \h ��16�TF3=2

� RENV fig \h ��16�TF3=0

TF2=1

TF1=� RENV fig \h ��16�0

� RENV fig \h ��16�TF3=3

TF2=0

TF1=� RENV fig \h ��16�0

� RENV fig \h ��16�TF3=1

TF2=1

TF1=� RENV fig \h ��16�0

� RENV fig \h ��16�TF3=1

TF1=1

TF2=1

� RENV fig \h ��16�TF3=0

TF1=1

TF2=0

� RENV fig \h ��16�TF3=2

TF1=1

TF2=0

� RENV fig \h ��16�TF3=1

TF1=1

TF2=0

� RENV fig \h ��16�TF3=0

TF1=1

� RENV fig \h ��16�TF3=3

TF2=0

TF1=� RENV fig \h ��16�0

� RENV fig \h ��16�TF3=1

TF2=0

TF1=� RENV fig \h ��16�0

TF2=0

� RENV fig \h ��16�TF3=0

TF1=� RENV fig \h ��16�0

TF2=1

TF1=� RENV fig \h ��16�0

� RENV fig \h ��16�TF3=2

� RENV fig \h ��16�TF3=0

TF2=1

TF1=� RENV fig \h ��16�0

-� RENV fig \h ��16�33-

TF2=0

TF1=� RENV fig \h ��16�0

� RENV fig \h ��16�TF3=1

TF2=1

TF1=� RENV fig \h ��16�0

_1004188313.unknown

_1004246751.doc
17

block concatenation

block concatenation

TrCH 1

TrCH IL+2

TrCH IL+1

TrCH 2

TrCH IL

TrCH I

bit reversal

block concatenation

DTX

L

U

_1004179315.unknown

_1004177716.unknown

_1004178692.unknown

_1004178758.unknown

_1004178920.unknown

_1004178727.unknown

_1004177801.unknown

_1004178668.unknown

_1004177740.unknown

_1003660750.unknown

_1004174501.unknown

_1004174813.unknown

_1004177691.unknown

_1004174690.unknown

_1004174437.unknown

_1004174471.unknown

_1003662764.unknown

_1004174390.unknown

_1003662543.unknown

_1003651416.unknown

_1003657599.unknown

_1003657752.unknown

_1003657336.unknown

_1002725843.unknown

_1003061233.unknown

_1003061596.unknown

_1003061577.unknown

_1002726110.unknown

_1002725700.unknown

