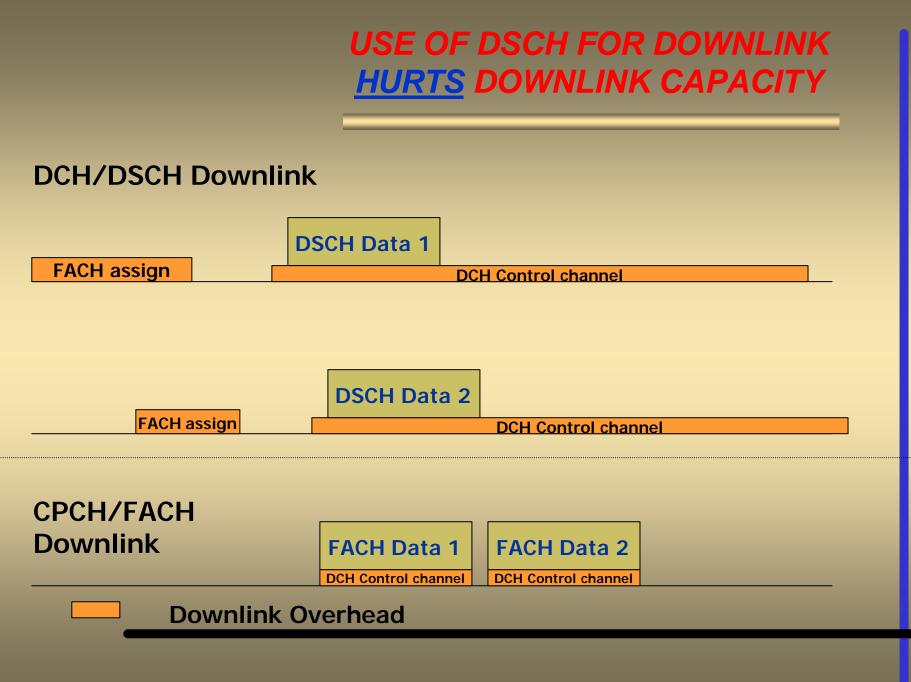
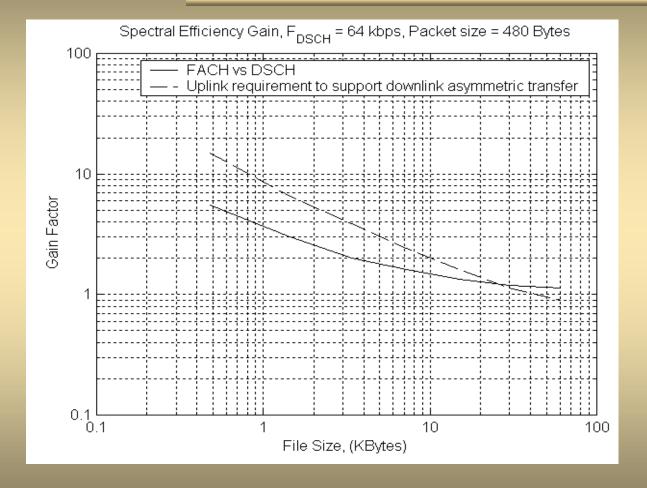
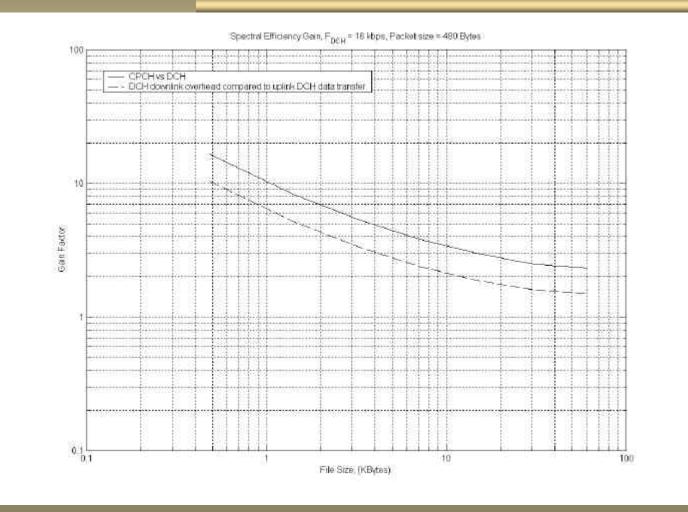

Technology and innovation


Packet Data Capacity, UE power consumption, optimization proposals R1-00-1236

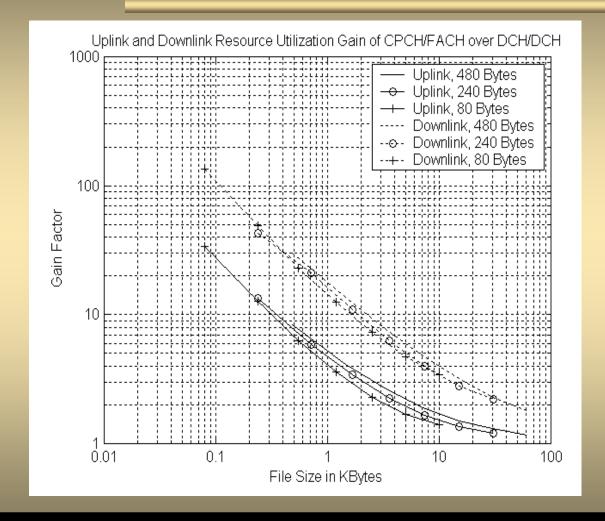
October 11, 2000 Golden Bridge Technology, USA

DCH/DCH: Circuit Mode of Operation




						F	Ά	CH	/ C	PC	C /	4 v	er	้รเ	IS I	D:	SC	:H	
COM	MON C	HANN	el so	DLUT	ION:														
FACH	1	2 3	4	5 Cont	1 2 trol Ch		4	5	1	2		••	•						
DED	DEDICATED CHANNELS SOLUTION :																		
DSCH	1	2 3	4	5	1 2	3	4	5	1	2		• •	٠						
DCH1	1				Contr	ol Cha	nnel												
DCH2		2				ontro		nnel											
DCH3		3				Co	ontrol	Char	nel										
DCH4			4				Сс	ntrol	Chan	nel									
DCH5				5				Со	ntrol	<u>Chan</u>	nel								

Capacity gain of CPCH/FACH over DCH/DCH+ DSCH or unidirectional downlink transfer


Spectrum efficiency gain of CPCH/FACH over

DCH/ DCH for unidirectional uplink transfer

Throughput Improvement Ratio

CPCH/FACH vs DCH/DCH+DSCH and DCH/DCH

CPCH/FACH versus DCH/DCH+DSCH and DCH/DCH: Capacity Gain in both directions

Applications	Uplink Usage	Uplink Packet size per user (Bytes)	Downlink Usage	Downlink Packet size per user (Bytes)	n, m	File sizes (kbytes)
E-mail	80%	240	40%	240	2,3	7.2
Web-browsing	10%	80	50%	480	4,15	7.2(up) 1.35(down)
FIP	10%	480	10%	480	7,127	61

 Table 4: Traffic model.

Capacity CPCH/FACH vs DCH/DCH+DSCH

Uplink Direction:

CPCH capacity = 26 xDCH

Downlink Direction:

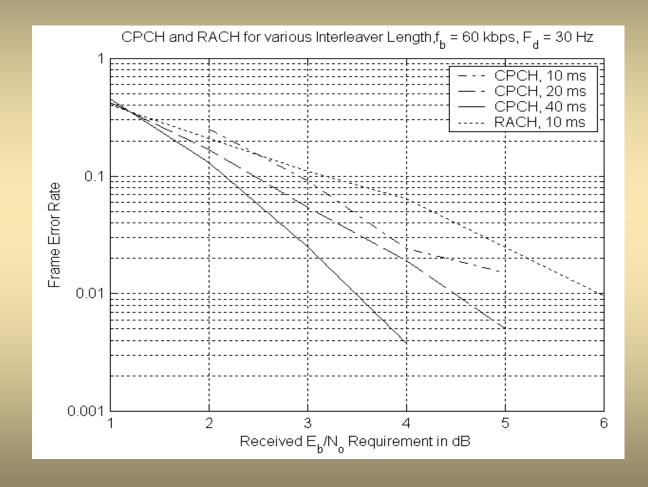
FACH capacity = 3.5 x DSCH+DCH

Resource Utilization Gain: CPCH/FACH vs DCH/DCH+DSCH

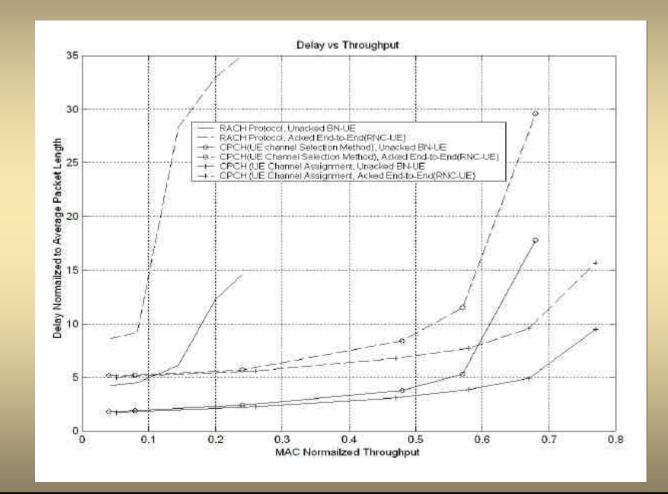
UL Gain CPCH vs. DCH:Gain range of 1.2-34DL Gain FACH versus DSCH+DCH:Gain range of 2-134

Typical example

Overall CPCH/FACH gain over DCH/DCH+DSCH


X 16

Recommendations 1-2


1. Fast de-allocation of DSCH

2. Improvement of the OLPC-FACH

RACH/FACH versus CPCH/FACH Capacity Comparison

Throughput delay performance of CPCH and RACH

Recommendation 3

3. Introduction of CR on RACH to improve throughput, reduce collisions and reduce UE power consumption

Table 1: ASIC Power Consumption

Mode of Operation	Power Consumption
Full Duplex	80 mA
Idle (Rx+Buffer)	40 mA
Sleep Mode	1.25 mA

Table 2: RF segment Power Consumption

Mode of Operation	Power Consumption
Full Duplex	56 mA (Rx) + 80 mA (minimum TX)+ 240 mA (TX PA)
Idle	56 mA (Rx)
Sleep Mode	2.5 mA

Table 3: LCD Display PowerConsumption

Terminal Type	Power Consumption
Cell Phone	150 ? A
Smart Phone	600 ? A-1.2 mA
PDA/Passive	1 mA-2 mA
PDA/Active	13.3 mA

Terminal Power Consumption Ratio: Packet Mode vs. Circuit Mode

A: Activity factor	I average-circuit- DCH I _{LCD} = 2 mA	I average-packet-CPCH I $_{LCD} = 2 \text{ mA}$	Gain Ratio	I _{average-circuit-DCH} I _{LCD} = 13.3 mA	I average-packett-CPCH I $_{LCD}$ = 13.3 mA	Gain Ratio
1%	10.27 mA	6.27 mA	1.7	21.27 mA	17.26 mA	1.23
5%	28.3 mA	8.31 mA	3.4	39.4 mA	19.3 mA	2
10%	50.9 mA	10.9 mA	4.7	62 mA	22.25 mA	2.8
20%	99.2 mA	16 mA	6.2	107.2 mA	26.8 mA	4
25%	119 mA	18.55 mA	6.4	130 mA	29.55 mA	4.4

Conclusions on Power Consumption

- 1. Gain Ratio of 2-6.4 (1-25% activity factor)
- 2. Gain Ratio of 4-6 (A=20% and 2-13 mA LCD display)

Recommendation 4-5

4. Use of DCH/DCH in uplink bursty packet data transfer leads to excessive interference and UE power consumption. Since fast de-allocation is not practical, avoid using DCH/DCH for this purpose.

5. Use of dedicated control in uplink and downlink for downlink packet transfer in circuit mode is extremely costly from capacity and UE power consumption perspective. This recommendation is related to the future E-DSCH design and the uplink/downlink signaling associated with that channel.

Summary of recommendations

- 1. Fast de-allocation of DSCH
- 2. Improvement of OLPC on FACH
- 3. Introduce CR on RACH
- 4. Avoid DCH/DCH for transfer of uplink bursty packet data
- 5. Avoid circuit mode (continuous dedicated uplink and downlink) in the future HSPD design.