Title:	LS to WG2, WG3, and WG4: Progress Report of the WI 'Low Chip Rate TDD, physical layer' and request for support			
Source:	TSG-RAN WG1			
То:	TSG-RAN WG2, TSG-RAN WG3, TSG-RAN WG4			
Contact person:	Email: Yanggl@tdscdma.com (Guiliang YANG)			
	Email: Licg@tdscdma.com (Chenguang LI)			

TSG RAN WG1 as the leading working group has begun the work for the release 2000 work items 'Low Chip Rate TDD, physical layer' and 'Low chip rate TDD', according to RP-000191 and RP-000311. This LS intends to inform the other groups about the current situation in TSG RAN WG1 which may have impacts to the specifications in other RAN WGs.

TSG RAN WG1 inends to refer to the low chip rate TDD in WG1 specifications as 1.28Mcps TDD and also were separation to the existing UTRA TDD is needed, that will be denoted as 3.84Mcps TDD. The intention is that for release 2000 the term UTRA TDD would cover both TDD chip rates

In order to summarize the overall concept of the physical layer of the Low Chip Rate TDD, TSG RAN WG1 has set up the technical report TR25.928, which was noted in RAN#8 meeting as version 1.0.0. This technical report describes the 1.28 Mcps functionality as it is currently considered in WG1 and it highlights the commonalties and differences between the two TDD options. There is updated version of the TR25.928 to be made available in Tdoc R1-00-0960, which contains additional information regarding GSM measurement. TSG RAN WG1 will proceed now for the drafting of the CRs for the WG1 specifications. TSG RAN WG1 intends to maintain "working CRs" and will inform the other WGs when such a CRs are available (first version of those).

Based on this technical report, TSG RAN WG1 has collected the items, where support is possibly needed by TSG RAN WG2, WG3, and WG4, respectively. These items are given in the attached table.

TSG RAN WG1 encourages other WGs to take the necessary action for timely completion of the feature.

Support of :	Difference to high chiprate TDD option	Further details	Please refer to the following section
			in TR25.928 version 1.0.0
Support of different radio	1. Different frame structure to high chiprate	• Segmentation of the radio frame into 2	7.2.1 Frame structure
frame structure	TDD option	subframes	8.1.7 Sub-frame segmentation
	2. Different basic midamble sequences,	• Each subframe consists of 7 traffic slots	7.2.2.3Training sequences for
	maximum channel impulse response is	(864 chips length) and two special	spread bursts
	scalable (W=8, 9, 12, 16, 21, 32, 64),	timeslots for synchronisation and initial	7.2.2.2 Burst Types
	depending on number of users and	access which are separated by an extra	7.2.2.3Timeslot formats
	environment, including the association	guard period	7.2.4 Beacon function of
	between midambles and channelisation		physical channels
	codes		9.1.2.2 8PSK modulation
	3. Use of only one burst type for physical		8.2.1 Coding of transport format
	channels except special bursts in		combination indicator (TFCI)
	DwPTS/UpPTS		8.2.2 Coding of SS
	4. Support of different timeslot formats due		8.2.3 Coding of Transmit Power
	to different number of bits and L1 control		Control (TPC)
	signals and midamble length		
	5. Support of use of 8PSK for special	5. Including TFCI, SS, and TPC coding	
	timeslots/all timeslots per cell	(8PSK)	
	6. Beacon function is provided by DwPTS and		
	P-CCPCH		
Modified Power Control	1. Closed Loop PC in uplink and downlink	1. TPC bits also in downlink	10.1 Transmitter Power Control
	2. Open loop PC on the SYNCI Code while		
	2 D CCDCU and DwDTS now on he used	2 transmit normal level appointed on DCII	
	5. P-CCPCH and DwP15 power can be used	4 none one symbol 16/SE TPC symbols	
	as a deacon	4. Holle, olle syllidol, 10/SF TFC syllidols	
	4. number of TPC symbols can take 5 values	symbols is always the same like number	
		of SS symbols	
Modified RACH	1 Random Access carried out in 2 stars	1 Send SVNC1 Receive FPACH	10.6 Pandom Access Procedure
procedure	1. Random Access carried out in 2 steps	2 Send power controlled timing advanced	7.2.3.3 The physical random
procedure		PRACH in traffic timeslot (code	access channel (PRACH)
		associated to received FPACH There is	7 2 3 3 2 PRACH Burst Types
		another association between the PRACH	7 2 3 3 3 PRACH Training
		and the FACH These associations are	sequences
		broadcast by the BCH.)	

		•	Due to the two-step approach a collision most likely happens on the UpPTS. The RACH RUs are virtually collision free. There are no dedicated RACH time slots, the RACH resources share the time slot with dedicated resources, a two step procedure ensures that the actual RACH.	
Cell search operation	1. One synchronisation channel only (DwPTS) and different frame duration	•	 Step 1: Search for DwPTS Step 2: Scrambling- and basic midamble code identification Step 3: searches for the head of multiframe indicated Step 4: Read the BCH 	 9.3 Synchronisation codes 10.3 Synchronisation and Cell Search Procedures 10.3.1Cell Search
Uplink synchronisation	 Special Layer1-SS symbols Number of used SS symbols can take 3 values SS-symbols are transmitted once per subframe 	1. 2. 3.	SS symbols command an incremental change of timing none, one symbol, 16/SF SS symbols per radio frame, number of SS symbols is always the same like number of TPC symbols Frequency and step size are configured by UTRAN ("k" and "M" parameters)	 10.2.1 With UL Synchronization 10.2.1.1 The establishment of uplink synchronization 10.2.1.1.1 Preparation of uplink synchronization (downlink synchronization) 10.2.1.1.2 Establishment uplink synchronization
Beamforming	Beamforming applies to the dedicated channels and may also be used for some common channels like FPACH		[[] [[] []	7.2.2.4 Beamforming and Transmit Diversity
Physical channels	P-CCPCH and S-CCPCH require two channelisation codes; FPACH is a new physical channel which always uses one channelisation code at SF 16.			7.2.3.1 Primary common control physical channel (P-CCPCH)13 Examples of service mapping B.1 BCH
Mapping of transport channels to physical channels	 PCH; PICH and FACH can be time multiplexed with the BCH on the P- CCPCH. PCH, PICH and FACH can be time multiplexed on the S-CCPCH. Therefore these transport channels are using two channelisation codes of SF 16. 	Th tha the	he PICH carries a different number of PIs an in the high chip rate option, because of e different burst structure.	 7.3 Mapping of transport channels to physical channels 7.3.2 Common Transport Channels 7.2.3.7 The Page Indicator Channel (PICH)

Measurements	Ranges and accuracy have to be adapted for	11 Physical layer measurements
	the low chip rate option.	
Service mapping	Due to the different payload size and	13 Examples of service mapping
	subframe segmentation the service mapping	
	for the low chip rate differs from that of the	
	high chip rate option.	

* The references give the respective chapters in the technical report on the physical layer of the low chiprate option (RP-000280).