TSG-RAN Working Group1 meeting#14

TSGR1#14(00)910

Oulu, Finland , 4th-7th July 2000 Agenda Item: HSDPA

Source: Motorola

1

TITLE:	
	Link Evaluation Methods for High Speed Downlink Packet Access (HSDPA)
DATE:	
	July 3rd, 2000
SOURCE:	
	Motorola
ABSTRACT:	
	provides background information regarding the link evaluation of proposals for systems to eed packet downlink packet access for 3GPP.

1 **1 Introduction**

2 1.1 Study Objective and Scope

The objective of this document is to propose a set of definitions, assumptions, and a general framework for
 performing link simulations for High Speed Downlink Packet Access (HSDPA).

5

6 **1.2 Simulation Description Overview**

A symbol level downlink simulator may be used to simulate the performance of higher order modulation schemes, Space-Time Transmit Diversity (STTD) and Hybrid ARQ. The general forward link simulation model is shown in Figure 1. The terminology used throughout the document is as follows: *I*_{or} is the total

10 transmitted power density by a BTS, \hat{I}_{or} is the post-channel transmitted power density, $I_{oc} + N_o$ is the

11 other cell interference plus noise power density and I_o is the total received power density at the MS

12 antenna. Note, that the ratio $\hat{I}_{or}/(I_{oc}+N_o)$ is fixed in this simulation model. Since the base station has a

13 fixed amount of power (set by the BTS power amplifier size), it is the average transmitted (often called

14 allocated) power by the BTS to the MS that determines the user capacity of the forward link. This fraction

of allocated power is called average traffic channel E_c/I_{or} and is inversely proportional to the forward link capacity.

The *M*-ary QAM demodulator generates soft decisions as inputs to the Turbo decoder. As a baseline method, the soft inputs to the decoder may be generated by an approximation to the log-likelihood ratio function. First define,

20

$$\Lambda^{(i)}(z) = K_f \left[M_{j \in S_i} \{ d_j^2 \} - M_{j \in \overline{S_j}} \{ d_j^2 \} \right], \ i = 0, 1, 2, \cdots, \log_2 M - 1$$
(1)

21

22 where *M* is the modulation alphabet size, i.e. 8, 16, 32 or 64 and

23

$$z = A_d A_p \mathbf{a} \, \hat{\mathbf{a}} \, e^{-j(\mathbf{q} + \hat{q})} x + n \,, \tag{2}$$

24 x is the transmitted QAM symbol,
$$A_d$$
 is the traffic channel gain, A_p is the pilot channel gain, $\mathbf{a} e^{j\mathbf{q}}$ is the

25 complex fading channel gain, and $A_n \hat{a} e^{j\hat{q}}$ is the fading channel estimate obtained from the pilot channel,

$$S_i = \{ \forall j : i^{th} \text{ component of } y_j \text{ is "0"} \},$$
(3)

26

$$\overline{S_i} = \left\{ \forall j : i^{th} \text{ component of } y_j \text{ is "1"} \right\}$$
(4)

and K_f is a scale factor proportional to the received signal-to-noise ratio. The parameter d_j is the Euclidean distance of the received symbol z from the points on the QAM constellation in S or its complement. The

29 Pilot/Data gain is assumed known at the receiver. In this case the distance metric is computed as follows

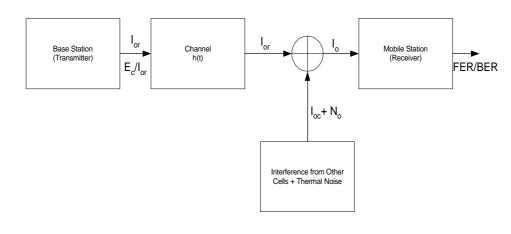
$$d_j^2 = \left| A_p z - Q_j \mathbf{b} \mathbf{g}^2 \right|^2 \quad Q_j \in S_i \text{ or } \overline{S}_i$$
⁽⁵⁾

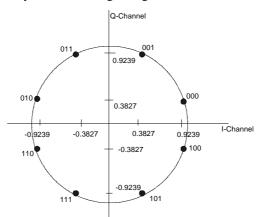
1

2 where $\boldsymbol{b} = A_d$ and $\boldsymbol{g} = A_p \hat{\boldsymbol{a}}$ is an estimate formed from the pilot channel after processing through the

3 channel estimation filter.

4




Figure 1. Simulation Block Diagram.

6 7

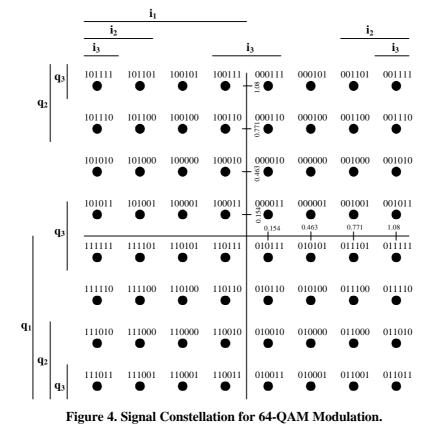
5

8 2 Standard Constellations for M-ary Modulation


9 In case of 8-PSK modulation, every three binary symbols from the channel interleaver output shall be 10 mapped to a 8-PSK modulation symbol according to Figure 2.

11 12

Figure 2. Signal Constellation for 8-PSK Modulation.


In case of 16-QAM modulation, every four binary symbols of the block interleaver output shall be mapped
 to a 16-QAM modulation symbol according to Figure 3.

1 2

Figure 3. Signal Constellation for 16-QAM Modulation.

- 3 In case of 64-QAM modulation, every six binary symbols of the block interleaver output shall be mapped
- 4 to a 64-QAM modulation symbol according to Figure 4.

- 5
- 6
- 7

8 **3** Performance Metrics and Simulation Parameters:

- 9 The following link performance criteria are used:
- 10 1. FER vs. E_b/N_t
- 11 2. FER vs. E_c/I_{or}

07/05/00

- 1 3. FER vs. I_{or}/I_{oc} (for a fixed E_c/I_{or})
- 2 4. Throughput vs. E_c/I_{oc}

3 where throughput measured in term of bits per second : $T = R\left(\frac{1 - FER_r}{\overline{N}}\right)$ in bits per second

4 where T is the throughput, R is the transmitted information bit rate and FER_r is the residual Frame Error

5 Rate beyond the maximum number of transmissions and \overline{N} is the average number of transmission 6 attempts.

7 4 Simulation Parameters:

8 Table 1 shows an example of the data rates to be simulated for a frame duration of 3.33 msec. Table 2
9 provides a list of rest of link simulation parameters.

```
10
```

Table 1. Information bit rate for frame duration of 3.33 msec

Chip Rate = 3.84 Mcps			SF = 32			Frame Size = 3.33 ms		
	20 codes		1 code					
MCS	MCS Info Rate Packet Size		Info Rate	Packet Size		Code rate	Modulation	
	(Mbps)	(bits)	(octets)	(Mbps)	(bits)	(octets)		
8	10.8000	36000	4500	0.54	1800	225	3/4	64
7	7.2000	24000	3000	0.36	1200	150	1/2	64
6	7.2000	24000	3000	0.36	1200	150	3/4	16
5	4.8000	16000	2000	0.24	800	100	1/2	16
2	3.6000	12000	1500	0.18	600	75	3/4	4
1	2.4000	8000	1000	0.12	400	50	1/2	4

11 12

Table 2. Simulation Parameters

Parameter	Value		
Carrier Frequency	2GHz		
Vehicle Speed	AWGN/3 kmph/30 kmph/120 kmph		
Overhead Power Allocation (CPICH+P-CCPCH+S- CCPCH+SCH+PICH)	20% (-7dB)		
Max Traffic Channel Power Allocation	-1dB		
Ior/Ioc	Variable		
Channel Estimation	Ideal/Non-Ideal		
Fader	Jakes		

No of iterations for Turbo Codes	8			
Metric for Turbo Code	Max ¹			
Turbo Code Rates	¹ /4, ¹ /2, 1/3, ³ /4 etc.			
Input to Turbo Decoder	Soft			
Turbo/Channel Interleaver	As per 3GPP (modified to handle higher data rates)			
Hybrid ARQ	Chase Combining/Other Schemes			
ACK Feedback Error	0 and 1%			
Max number of frame transmissions for H-ARQ	10			
Multipath	Up to 3 paths			
Information Bit Rates Simulated (Kbps)	As defined			
Number of Multicodes Simulated	As defined			
STTD	On/Off			

¹ Optimum performance can be achieved with max* metric. However, this metric is sensitive to SNR scaling.