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[bookmark: OLE_LINK13][bookmark: OLE_LINK14]In RAN1#114bis, some agreements and conclusions have been made as in appendix D [1]. 
From RAN#101, some remaining open issues have been concluded [2].
	· Complete General Framework (agenda 9.2.1):
· Further discussion and conclusion on functionality-based LCM and model-ID-based LCM, including model identification procedures
· Further discussion and conclusion on model delivery/transfer analysis
· Finalize CSI work (agenda 9.2.2.2):
· Two-sided model training type pro/cons analysis
· Data collection and performance monitoring for both, one-sided and two-sided models, including ground-truth related and dataset delivery related aspects 
· Inference-related framework, e.g., CSI configuration, payload related aspects, quantization
· Two-sided model pairing mechanism
· Close the loop with RAN2 and RAN4 on any pertinent item:
· Finalize RAN2 LS reply (Part 2)
· Finalize TR: 
· Get notation uniform across use cases. 
· General Framework finalization incl. applicability of some of the agreements made for specific use cases to the general framework. 
· General clean-up, e.g., stating conclusion or lack of conclusion on a number of study areas.
· Conclusions and recommendations


In this contribution, we further discuss the general aspects of AI/ML framework.

Model transfer considerations and specification impact
In this section, we will introduce model transfer considerations and specification impact.

Considerations on the feasibility of model transfer with known model structure
In this subsection, we focus on the feasibility of model transfer with known model structure. An initial lab test for model transfer with known model structure is done to find the main aspects in this procedure and obtain the actual latency.
From the lab test, it is found that the model parameters updating with known model structure can be listed in 4 steps.
· Step1: UE generates one certain format of model executable file (e.g., engine file for TensorRT), where the model parameters and model structure related part are stored separately. Each model parameter group could be updated separately with very low latency. The results of a lab test would be provided later to show the detailed latency. The input data processing operations would be stored in model structure related part, e. g., matrix multiplications and additions. 
· Step2: UE extracts the target model parameters from the received new model file (e.g., ONNX or other open formats) from NW. The extracted parameters would be stored in buffer area temporarily. Simple quantization may be used and details will be discussed in the following.
· Step3: New model parameters would replace the previous model parameters directly.
· Step4: After the replacement of target model parameters, the model is available to run.
[image: ]
Figure 2-1. The procedure of model parameters updating with known model structure.
The following is the detailed latency test of model parameter updating for different number of parameters. A full connected model with 5 full connected layers is adopted in this lab test. The number of parameters of 5 layers are 1K, 10K, 100K, 1M and 10M respectively. The new model parameters are stored in ONNX format. The latency of parameter extraction from ONNX in Step 2 and the latency of parameter replacement in Step 3 are both provided. As the number of parameters increases, the latency of Step 2 and Step 3 both increases for more than 10K parameters. For the case with less than 10K parameters, the basic latency of hardware interaction may be the majority, which would have low correlation with the number of parameters. For even 10M parameters, the total latency of Step 2 and Step 3 is just 12.472ms, which would result in the low latency of model transfer with known model structure.
Table 2-1. Initial lab test for model parameter updating with known model structure
	Number of parameters in one group
	Latency of parameter extraction from ONNX in Step 2 (ms)
	Latency of parameter replacement in Step 3 (ms)

	1K
	0.212
	0.793

	10K
	0.223
	0.704

	100K
	0.344
	2.520

	1M
	1.342
	4.893

	10M
	6.740
	5.732



The feasibility of model transfer with known model structure are discussed by companies, where the major issues lie in necessity and feasibility of on device compilation. From our observation, the main issue based on previous discussion for on device compilation is how to quantize the trained models. There are two ways to handle this: post training quantization or quantization aware training. On device quantization is one kind of posting training quantization.
The alignment of quantization before model transfer could avoid the on device quantization, e.g., the transferred model parameters have been quantized by NW, using post training quantization or quantization-aware training.
On the other hand, if the quantization is not aligned beforehand, on device quantization would be needed. There are several aspects that need to be considered for on device quantization: the performance of on device quantization and involved complexities.
Since on device quantization is a kind of post training quantization, we did an experiment to compare the performance loss of post training quantization and quantization aware training. The loss would be small. The following tables shows the impact of different quantization levels for different use cases. The INT8 quantization is directly mapping Float32/16 values to INT8/16, which would be worst performance of post training quantization. For positioning, since the model inference may be not in UE modem, there may be no strict requirement on quantization.
Table 2-2. An example of the impact of different quantization levels for CSI compression, where the INT8 quantization is directly mapping Float32/16 values to INT8/16.
	
	MLP model
	CNN model
	Transformer model

	SGCS of FP32 quantized model
	0.9421
	0.9493
	0.9581

	SGCS of FP16 quantized model
	0.9421
	0.9493
	0.9581

	SGCS of INT8 quantized model
	0.9413
	0.9486
	0.9573



Table 2-3. An example of the impact of different quantization levels for AI/ML assisted positioning.
	 
	90% positioning accuracy of AI/ML assisted positioning (m)

	FP32 quantized model
	0.970

	FP16 quantized model
	0.973



Table 2-4. An example of the impact of different quantization levels for beam spatial prediction, where the INT8 quantization is directly mapping Float32/16 values to INT8/16.
	 
	Top-1 (%)
	Top-1 (%) with 1dB margin

	FP32 quantized model
	77.4
	96.6

	FP16 quantized model
	75.5
	96.3

	INT8 quantized model
	71.3
	94.9



On device quantization is also feasible at least for some operations with low complexity. For example, regular quantization from Float32/16 to INT8/16 by directly mapping Float32/16 values to INT8/16, or with minor adjustment based on parameter distribution. More advance quantization, e.g., non-uniform quantization, finetuning after quantization, does not seem to provide additional gains at least for current use cases.
Performance monitoring/assessment could monitor the performance of quantization and may provide some data samples for quantization calibration. UE could get some data samples through the measurement or from the data delivery from NW.
Observation 1: Model parameter updating with known model structure is feasible with either post training quantization or quantization-aware training. Post training quantization can be done on UE device or by NW.

Comparison between Cases y, z1 to z5 for model delivery/transfer
In RAN1#114bis meeting, FL proposal 9-5c has been discussed, which is shown in the following.
	FL proposal 9-5c:
For model delivery/transfer to UE, from the device implementation point of view
· Model delivery/transfer to UE in a proprietary format (Case y, z1, z2) is feasible from RAN1 perspective.
· Parameter update of a known structure on a deployed model via model delivery/transfer in an open format (Case z3, z4) may be beneficial for certain use cases or deployment scenarios, e.g., when it is desired to have shorter model parameter update timescale due to no need for offline compiling with less offline engineering, but it comes with potential requirements/challenges, e.g., advanced device implementation, lack of device-specific optimization/testing compared to model delivery via proprietary format.


[bookmark: _Hlk149578335]Based on the FL proposal, we had some comments to make the description clearer.
From RAN1 perspective, it is better to provide a comprehensive view of model delivery/transfer. It is better to put the wording “from the device implementation point of view” into the first bullet. 
Current main logic of FL proposal is to compare the differences between proprietary format (Case y, z1, z2) and open format (Case z3, z4). However, inside proprietary format, there are some differences between model delivery (Case y) and model transfer (Case z1, z2). For example, in Case z2, since model training is done in NW side and model compiling is done in UE side, there would also be device-specific optimization/testing issues. For better clarification, the pros and cons of Case z1 and z2 would be discussed compared to Case y. 
Case z1 and z2 would have smaller end to end model delivery latency from model storage to UE and less requirement on user consent for delivering model in non-3GPP way. To achieve scenario/configuration specific (including site-specific configuration/channel conditions) models, there is no need to store a large number of models in device in Case z1 and z2. However, Case z1 and z2 would bring longer model update timescale and more coordination between network side and UE side/neutral site when the model training location (or offline compiling location) and model storage location are not on the same side. The pros and cons of Case z1 and z2 can be modified in the following:
· Model transfer to UE in a proprietary format (Case z1, z2) would have smaller end to end model delivery latency from model storage to UE and less requirement on user consent for delivering model in non-3GPP way or less requirement on device storage for storing models in device, but it brings longer model update timescale and more coordination between network side and UE side/neutral site when the model training location (or offline compiling location) and model storage location are not on the same side, compared to model delivery via proprietary format (Case y). Model delivery/transfer to UE in a proprietary format (Case z1, z2) is feasible from RAN1 perspective from the device implementation point of view.
The second bullet of FL proposal is about model transfer with known model structure (Case z3, z4). For advanced device implementation, our lab test in Subsection 2.1 shows that there is one certain format of model executable file (e.g., engine file for TensorRT), where the model parameters and model structure related part are stored separately. Each model parameter group could be updated separately with very low latency. We could state that there might be different flavors of implementations or extra implementations for updating the parameters of known model structure, but directly stating this is more advanced device implementation may not be RAN1 expertise.
Some companies claim it may have potential challenges on lack of device-specific optimization/testing. Note that RAN1 does not have evaluations on such aspects. There are ways that can alleviate such challenges, e.g., through performance monitoring. On the other hand, model structure itself can be device specifically optimized and tested with various parameter set. Model parameter itself may need some additional procedures, e.g., parameter quantization on device. But this can also be done by the other side by e.g., quantization aware training. In Case z3, since model training is done neutral site or UE side, device-specific optimization/testing would be feasible for UE and then it is not an issue for Case z3.
Similar to Case z1 and z2, since the model is transferred with 3GPP signalling, there is less requirement on user consent for delivering model in non-3GPP way. To achieve scenario/configuration specific (including site-specific configuration/channel conditions) models, there is no need to store a large number of models in device in Case z3 and z4.
In sum, the pros and cons of Case z3 and z4 can be modified in the following:
· Parameter update of a known structure on a deployed model via model delivery/transfer in an open format while the model is trained/optimized at UE side (Case z3) may be beneficial for certain use cases or deployment scenarios, e.g., when it is desired to store models in open format in network side and when it is desired to have less requirement on user consent for delivering model in non-3GPP way or less requirement on device storage for storing models in device. Parameter update of a known structure on a deployed model via model delivery/transfer in an open format when the model is trained/optimized at UE side (Case z3) is feasible from RAN1 perspective from the device implementation point of view.
· Parameter update of a known structure on a deployed model via model delivery/transfer in an open format when the model is trained at network side (Case z4) may be beneficial for certain use cases or deployment scenarios, e.g., when it is desired to have shorter model parameter update timescale due to no need for offline compiling, when it is desired to have less offline engineering, and when it is desired to have less requirement on user consent for delivering model in non-3GPP way or less requirement on device storage for storing models in device. Parameter update of a known structure on a deployed model via model delivery/transfer in an open format when the model is trained at network side (Case z4) is feasible from RAN1 perspective from the device implementation point of view. 
Based on the above discussions, we have the following proposal.
Proposal 1: Benefits, challenges and potential specification impact of FL proposal 9-5c can be updated as:
For model delivery/transfer to UE, 
· Model transfer to UE in a proprietary format (Case z1, z2) would have smaller end to end model delivery latency from model storage to UE and less requirement on user consent for delivering model in non-3GPP way or less requirement on device storage for storing models in device, but it brings longer model update timescale and more coordination between network side and UE side/neutral site when the model training location (or offline compiling location) and model storage location are not on the same side, compared to model delivery via proprietary format (Case y). Model delivery/transfer to UE in a proprietary format (Case z1, z2) is feasible from RAN1 perspective from the device implementation point of view.
· Parameter update of a known structure on a deployed model via model delivery/transfer in an open format while the model is trained/optimized at UE side (Case z3) may be beneficial for certain use cases or deployment scenarios, e.g., when it is desired to store models in open format in network side and when it is desired to have less requirement on user consent for delivering model in non-3GPP way or less requirement on device storage for storing models in device. Parameter update of a known structure on a deployed model via model delivery/transfer in an open format when the model is trained/optimized at UE side (Case z3) is feasible from RAN1 perspective from the device implementation point of view.
· Parameter update of a known structure on a deployed model via model delivery/transfer in an open format when the model is trained at network side (Case z4) may be beneficial for certain use cases or deployment scenarios, e.g., when it is desired to have shorter model parameter update timescale due to no need for offline compiling, when it is desired to have less offline engineering, and when it is desired to have less requirement on user consent for delivering model in non-3GPP way or less requirement on device storage for storing models in device. Parameter update of a known structure on a deployed model via model delivery/transfer in an open format when the model is trained at network side (Case z4) is feasible from RAN1 perspective from the device implementation point of view. 

Considerations on model delivery format and model structures for open format
In the following, our considerations on model delivery format and model structures for open format have been provided.
Considerations on model delivery format for open format
One important spec impact of open format is the model delivery format. There are many options for public format, some of which are listed in the following.
· AI/ML model public format coordinated by the two sides：Current AI/ML frameworks chosen by two sides. Currently, there are many AI/ML frameworks, such as TensorFlow, PyTorch and Caffe. Two sides can choose one of them to describe the AI/ML model. Interoperability token defined by SA2 is a good solution. The interoperability token implicitly maps to an interoperable model information, e.g., file format and platform. The encoding, format and value of the interoperability token is up to vendors’ implementation.
· One public format for model description, such as ONNX (Open Neural Net Exchange, ‘https://onnx.ai/’). ONNX aims to support a common intermediate representation for AI/ML model transmission for both deep learning and machine learning. It is developed as a common data format but not an AI framework or a development tool, so it can be compatible with any AI framework including TensorFlow, PyTorch and so on. With the help of ONNX, all developers can choose their own tools to develop their models and load other models in different framework.
· New format for model description defined by 3GPP. 
It may not be easy for 3GPP to align on a single public format such as ONNX. Due to the great efforts for 3GPP to define new format for model description, this may be not considered in this release. Interoperability token defined by SA2 is simple and effective, and does not have the listed problems. Then interoperability token would be a good solution for two sides to coordinate.
Proposal 2: Support to reuse the mechanism defined in SA2 (interoperability token) for aligning model description format for model transfer.

Considerations on model structures in open format
There are two options of 3GPP signaling for model transfer. One is control plane based solution, and the other is user plane based solution.  In CP-based solution, model transfer is over SRB, and is point-to-point between UE and RAN node/CN entity. In UP-based solution, model transfer is over DRB, and is point-to-point between UE and server via UPF.
Based on discussion in previous sections, model parameter update with known model structure is feasible. The next question is how to define model structures. 
From current simulation results and field test results in Appendix A and our other contributions [6], it is seen that simple model structures, such as full-connected network or CNN, are good enough for typical zone/site specific operations.
Observation 2: Performance of simple model structures, such as full-connected layers or convolutional layers, are good enough for typical per single cell or multiple cell operations.
Another concern in model transfer is the model proprietorship. There are two key aspects of AI/ML models, where one aspect is model structure and the other aspect is model parameters. If full-connected layers or convolutional layers are used, the privacy of the model structure is not so important since these models have been widely used for a lot of areas. Thus, simple model structures also have low proprietorship risk for model transfer.
Observation 3: The models currently evaluated by companies, such as those with full-connected layers or convolutional layers, are widely used for decades and have low proprietorship risk for model transfer.

Model transfer related capability
To support collaboration level z, UE should have model transfer capability. Model transfer is one of the key tools to resolve AI/ML generalization problem. Then the AI/ML model, which fits the current wireless environment, can be transferred from the network to UE, to improve the system performance. The model transfer procedure includes the following steps from UE perspective.
· Receive the new AI/ML from the network. Since the signal for transmitting the new AI/ML model is similar to the data signal, UE always has the capability of this step.
· Decode the information of the new AI/ML model. The information of the new AI/ML model has been encoded by the network, to better describe the AI/ML model with lower overhead. Some popular AI/ML frameworks can be used as the encoder and decoder, such as TensorFlow, PyTorch and Caffe. The AI/ML model information decoding can be done in UE baseband chipset or UE AP. Currently, this has been already supported by typical UE AP implementations, for several popular AI/ML frameworks. Other options can also work well. One option is reusing the public format for model description, such as ONNX, and another option is introducing a new format for model description defined by 3GPP. 
· Load the new AI/ML model in the chipset. After decoding the AI/ML model information, it is time to load the new AI/ML model and use it in the chipset. Whether the AI/ML model structure is changed or not has a considerable impact on the UE capabilities.
· The AI/ML model structure is not changed. Only model parameters need to be updated in this situation. The new model parameters are sent to the AI/ML module and then just replace the old model parameters. Recompilation is not needed here. This has been already supported by nowadays typical chipset implementations. The premise is that UE and network have aligned the AI/ML model structure during model identification. The model ID of the previously identified model would be used to indicate the supported model structure for model transfer.
· The AI/ML model structure is changed. Dependent on how much the model structure is changed, recompilation may be needed. Also, the changed model structure should be supported by UE. For example, if UE only supports full-connected layers and convolutional layer, the new AI/ML model can only be made of full-connected layers and convolutional layer.
Based on the above analysis, model transfer capability may need to consider the alignment between UE and network on supported model description format, model structures and quantization.
 In RAN1#114, it has been agreed that the previously identified model would be used to indicate the supported model structure for model transfer.
	Agreement
· When a model of a known structure at UE (e.g., Case z4) is transferred from NW, the new model being identified (e.g., via Type B2) has the same structure as an previously identified model at the Network and UE
· Note: the need of model transfer will be discussed separately


Proposal 3: Support to align quantization level of the transferred model in UE capability signaling.

Functionality/model identification
As agreed in last meeting, 4 options can be used for the alignment of NW-side additional conditions.
	Agreement
· For inference for UE-side models, to ensure consistency between training and inference regarding NW-side additional conditions (if identified), the following options can be taken as potential approaches (when feasible and necessary): 
· Model identification to achieve alignment on the NW-side additional condition between NW-side and UE-side
· [bookmark: _Hlk149914943]Model training at NW and transfer to UE, where the model has been trained under the additional condition
· Information and/or indication on NW-side additional conditions is provided to UE 
· Consistency assisted by monitoring (by UE and/or NW, the performance of UE-side candidate models/functionalities to select a model/functionality)
· Other approaches are not precluded
· Note: it does not deny the possibility that different approaches can achieve the same function.


In the following, the details of following 4 options would be discussed and model identification procedures can be further clarified:
· Option a: Model identification to achieve alignment on the NW-side additional condition between NW-side and UE-side;
· Option b: Model training at NW and transfer to UE, where the model has been trained under the additional condition;
· Option c: Information and/or indication on NW-side additional conditions is provided to UE; 
· Option d: Consistency assisted by monitoring (by UE and/or NW, the performance of UE-side candidate models/functionalities to select a model/functionality).

Consideration on Option a and Option b
Option a is mainly for UE reporting the NW-side additional conditions of UE-sided model. Through such procedures, consistency between NW and UE regarding NW-side additional conditions can be ensured.
[bookmark: _Hlk149658548]There would be mainly two methods for the alignment of NW-side additional conditions of Option a: 
· Category 1: Model ID or dataset categorization information is used to represent certain combination of NW-side additional conditions, and no explicit NW-side additional conditions are reported by UE. This model ID may be global to avoid the confusing between multiple UE vendors, NW vendors and operators. This work can be done through offline co-engineering. Also, for an updated model of a previously identified model, the model ID can also be used to indicate certain NW-side additional conditions. On other hand, dataset ID or dataset categorization information can be used to implicitly indicate NW-side additional conditions. Then we have the following sub-options of Option a.
· Option a-1: UE reports (global) model ID and NW-side additional conditions are aligned offline.
· Option a-3: UE reports (global) model ID and NW-side additional conditions are aligned through other options or sub-options.
· Option a-4: UE can report dataset categorization information to implicitly indicate NW-side additional conditions.
· Category 2: Explicit NW-side additional conditions are reported by UE. In this method, the NW-side additional conditions should be specified. Some NW-side additional conditions have been already specified, such as time and cells/PCIs/TRPs/tracking areas, and others would need to be specified in the future if needed. Specified list of parameters and candidate values of NW-side additional conditions can be reported by UE to NW. Then we have the following sub-options of Option a.
· Option a-2: UE can report specified list of parameters and candidate values of NW-side additional conditions.
· Option a-5: UE can report time duration and regions (e.g., cells/PCIs/TRPs/tracking areas).
Option b is clearly to be used along with model transfer. Additional conditions can be along with model parameters, during model transfer. 

Model identification Type A
For Type A model identification procedure: 
· This belongs to Option a-1. 
· NW side additional conditions are communicated between the two sides through offline procedures. A model ID is defined between the communicated parties to imply the additional conditions. Based on the Model ID information exchanged over the air interface, the NW side additional conditions for training and inference can be ensured to be consistent.  
In model identification Type A, the model is developed offline, potentially via multi-vendor collaboration. The procedures for model identification Type A, as well as related pre- and follow-up procedures, are as follows:
· Type A
· Step 1: 
· A model is developed/trained offline, potentially via multi-vendor collaboration.
· UE is updated (if needed) with necessary HW/SW to support the model.
· Step 2 (model identification)
· A model ID is assigned offline, potentially during multi-vendor collaboration. 
· The model ID as well as associated meta information is provided to NW (if applicable) without over-the-air signaling. 
· UE capability is updated to include the model ID.
· Step 3: UE indicates the support of the model to NW (e.g., in a UE capability report).

Model identification Type B1
In the following, we focus on model identification Type B1.
Now we consider the procedure of the model identification of a new AI/ML model developed by UE vendor. After this new AI/ML model is developed by one UE vendor, it would be downloaded from UE server to all the UEs of this UE vendor. If there is no offline alignment between UE and NW, model identification Type B1 would be the only choice of these UEs. Some small number of UEs would be chosen as delegates to do model identification Type B1. Other UEs can indicate supported AI/ML model IDs for a given AI/ML-enabled Feature/FG in e.g., UE capability report. Since much model description information would be not needed in the ID indication, the over-the-air signaling overhead may be largely reduced using this model identification Type B1.
Proposal 4: Model identification Type B1 and follow-up procedures consists of the following two steps:
· Step 1: Some UEs would be chosen as delegates to do model identification Type B1 and a model ID would be assigned by NW;
· Step 2: Other UEs can indicate supported AI/ML model IDs for a given AI/ML-enabled Feature/FG in e.g., UE capability report or other procedures.
Introducing Options a-1, a-2, a-3, a-4 and a-5 into model identification Type B1, Type B1 can be further split into the following sub-types based on FL proposal 9-3c
· B1-1: Used to identify a model developed offline, potentially via multi-vendor collaboration (Same as Type A). Global model ID may be used to represent certain combination of NW-side additional conditions.
· B1-2: Used to identify a model using specified list of parameters and candidate values. The details of these parameters and candidate values of NW-side additional conditions will be specified in the WI but have been not specified yet.
· B1-3: Used to identify a model based on a previously identified model via other sub-types (Type A, B1-1, B1-2, B1-4, B2-1 or B2-2). The previous model identification would be done by this UE or other UEs, based on the above analysis.
· B1-4: Used to identify a model using NW-indicated data collection. Dataset categorization information may be used.
· B1-5: Used to identify a model using time duration and regions (e.g., cells/PCIs/TRPs/tracking areas). As discussed, region information would be used directly to see whether current region is part of the applicable regions. Also, region information would be used indirectly to show that the NW-side additional conditions in these cells/PCIs/TRPs/tracking areas are supported.
Proposal 5: Model identification Type B1 can be further split into the following sub-types based on FL proposal 9-3c:
· B1-1: Used to identify a model developed offline, potentially via multi-vendor collaboration (Same as Type A).
· B1-2: Used to identify a model using specified list of parameters and candidate values.
· B1-3: Used to identify an updated UE-side/part a model (e.g., via online training or finetuning inside UE) of based on a previously identified model via other sub-types (Type A, B1-1, B1-2, B1-4, B2-1 or B2-2). The previous model identification would be done by this UE or other UEs.
· B1-4: Used to identify a model using NW-indicated data collection.
· B2-31-5: Used to identify a model using NW-indicated time duration and regions (e.g., cells/PCIs/TRPs/tracking areas).
Based on the above analysis, the procedures of the sub-types of model identification Type B1, as well as related pre- and follow-up procedures, are as follows:
· Type B1-1
· Step 1: 
· A model is developed/trained offline, potentially via multi-vendor collaboration.
· UE is updated (if needed) with necessary HW/SW to support the model.
· Step 2 (model identification)
· The existence of the new model, along with meta information for the model, is provided by one or more designated UEs to NW via over-the-air signaling. 
· A model ID is assigned and signaled to UE.
· UE capability is updated to include the model ID.
· Step 3: UE indicates the support of the model to NW (e.g., in a UE capability report).
· Type B1-2
· Step 1
· A model is developed/trained offline by the UE side. NW-sided Assistance information is known at UE.
· UE is updated (if needed) with necessary HW/SW to support the model. UE capability is updated.
· Step 2 (model identification)
· The existence of the new model, specified list of parameters and candidate values of NW-sided assistance information, along with meta information for the model, is provided by the UE to NW via over-the-air signaling.
· A model ID is assigned and signaled to UE.
· Step 3: UE indicates the support of the model to NW.
· Type B1-3
· Step 1
· UE or UE-side (re-)trains a new model, or received a new model from UE server or neutral server which has been identified. 
· Step 2 (model identification)
· The existence of the new model, (global) model ID of previously identified model, along with meta information for the model, is provided by the UE to NW via over-the-air signaling.
· A model ID is assigned and signaled to UE.
· Step 3: UE indicates the support of the model to NW.
· Type B1-4
· Step 1 (model identification): 
· NW initiates UE(s) to collect dataset for model training and assign a dataset ID.
· UE side trains a model based on the collected dataset with assigned dataset ID(s).
· Step 2: 
· The existence of the new model, dataset ID(s), along with meta information for the model, is provided by the UE to NW via over-the-air signaling.
· A model ID is assigned and signaled to UE. For example, multiple dataset IDs are supported by a single model.
· Step 3: UE indicates the support of the model to NW (e.g., in a UE capability report).
· Type B1-5
· Step 1:
· NW indicates data collection at UE, under certain time duration and regions (e.g., cells/PCIs/TRPs/tracking areas).
· UE side trains a model based on the collected dataset during the time duration and regions.
· Step 2 (model identification)
· The existence of the new model, the associated time duration and region, along with meta information for the model, is provided by the UE to NW via over-the-air signaling.
· A model ID is assigned and signaled to UE.
· Step 3: UE indicates the support of the model to NW (e.g., in a UE capability report).

Model identification Type B2
Introducing Option b and Category 1of Option a into model identification Type B2, Type B2 can be further split into the following sub-types
· B2-1: Used along with model transfer from NW to UE.
· B2-2: Used for NW to indicate data collection at UE. In this case, model ID is a logical ID (i.e., dataset ID) determined by NW and associated with the underlying conditions and additional conditions for the indicated data collection.
Proposal 6: Model identification Type B2 can be further split into the following sub-types:
· B2-1: Used along with model transfer from NW to UE.
· B2-2: Used for NW to indicate data collection at UE. In this case, model ID is a logical ID (i.e., dataset ID) determined by NW and associated with the underlying conditions and additional conditions for the indicated data collection.
The procedures for model identification Type B2-1 and B2-2, as well as related pre- and follow-up procedures, are as follows:
· Type B2-1
· Step 0: UE indicates supportable model information to NW (e.g., model ID for which UE has capability to accept updated parameters from NW)
· Step 1: NW side (re-)trains a new model.
· Step 2 (model identification): NW transfers the new model to UE with a model ID.
· Type B2-2
· Step 1 (model identification): NW initiates UE(s) to collect dataset for model training and assign a model ID.
· Step 2: UE side trains a model based on the collected dataset.
· Step 3: UE indicates the support of the model to NW (e.g., in a UE capability report).

Summary of NW-side additional conditions alignment for model identification
Based on the above analysis, we have the following proposal.
Proposal 7: Potential approaches to ensure consistency between training and inference regarding NW-side additional conditions for different model identification types are listed in the following:
· In model identification Type A, the consistency between training and inference regarding NW-side additional conditions is ensured through offline aligned NW-side additional conditions implied in model ID.
· In model identification Type B1-1, the consistency between training and inference regarding NW-side additional conditions is ensured through offline aligned NW-side additional conditions implied in model ID.
· In model identification Type B1-2, the consistency between training and inference regarding NW-side additional conditions is ensured through specified list of parameters and candidate values of NW-side additional conditions reported by UE.
· In model identification Type B1-3, the consistency between training and inference regarding NW-side additional conditions is ensured through a previously identified model via other sub-types. The previous model identification would be done by this UE or other UEs.
· In model identification Type B1-4, the consistency between training and inference regarding NW-side additional conditions is ensured through dataset categorization information reported by UE.
· In model identification Type B1-5, the consistency between training and inference regarding NW-side additional conditions is ensured through time duration and regions (e.g., cells/PCIs/TRPs/tracking areas) reported by UE.
· In model identification Type B2-1, the consistency between training and inference regarding NW-side additional conditions is ensured through model transfer.
· In model identification Type B2-2, the consistency between training and inference regarding NW-side additional conditions is ensured through data collection related model ID or dataset ID determined by NW, which is associated with the underlying conditions and additional conditions for the indicated data collection.

Consideration on Option c
Option c is used for the case that NW could provide or indicate NW-side additional conditions explicitly or implicitly to UE. Then UE would decide which model/functionality is suitable for the indicated NW-side additional conditions. Applicable model/functionality may be reported by UE to NW. If without model identification, several concerns are found in Option c.
· The broadcasting of NW-side additional conditions would cause extra overhead. Network may need to blindly broadcast all the additional conditions that are suitable in this area frequently. The overhead may be not omitted. Of course, NW may use some strategies to decide the ranges of the areas.
· Applicable model/functionality report would cause extra latency. Frequent applicability/applicable functionality report is needed, since the wireless conditions may change rapidly due to mobility, rotation or blockage.  
Proposal 8: If without model identification, the indication of NW-side additional conditions by NW explicitly or implicitly to UE has the following drawbacks:
· The broadcasting of NW-side additional conditions would cause extra overhead.
· Applicable model/functionality report would cause extra latency.

Consideration on Option d
In Option d, monitoring is the core mechanism to ensure consistency between training and inference regarding NW-side additional conditions. Possible solution is to monitor the AI/ML performance of current scenario/region/NW vendor/operation for a period of time, to guess whether the used AI/ML model is suitable for current NW-side additional conditions. If without model identification, several concerns are found in Option d.
· UE needs to blindly monitor a large amount of models which would be cumbersome for UE implementation.
· It takes a period of time to obtain valid monitoring KPIs, and the system performance may degrade during the monitoring. From current consensus on performance monitoring, the period is not short to obtain valid monitoring KPIs of UE-side candidate models/functionalities, including intermediate KPIs and system performance KPIs. During the monitoring, the unsuitable AI/ML model is still working and the system performance would degrade. In model identification, NW and UE can align the NW-side additional conditions immediately.
Then we have the following proposals.
Proposal 9: Consistency assisted by monitoring is not feasible for the alignment of the NW-side additional conditions.

Other considerations on model identification
The benefit of model identification based LCM compared to functionality based LCM are analyzed in the following.
· In the above subsections, it has been shown in Subsection 3.1 that one benefit of model identification is to align the NW-side additional conditions.
· Without model ID, only one model is assumed for one functionality by NW. If there is performance fluctuation due to transparent model switch at UE side, the network may not be able to understand the rationale for such change. The performance monitoring logic of functionality-based LCM may not be well managed at network side.
· There are cases that when there is model switch and the functionality may not be usable during the switching period (e.g., up to 10s of milliseconds). If model identification is not supported, the network may rely on functionality based applicability reporting for such interruption. This may incur additional signaling exchange between two sides and thus not favorable from system efficiency/latency perspective. 
· Without model ID, the operations of functionalities are limited to fallback. As discussed, there would be only one set of additional conditions associated with one functionality. Only fallback is available if the current additional conditions change.
· Without model ID, applicability/applicable functionality report would cause extra overhead.  Applicability/applicable functionality report would cause extra overhead. Frequent applicability/applicable functionality report is needed, since the wireless conditions may change rapidly due to mobility, rotation or blockage.  Or, network blindly broadcasts all the additional conditions that are suitable in this area frequently. Of course, NW may use some strategies to decide the ranges of the areas.
· Without model ID, it is challenging for network to manage the functionalities of various UEs from multiple vendors. Model ID can be used to separate the models from different vendors. For the same AI/ML-enabled Feature/FG and the same additional conditions, various UEs would have various implementations with different model complexities and performances. There would be no reference performance for performance monitoring, and then it is difficult for network to manage functionalities for various UEs.
· Without model ID, there may be unnecessary functionality switch. Assume that one model is used for Functionality A and Functionality B. If the current activated functionality is Functionality A and it is about to switch to Functionality B, there would be functionality switch procedure that may bring signaling overhead and communication latency. In model-LCM, no model switch is needed in this situation.
Proposal 10: The benefit of model identification based LCM compared to functionality based LCM are:
· Without model identification, additional conditions cannot be aligned between NW and UE;
· Performance fluctuation due to transparent model switch may not be manageable at network side or lead to unintended behaviors; 
· Model switch interruption is not manageable or may incur more challenging UE implementation with transparent model switch;
· The operations of functionalities are limited to fallback for some cases for functionality based LCM;
· Without model ID, applicability/applicable functionality report would cause extra overhead/latency;
· Without model ID, it is challenging for network to manage the functionalities of various UEs from multiple vendors;
· Without model ID, there may be unnecessary functionality switch.

Data collection
In the WI of non-AI positioning, the beam pattern information of DL-PRS has already specified in TS 37.355, based on which UE could obtain the beam pattern information from NW. In R16 positioning, NR-DL-PRS-BeamInfo has been specified to let UE get the beam boresight direction information of DL-PRS resources, which is shown in the below. 
	DL-PRS-BeamInfoElement-r16 ::= SEQUENCE {
	dl-PRS-Azimuth-r16				INTEGER (0..359),
	dl-PRS-Azimuth-fine-r16			INTEGER (0..9)					OPTIONAL,	-- Need ON
	dl-PRS-Elevation-r16			INTEGER (0..180)				OPTIONAL,	-- Need ON
	dl-PRS-Elevation-fine-r16		INTEGER (0..9)					OPTIONAL,	-- Need ON
	...
}


In R17 positioning, NR-TRP-BeamAntennaInfo has been specified to let UE get the beam power information in different beam direction of DL-PRS resources, which is shown in the below.
	
NR-TRP-BeamAntennaInfoAzimuthElevation-r17 ::= SEQUENCE {
	azimuth-r17					INTEGER (0..359)						OPTIONAL,	-- Cond Az
	azimuth-fine-r17			INTEGER (0..9)							OPTIONAL,	-- Cond AzOpt
	elevationList-r17			SEQUENCE (SIZE(1..1801)) OF ElevationElement-R17,
	...
}

ElevationElement-R17 ::= SEQUENCE {
	elevation-r17				INTEGER (0..180)						OPTIONAL,	-- Cond El
	elevation-fine-r17			INTEGER (0..9)							OPTIONAL,	-- Cond ElOpt
	beamPowerList-r17			SEQUENCE (SIZE (2..maxNumResourcesPerAngle-r17)) OF
										BeamPowerElement-r17,
	...
}

BeamPowerElement-r17 ::= SEQUENCE {
	nr-dl-prs-ResourceSetID-r17		NR-DL-PRS-ResourceSetID-r16			OPTIONAL,	-- Need OP
	nr-dl-prs-ResourceID-r17		NR-DL-PRS-ResourceID-r16,
	nr-dl-prs-RelativePower-r17		INTEGER (0..30),
	nr-dl-prs-RelativePowerFine-r17	INTEGER (0..9)						OPTIONAL,	-- Need ON
	...
}



With the beam boresight direction information and the beam power information, the whole beam pattern information of DL-PRS can be sent from NW to UE, to facilitate the non-AI positioning. Then AI/ML assistance information, e.g., like beam pattern information of DL-PRS in non-AI positioning, could also be used to facilitate data collection.
Proposal 11: AI/ML assistance information, e.g., like beam pattern information of DL-PRS in non-AI positioning, could be used to facilitate data collection.

Model monitoring/assessing
In RAN1#113, the following agreement was achieved. 
	Agreement
For the purpose of activation/selection/switching of UE-side models/UE-part of two-sided models /functionalities (if applicable), study necessity, feasibility and potential specification impact for methods to assess/monitor the applicability and expected performance of an inactive model/functionality, including the following examples:
· Assessment/Monitoring based on the additional conditions associated with the model/functionality
· Assessment/Monitoring based on input/output data distribution
· Assessment/Monitoring using the inactive model/functionality for monitoring purpose and measuring the inference accuracy
· Assessment/Monitoring based on past knowledge of the performance of the same model/functionality (e.g., based on other UEs)
FFS: Requirements for the assessment/monitoring to be reliable (e.g., sufficient data coverage during evaluation)
FFS: Additional aspects specific to the case where the inactive model has never been activated before, if any.


The model monitoring has been defined in previous meeting. However, the definition of model assessment is not clear now. In our opinion, model monitoring is done during the model usage, and model assessment is done before model usage. In model assessment, the inference results of the AI/ML model for a certain scenario, site or dataset would be collected, the statistical characteristic of which is used for judgement.
Proposal 12: Define the terminology:
· Model/functionality assessment: A procedure that assesses the performance of the AI/ML model/functionality on a certain scenario, site or dataset before usage.
If network or UE could obtain the additional conditions of current wireless conditions, network or UE can directly judge whether certain model or functionality is applicable for current wireless conditions. The main challenge may be to specify workable additional conditions and design corresponding signalling framework, which has been discussed in Section 3. 
Input/output data distribution is also helpful for assessment/monitoring. During the training phase, each model will be assigned with an applicable input distribution based on its training data. The possible input distribution for CSI and positioning may be quantified using measurable variables such as the range of delay spread, angular spread, and sparsity levels in the channel. We can then calculate a hard or soft index according to channel measurements, which indicates how well current channel or dataset matches the applicable model's input. If too many current channel samples are not applicable for the model, we can predict a performance degradation.
Assessment/monitoring of the inactive model/functionality is important in model/functionality selection or switching. If only active model functionality is assessed or monitored, the performance of inactive model/functionality will be unknown and the choice of model/functionality selection or switching will be limited.
Past knowledge of the performance of the same model/functionality (e.g., based on other UEs) may help model/functionality assessment/monitoring. In certain scenario, site or dataset, if one model/functionality has shown poor performance on some UEs, this model/functionality may be not applicable for other UEs with similar communication hardware.
Proposal 13: For the purpose of activation/selection/switching of UE-side models/UE-part of two-sided models/functionalities (if applicable), study the following methods to assess the applicability and expected performance of an inactive model/functionality:
· Dataset is sent from network to UE for assessment of a model. 

Discussion on SA related aspects 
In our discussion paper of reply LS to SA2 on AI/ML Core Network enhancements, we have the following proposal [11].
Proposal 14: The RAN1 recommendation of AI/ML based positioning, RAN1 agreements of model transfer/delivery, data collection and model identification should be informed to SA.

Reference model structure and RAN4 related aspects 
It has been agreed in RAN4 to study test model and reference model [3]. The two-sided model test framework is considered as starting point. Pros and cons for 4 options of test decoder were extensively discussed in the last meeting. It has been agreed that some high level parameters for the decoder may be specified, e.g. parameters related to processing complexity, model structure, etc [4]. 
	Agreements:
For all options RAN4 might specify some high level parameters for the decoder (e.g. parameters related to processing complexity, model structure, etc)
	FFS exactly which parameters are needed

Table with comparison of different testing options for two-sided CSI feedback
	 
	Option 1: DUT provides decoder
	Option 2: Decoder not from DUT and Spec
	Option 3: Full decoder specification in standard
	Option 4: partially specified decoder

	Clarification of options

	Source of the test decoder 
	 DUT vendor

	Decoder vendor (infra vendor in case of testing UEs) 
	 RAN4 specifications
	 TE vendor, decoder developed based on RAN4 specifications

	Source of decoder training data 
	Up to DUT vendor (no need to be specified)
	Up to decoder implementer (infra vendor) 
FFS whether coordination with encoder vendor is required
	Not needed, decoder fully specified  (used as part of the RAN4 procedure to specify the decoder)
	

	DUT vendor knowledge of the test decoder
	Full knowledge

	No or partial or enough or full knowledge based on alignment with infra vendors or specifications 
	Full knowledge based on the specifications
	Partial knowledge – based on the RAN4 specification






In the next step, reference model structure could be defined for each use case to benefit RAN4 test design. Reference model structure may consider the model structure that is widely used in the industry and RAN1 evaluation discussion, e.g., fully connected, CNN and/or transformer. 
· Reference model structure can benefit RAN4 test design due to the following aspects:
· Simpler testing procedure can be achieved since TE can directly develop and implement the decoder, based on the reference model structure. 
· The performance difference for the reference decoder developed by different parties can be reduced. The issues regarding different models having different performance can be resolved. Based on RAN1 evaluations and future RAN4 defined testing conditions, the corresponding performance of the reference model structure can be defined.
· Network/UE vendors can consider the partly specified reference decoder/encoder as part of their implementation.
·   Without reference model structure:
· It would be difficult to define performance requirement which can justify AI/ML gains.
· It would be difficult for TE vendors to involve in two-sided model test.
In the following, some model structures of different use cases are suggested, which have good performance gain compared to non-AI algorithms. The suggested model structures are full-connected (FC) or CNN based, which have low complexity and low proprietary issue. 
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Figure 7-1. Suggested model structures for CSI prediction, beam spatial prediction and positioning.
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Figure 7-2. Suggested model structure for the encoder of CSI compression.
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Figure 7-3. Suggested model structure for the decoder of CSI compression.
Base on above analysis, we have the following proposal
Proposal 15: Send LS to RAN4 on recommendations on reference model structure for each use case, e.g., the suggested model structure in Figures 7-1, 7-2 and 7-3.

Conclusions
Observation 1: Model parameter updating with known model structure is feasible with either post training quantization or quantization-aware training. Post training quantization can be done on UE device or by NW.
Proposal 1: Benefits, challenges and potential specification impact of FL proposal 9-5c can be updated as:
For model delivery/transfer to UE, 
· Model transfer to UE in a proprietary format (Case z1, z2) would have smaller end to end model delivery latency from model storage to UE and less requirement on user consent for delivering model in non-3GPP way or less requirement on device storage for storing models in device, but it brings longer model update timescale and more coordination between network side and UE side/neutral site when the model training location (or offline compiling location) and model storage location are not on the same side, compared to model delivery via proprietary format (Case y). Model delivery/transfer to UE in a proprietary format (Case z1, z2) is feasible from RAN1 perspective from the device implementation point of view.
· Parameter update of a known structure on a deployed model via model delivery/transfer in an open format while the model is trained/optimized at UE side (Case z3) may be beneficial for certain use cases or deployment scenarios, e.g., when it is desired to store models in open format in network side and when it is desired to have less requirement on user consent for delivering model in non-3GPP way or less requirement on device storage for storing models in device. Parameter update of a known structure on a deployed model via model delivery/transfer in an open format when the model is trained/optimized at UE side (Case z3) is feasible from RAN1 perspective from the device implementation point of view.
· Parameter update of a known structure on a deployed model via model delivery/transfer in an open format when the model is trained at network side (Case z4) may be beneficial for certain use cases or deployment scenarios, e.g., when it is desired to have shorter model parameter update timescale due to no need for offline compiling, when it is desired to have less offline engineering, and when it is desired to have less requirement on user consent for delivering model in non-3GPP way or less requirement on device storage for storing models in device. Parameter update of a known structure on a deployed model via model delivery/transfer in an open format when the model is trained at network side (Case z4) is feasible from RAN1 perspective from the device implementation point of view. 
Proposal 2: Support to reuse the mechanism defined in SA2 (interoperability token) for aligning model description format for model transfer.
Observation 2: Performance of simple model structures, such as full-connected layers or convolutional layers, are good enough for typical per single cell or multiple cell operations.
Observation 3: The models currently evaluated by companies, such as those with full-connected layers or convolutional layers, are widely used for decades and have low proprietorship risk for model transfer.
Proposal 3: Support to align quantization level of the transferred model in UE capability signaling.
Proposal 4: Model identification Type B1 and follow-up procedures consists of the following two steps:
· Step 1: Some UEs would be chosen as delegates to do model identification Type B1 and a model ID would be assigned by NW;
· Step 2: Other UEs can indicate supported AI/ML model IDs for a given AI/ML-enabled Feature/FG in e.g., UE capability report or other procedures.
Proposal 5: Model identification Type B1 can be further split into the following sub-types based on FL proposal 9-3c:
· B1-1: Used to identify a model developed offline, potentially via multi-vendor collaboration (Same as Type A).
· B1-2: Used to identify a model using specified list of parameters and candidate values.
· B1-3: Used to identify an updated UE-side/part a model (e.g., via online training or finetuning inside UE) of based on a previously identified model via other sub-types (Type A, B1-1, B1-2, B1-4, B2-1 or B2-2). The previous model identification would be done by this UE or other UEs.
· B1-4: Used to identify a model using NW-indicated data collection.
· B2-31-5: Used to identify a model using NW-indicated time duration and regions (e.g., cells/PCIs/TRPs/tracking areas).
Proposal 6: Model identification Type B2 can be further split into the following sub-types:
· B2-1: Used along with model transfer from NW to UE.
· B2-2: Used for NW to indicate data collection at UE. In this case, model ID is a logical ID (i.e., dataset ID) determined by NW and associated with the underlying conditions and additional conditions for the indicated data collection.
Proposal 7: Potential approaches to ensure consistency between training and inference regarding NW-side additional conditions for different model identification types are listed in the following:
· In model identification Type A, the consistency between training and inference regarding NW-side additional conditions is ensured through offline aligned NW-side additional conditions implied in model ID.
· In model identification Type B1-1, the consistency between training and inference regarding NW-side additional conditions is ensured through offline aligned NW-side additional conditions implied in model ID.
· In model identification Type B1-2, the consistency between training and inference regarding NW-side additional conditions is ensured through specified list of parameters and candidate values of NW-side additional conditions reported by UE.
· In model identification Type B1-3, the consistency between training and inference regarding NW-side additional conditions is ensured through a previously identified model via other sub-types. The previous model identification would be done by this UE or other UEs.
· In model identification Type B1-4, the consistency between training and inference regarding NW-side additional conditions is ensured through dataset categorization information reported by UE.
· In model identification Type B1-5, the consistency between training and inference regarding NW-side additional conditions is ensured through time duration and regions (e.g., cells/PCIs/TRPs/tracking areas) reported by UE.
· In model identification Type B2-1, the consistency between training and inference regarding NW-side additional conditions is ensured through model transfer.
· [bookmark: _GoBack]In model identification Type B2-2, the consistency between training and inference regarding NW-side additional conditions is ensured through data collection related model ID or dataset ID determined by NW, which is associated with the underlying conditions and additional conditions for the indicated data collection.
Proposal 8: If without model identification, the indication of NW-side additional conditions by NW explicitly or implicitly to UE has the following drawbacks:
· The broadcasting of NW-side additional conditions would cause extra overhead.
· Applicable model/functionality report would cause extra latency.
Proposal 9: Consistency assisted by monitoring is not feasible for the alignment of the NW-side additional conditions.
Proposal 10: The benefit of model identification based LCM compared to functionality based LCM are:
· Without model identification, additional conditions cannot be aligned between NW and UE;
· Performance fluctuation due to transparent model switch may not be manageable at network side or lead to unintended behaviors; 
· Model switch interruption is not manageable or may incur more challenging UE implementation with transparent model switch;
· The operations of functionalities are limited to fallback for some cases for functionality based LCM;
· Without model ID, applicability/applicable functionality report would cause extra overhead/latency;
· Without model ID, it is challenging for network to manage the functionalities of various UEs from multiple vendors;
· Without model ID, there may be unnecessary functionality switch.
Proposal 11: AI/ML assistance information, e.g., like beam pattern information of DL-PRS in non-AI positioning, could be used to facilitate data collection.
Proposal 12: Define the terminology:
· Model/functionality assessment: A procedure that assesses the performance of the AI/ML model/functionality on a certain scenario, site or dataset before usage.
Proposal 13: For the purpose of activation/selection/switching of UE-side models/UE-part of two-sided models/functionalities (if applicable), study the following methods to assess the applicability and expected performance of an inactive model/functionality:
· Dataset is sent from network to UE for assessment of a model. 
Proposal 14: The RAN1 recommendation of AI/ML based positioning, RAN1 agreements of model transfer/delivery, data collection, model identification should be informed to SA.
Proposal 15: Send LS to RAN4 on recommendations on reference model structure for each use case, e.g., the suggested model structure in Figures 7-1, 7-2 and 7-3.
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Appendix A: Initial results and analysis for zone/site specific model
In the following, some initial results and analysis for zone/site specific model will be provided.

A.1 Some initial results for field test
We provide some initial results for field test of CSI compression. The data is collected from actual 5G network and the collecting area is about 400m * 350m. About outdoor 50000~100000 samples per area or cell are collected. The detailed parameters are provided in Table A.1-1.
Table A.1-1. Parameters of field test of CSI compression.
	Parameters
	Value

	Scenario
	Actual 5G network, about 400m * 350m collecting area.
About outdoor 50000~100000 samples per area or cell.

	Carrier frequency
	3.45GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	Rank
	Max rank 1

	gNB antenna
	8 antenna ports

	UE antenna
	4 antenna ports

	CSI payload
	167/58 bits payload



Field test result of different areas
There are 3 data collecting areas. Area B is the main road of the industrial park, with many tall trees and cars along the road. Area C is the road behind several buildings. Area D is the indoor scenario in a building. UE in the left part of the industrial park usually accesses to a different cell, compared with the right part of the industrial park. So, we focus on the right part of the industrial park and current areas are chosen.
[image: ]
Figure A.1-1. The map of data collecting areas.
The SGCS results of eType II codebook and multiple AI/ML models are provide in the following. In Table A.1-2 and A.1-3, the AI/ML models are trained by the data in each area separately, and multiple AI/ML models are used. 167 bits overhead is used in Table A.1-2 and 58 bits overhead is used in Table A.1-3. In Table A.1-4 and A.1-5 only one hidden layer full-connected encoder is used and it is trained by the data of all 4 areas, with 167 bits overhead and 58 bits overhead separately.
It is seen that the performance gaps between different AI/ML models are small. Even one layer MLP encoder can provide good performance, which is very simple and small. With much higher complexity, Transformer encoder has better performance than one layer MLP encoder, but the performance gain is small Area B. Considering the performance and complexity, simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical per single cell or multiple cell operations.
Table A.1-2. The SGCS results of multiple AI/ML models trained by the data in each area separately, with 167 bits overhead.
	167 bits overhead
	eTypeII
	AI with an area specific model (One layer MLP encoder) ~67kB
	AI with an area specific model (small CNN encoder) ~250kB
	AI with an area specific model (Transformer encoder) ~3.6MB

	Area B
	0.8429
	0.9217
	0.929
	0.9406

	Area C
	0.7871
	0.898
	0.9037
	0.9116

	Area D
	0.8489
	0.9315
	0.9323
	0.9423



Table A.1-3. The SGCS results of multiple AI/ML models trained by the data in each area separately, with 58 bits overhead.
	58 bits overhead
	eTypeII
	AI with an area specific model (One layer MLP encoder) ~30kB
	AI with an area specific model (small CNN encoder) ~213kB
	AI with an area specific model (Transformer encoder) ~3.3MB

	Area B
	0.7290
	0.8573
	0.8725
	0.8868

	Area C
	0.6438
	0.8015
	0.8162
	0.8389

	Area D
	0.6853
	0.8701
	0.8814
	0.8873



Table A.1-4. The SGCS results of one hidden layer full-connected encoder trained by the data of all 4 areas, with 167 bits overhead.
	167 bits overhead
	Training SGCS on data from all areas
	Testing SGCS in area B
	Testing SGCS in area C
	Testing SGCS in area D

	One hidden layer full-connected encoder~67kB
	0.9055
	0.905
	0.8799
	0.8959



Table A.1-5. The SGCS results of one hidden layer full-connected encoder trained by the data of all 4 areas, with 58 bits overhead.
	58 bits overhead
	Training SGCS on data from all areas
	Testing SGCS in area B
	Testing SGCS in area C
	Testing SGCS in area D

	One hidden layer full-connected encoder~30kB
	0.8184
	0.8201
	0.7592
	0.7958



Field test result of different physical cells
The performance of different physical cells is analyzed in the following. We have tested the coverage of different cells in the industrial park, according to the measured RSRP, RSRQ and SINR. The coverage areas of two typical cells in the industrial park are shown in the below figure.
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Figure A.1-2. The map of data collecting cells.
For cell 1, data samples are collected by different days. The data collection routes in different days have some differences, which results in the different wireless channel features in different days.
The SGCS results of eType II codebook and multiple AI/ML models are provide in the following. In below tables, the AI/ML models are trained by the data in each cell separately, and multiple AI/ML models are used. For cell 1, A large combination of data collected on different days has been used. 167 bits overhead is used. One layer MLP encoder is used in Table A.1-6, small CNN encoder is used in Table A.1-7 and Transformer encoder is used Table A.1-8.
It is seen that using the data collected on various days or routes, the generalization problem of different days or routes could be solved. For example, using Cell 1 data collected on 2.28 as the test data set, the AI model trained using Cell 1 data collected on various day except 2.28 and 2.16, has the nearly the same performance as the AI model trained using Cell 1 data collected on 2.28.
In addition, the AI model trained by Cell 1 data has poor performance on Cell 2 data, which is even worse than eType II.
Table A.1-6. The SGCS results of multiple AI/ML models trained by the data in each cell separately, with 167 bits overhead and one layer MLP encoder.
	
	eType II
	AI model using Cell 1 data, collected on 2.3, 2.10, 2.14, 2.27, 3.2, 3.9
	AI model using Cell 1 data, collected on 2.28
	AI model using Cell 1 data, collected on 2.16
	AI model using Cell 2 data

	Cell 1 data, collected on 2.28
	0.8137
	0.8546
	0.8680
	\
	\

	Cell 1 data, collected on 2.16
	0.8425
	0.8746
	\
	0.8952
	\

	Cell 2 data
	0.8145
	0.7832
	\
	\
	0.8974



Table A.1-7. The SGCS results of multiple AI/ML models trained by the data in each cell separately, with 167 bits overhead and small CNN encoder.
	
	eType II
	AI model using Cell 1 data, collected on 2.3, 2.10, 2.14, 2.27, 3.2, 3.9
	AI model using Cell 1 data, collected on 2.28
	AI model using Cell 1 data, collected on 2.16
	AI model using Cell 2 data

	Cell 1 data, collected on 2.28
	0.8137
	0.870
	0.876
	\
	\

	Cell 1 data, collected on 2.16
	0.8425
	0.888
	\
	0.907
	\

	Cell 2 data
	0.8145
	0.8099
	\
	\
	0.9044



Table A.1-8. The SGCS results of multiple AI/ML models trained by the data in each cell separately, with 167 bits overhead and Transformer encoder.
	
	eType II
	AI model using Cell 1 data, collected on 2.3, 2.10, 2.14, 2.27, 3.2, 3.9
	AI model using Cell 1 data, collected on 2.28
	AI model using Cell 1 data, collected on 2.16
	AI model using Cell 2 data

	Cell 1 data, collected on 2.28
	0.8137
	0.8847
	0.8934
	\
	\

	Cell 1 data, collected on 2.16
	0.8425
	0.8998
	\
	0.9160
	\

	Cell 2 data
	0.8145
	0.8404
	\
	\
	0.9172



Field test result of different receiver
The performance of different receiver is analyzed in the following. The above data are all collected by one receiver, which is noted as Receiver 1. Then to investigate the impact of different receiver, a new receiver noted as Receiver 2 is used to collect new data of Cell 1. Two receivers have different communication hardwares so that the channel characteristics would be different. Then the generalization performance of different UE equipments could be evaluated by this field test. 
The encoders for Receiver 1 are trained using the data collected on 2.3, 2.10, 2.14, 2.27, 3.2, 3.9, which have been generated in the above fielt test of different physical cells. The encoders for Receiver 2 are trained using the new Cell 1 data collected by Receiver 2 on 7.31.
There are so many differences between the new data and the old data besides different receivers. It is seen that the time gap between the new data and the old data is more than 4 months. The test environment, temperature and clutters would be different. Also, the data collection routes have some differences.
The SGCS results of eType II codebook and multiple AI/ML models for different receivers are provide in the following. 167 bits overhead is used. It is seen that the AI/ML models for Receiver 1 has certain performance degradation compared with the AI/ML models for Receiver 2. Since there would be so many differences between the new data and the old data, the performance degradation is smaller than expect.
In addition, the performance of CNN encoder is smaller than MLP encoder. This result is expected since CNN usually has better generalization performance than MLP.
Table A.1-9. The SGCS results of multiple AI/ML models trained by the data from different receivers separately, with 167 bits overhead.
	
	eType II
	MLP encoder for Receiver 2
	MLP encoder for Receiver 1
	CNN encoder for Receiver 2
	CNN encoder for Receiver 1

	New Cell 1 data collected by Receiver 2 on 7.31
	0.8812
	0.9342
	0.9110
	0.9365
	0.9213



A.2. Some initial results for spatial consistency data
In this part, we consider to use data with spatial consistency to reflect the correlation between samples within certain cell. Each UE generates random variables with spatial consistency based on its own geographic location at the T=0 so that UEs dropping on the same location have the same channel. Both the cluster specific random variables and the correlation distance for spatial consistency procedure follow the configurations in 38.901. Other detailed parameters are provided as follows.
Table A.2-1. Parameters of spatial consistency data of CSI compression.
	Parameters
	Value

	Scenario
	UMa

	Channel model
	Uma 38.901 with spatial consistency

	Carrier frequency
	4GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	Rank
	Max rank 1

	gNB antenna
	32 antenna ports
[Mg Ng P M N, Mp Np] = [1 1 2 8 8, 2 8]
= (0.8, 0.5) λ, +45°/-45° polarization

	UE antenna
	2 antenna ports
[Mg Ng P M N, Mp Np] = [1 1 2 1 1, 1 1]
= (0.8, 0.5) λ, 0°/+90° polarization

	BS receiver noise figure
	10

	UE receiver noise figure
	7

	UE distribution
	100% outdoor

	UE speed 
	30km/h

	Mechanic tilt
	180° in GCS (pointing to the ground)

	Beam set at TRxP
	Azimuth angle φi = [0], Zenith angle θj = [102].

	UE beam set
	Azimuth angle φi = [0], Zenith angle θj = [90]



Based on data with spatial consistency, we can evaluate the performance of region-specific models. To be more specific, we collect data from a square area with side length 5m, 25m, and 165m, based on which two models with MLP and Transformer structure encoder are trained. The parameter scales for MLP encoder and Transformer encoder are 768KB and 16MB, respectively. Detailed results are provided in the following table: 
Table A.2-2. Performance comparison of region-specific models
	Collecting region of training data
	SGCS of model with MLP encoder
	SGCS of model with Transformer encoder
	SGCS of legacy codebook

	Square region with 5m side length
	>0.99
	>0.99
	0.6911*

	Square region with 25m side length
	0.9705
	0.9855
	

	Square region with 165m side length
	0.8707
	0.9094
	


*The performance of legacy codebook is tested on the entire region with side length 165m.
From the results, we can find that the performance gain over legacy codebook provided by region-specific models (e.g., more than 17% SGCS gain for trivial MLP encoder and more than 19% SGCS gain for Transformer encoder) is much higher than that of generic models (e.g., a typical SGCS gain of 8%~10% reported by companies). In addition, when the region is small enough (around or smaller than 25m*25m), the SGCS approaches 100%, which suggests that the model could remember all CSI possibilities. Such additional gain is achieved by harvesting the spatial correlation between samples. It is also worth pointing out that trivial encoder can also benefit from region-specific data. Our results show that the SGCS performance gap between trivial MLP encoder and complex Transformer encoder is at most 3%.  To sum up, spatial consistency data could verify the potential gain of region-specific models.

A.3. Some initial results for ray tracing data
To better compare the performance of AI/ML model in level y and level z, we utilize a typical ray-tracing channel model [5] in our experiment.  The outdoor scenario map [5] is plotted in Figure A.3-1.
[image: ]
Figure A.3-1. Ray tracing map.
Specifically, we collect the channel from BS3 to UEs in user grid 1 (nearly LoS scenario) and user grid 2 (nearly NLoS scenario) respectively and all channels (~50,000 samples) in one experiment are collected in an area of 100m*35m, which is similar to a cell range. Other parameters with regarding to ray tracing could be referred to the official website [5]. The initial results are presented in Table A.3-1.
Table A.3-1. Results for per-cell (region) model in CSI compression.
	
	SGCS of General model*,**
	SGCS of per-cell model with Transformer structure**
	SGCS of per-cell model with one-layer fc structure**

	User grid 1 (LoS)
	0.841
	>0.99
	>0.99

	User grid 2
(NLoS)
	0.795
	>0.99
	>0.99


*General model is trained on channel data (~600,000 samples) collected from 21 cells generated from 38.901 model. 
**More simulation parameters: carrier frequency 3.5GHz, subcarrier spacing 15KHz, 13 subbands (10MHz, 4RBs/subband), 32 gNB antenna ([Mg Ng M N P; Mp Np] = [1 1 8 8 2; 2 8]), 4 UE antennas ([Mg Ng M N P; Mp Np] = [1 1 1 2 2; 1 2]), horizontal beam sweeping along x-axis, vertical beam sweeping along z-axis, 180bits payload.

Appendix B: Introduction of ONNX
ONNX (Open Neural Net Exchange, ‘https://onnx.ai/’) aims to support a common intermediate representation for AI model transmission for both deep learning and machine learning. It is developed as a common data format but not an AI framework or a development tool, so it can be compatible with any AI framework including TensorFlow, PyTorch and so on. In the design of ONNX, model structure and weights are sequenced by Protobuf. It defines an extensible computation graph with nodes with operators and handles all weights as inputs or outputs. It also defines the standard data types.
In ONNX, the computation graph is composed of some nodes and each node has several inputs and outputs. All the tensors are identified by its name. The same input name of node A and output name of node B means node A and B are connected. All weights are also identified by their names and corresponding to some nodes as inputs or outputs. Then the computation graph is constructed with the input name and the output name of each node.
With the help of ONNX, all developers can choose their own tools to develop their models and load other models in different framework. And now, ONNX is supported in many frameworks, tools and even some hardwires officially. Since ONNX does not impose restriction on operators, the same construct or function can be transformed to different combinations of nodes for different developers. All developers can have their specific transition code, which means it can be enhanced further to support other destinations like security.

Appendix C: The content of applicable conditions
There are mainly two types of applicable conditions, which will be discussed in the following. 
· Static applicable conditions (across different models of the same functionality). The static applicable conditions would be specific configurations/conditions associated with UE capability of an AI/ML-enabled Feature/FG. Use legacy UE capability framework, some example static applicable conditions can be listed in the following table.
· Additional conditions. To fight against the generalization problem, it is beneficial to train a model in a site/scenario/area specific way. The information of scenario(s) or dataset(s) of AI/ML models should be aligned between two sides. When entering new scenarios, dynamic model (de)activation/switching or performance monitoring could be triggered. Based on current studies of sub use cases, some possible additional conditions are listed in the following table. For beam management, the detailed gNB beam pattern information is private information and would be likely not to be shared to UE. However, if the gNB beam pattern has been changed or not aligned by two sides, the AI/ML model would not work well. Then dataset ID or implicit beam pattern ID could be used to solve this problem.
Table C-1. Example static applicable conditions and addition conditions.
	
		Static applicable conditions
		Additional conditions

	General
	· Maximum number of gNB antenna ports
	· Supported SNR/SINR/RSRP region

	CSI
	· Supported CSI feedback methods, including CSI compression and CSI prediction
· Supported model input types, including full channel information or SVD
· Maximum number of CSI-RS ports
· Maximum number of RBs
· Maximum number of ranks
· Maximum UE speed
· Supported CSI-RS periods
	· Training dataset categorizing information: Site information, timestamp information, implicit identification information e.g. IDs labeled for specific gNB/UE implementation information.
· Statistical information, e.g., delay spread, angular spread, LOS/NLOS information.

	Positioning
	· Supported positioning method, including direct AI/ML positioning, AI/ML assisted positioning
· Supported model input types
· Supported model output types
· Maximum number of TRPs
· Supported PRS periods
	· Training dataset categorizing information: Site information, timestamp information, implicit identification information e.g. IDs labeled for specific gNB/UE implementation information.
· Statistical information, e.g., delay spread, angular spread, LOS/NLOS information.

	Beam
	· Supported beam prediction method, including spatial domain beam prediction and temporal domain beam prediction
· Supported model input types
· Supported model output types
· Maximum number of reported beams
· Maximum number of temporal prediction period
	· Training dataset categorizing information: Site information, timestamp information, implicit identification information, e.g. IDs labeled for specific gNB/UE implementation information, such as implicit beam pattern ID. 
· Statistical information, e.g., delay spread, angular spread, LOS/NLOS information.



Appendix D: Agreement from previous meeting
Some agreements and conclusions have been made in previous meeting.
	 
Agreement
· Model-ID, if needed, can be used in a Functionality (defined in functionality-based LCM) for LCM operations.

Agreement 
For CSI compression (For reply LS)
	LCM purpose
	Data content
	Typical data size (per data sample)
	Typical latency requirement
	Notes

	Training
	Target CSI 
	See Notes 1, 2
	Relaxed
	This row applies to Type 1, Type 2, and the first or second stage of described procedure of Type 3 separate training.

	
	CSI Feedback
	See Note 3
	Relaxed
	This is for dataset delivery for the second stage of described procedure of Type 3 separate training (either from Network side to UE side, or from UE side to Network side) and forward propagation information for Type 2 training.
See Note 7

	
	Gradients for CSI Feeback
	No agreement
	Relaxed
	This is for backward propagation for Type 2 training
See Note 7

	Inference
	CSI Feedback
	See Note 3
	Time-critical
	Can use L1 report similar to legacy CSI

	Monitoring
	Reconstructed CSI from NW to UE
See Note 6
	No agreement; [expected to be similar to target CSI for monitoring]
	Near-real-time
	This is called “UE-sided monitoring” in RAN1.

	
	Calculated performance metrics
See Note 6
	See Note 4
	Near-real-time
	This is called “UE-sided monitoring” in RAN1.

	
	Target CSI
See Note 6
	 See Notes 1, 2
	Near-real-time
	This is called “NW-sided monitoring” in RAN1.



Note 1: Target CSI may be precoding matrix or channel matrix. RAN1’s reply for data size is based on precoding Matrix which has been more widely evaluated than channel matrix.
Note 2: Data size for target CSI depends on the format. There is no agreement on the format or necessary precision of the target CSI. Some examples based on companies’ evaluations are: eType-II format (up to ~1000 bits), eType-II-like format (~ a few 1000 bits), and float32 format (up to ~ 150K bits). The data size may also vary depending on the configuration, and the captured value indicates the order of magnitude of the typical data size per sample as a guideline. 

Note 3: There is no agreement on the CSI feedback size. Values in the order of eType II payload size may be assumed (up to ~ 1000 bits) for RAN2 discussion.
Note 4: There is no agreement on the exact metric or reporting format. An example based on companies’ evaluations is: SGCS (10s of bits)
Note 5: There are no agreements on the reporting type.
Note 6: Feasibility and necessity of the monitoring schemes listed in the table are under discussion
Note 7: RAN1 has agreed to deprioritize Type 2 training over the air interface.

Note(serve as trace in session notes)
Data size for target CSI depends on the format and configuration, for examples,
· In eType-II PC 8 format, the payload size (PMI part) for rank 1, 13 subbands, 32 ports is around 300 bits.
· In eType-II PC 8 format, the payload size (PMI part) for rank 2, 19 subbands, 32 ports is around 800 bits.
· In floating point format (32 bits per sample), the precoding matrix for 1 layer, 13 subbands, 32 ports needs around 50 kilobits. This number doesn’t account for any potential compression techniques.
· In floating point format (8 bits per sample), the precoding matrix for 4 layers, 19 subbands, 32 ports needs around 40 kilobits. This number doesn’t account for any potential compression techniques.
· In floating point format (32 bits per sample), the precoding matrix for 4 layers, 19 subbands, 32 ports needs around 150 kilobits. This number doesn’t account for any potential compression techniques.

Agreement 
For CSI prediction at UE side (For reply LS)
	LCM purpose
	Data content
	Typical data size (per data sample)
	Typical latency requirement
	Notes

	Training
	Target CSI in observation and prediction window
	See Notes 1, 2
	Relaxed
	

	Inference
	Predicted CSI feedback (AI/ML output)
	See Note 3
	Time-critical
	Can use L1 report similar to legacy CSI

	Monitoring
	ground truth (i.e., target CSI) corresponding to predicted CSI 
See Note 6
	See Notes 1, 2
	Near-real-time
	

	
	Calculated performance metrics / Performance monitoring output
See Note 6
	See Note 5
	Near-real-time
	



Note 1: Target CSI may be precoding matrix or channel matrix. RAN1’s reply for data size is based on channel matrix which has been more widely evaluated than precoding Matrix.
Note 2: Data size for target CSI depends on the format. There is no agreement on the format or precision of the target CSI. The data size may also vary depending on the configuration, and the captured value indicates the order of magnitude of the typical data size per sample as a guideline. One example based on companies’ evaluations is up to around 1.5Mbits, assuming float 32 and 10 CSI-RS observation instances as input to predict one future CSI instance.


Note 3: There is no agreement on the predicted CSI feedback size. Values in the order of eType II payload size may be assumed (up to ~ 1000 bits) for RAN2 discussion.
Note 4: There are no agreements on the reporting type.
Note 5: There is no agreement on the performance metric or monitoring output details.
Note 6: Feasibility and necessity of the monitoring schemes listed in the table are under discussion.

Note (serve as trace in session notes)
Data size for target CSI depends on the format and configuration, for examples,
· In floating point format (32 bits per sample), the channel matrix for 4 layers, 19 subbands (one matrix per subband), 32 ports needs around 150 kilobits per CSI-RS instance. Assuming 10 CSI-RS observation instances as input to predict one future CSI instance, the total is around 1.5M bits. This number doesn’t account for any potential compression techniques.

Agreement
· For an AI/ML-enabled feature/FG, additional conditions refer to any aspects that are assumed for the training of the model but are not a part of UE capability for the AI/ML-enabled feature/FG.
· It doesn’t imply that additional conditions are necessarily specified 
Agreement
· Additional conditions can be divided into two categories: NW-side additional conditions and UE-side additional conditions. 
· Note: whether specification impact is needed is separate discussion
Agreement
For Beam management (For reply LS)

	LCM purpose
	UE-side/NW-side models
	Data content
	Typical data size (per data sample)
	Typical latency requirement
	Notes

	Training
	UE-side, NW-side

	L1-RSRPs and/or beam-IDs

	See Note 1 for L1-RSRPs

	Relaxed

	


	Inference
	UE-side
	Beam prediction results

	Small (10s of bits)
	Time-critical
	RAN1 has agreed to consider L1 signalling for this reporting

	
	NW-side
	L1-RSRPs, and Beam-IDs if needed, for Set B
	See Note 1 for L1-RSRPs
	Time-critical
	

	Monitoring
	UE-side
	Event occurrence and/or calculated performance metrics (from UE to NW)
See Note 4
	Small (10s of bits)
	Near-real-time
	

	
	UE-side
	L1-RSRP(s) and/or beam-ID(s)
See Note 4
	Up to 10 bits, or up to 100 bits, or up to hundreds of bits.
See Note 1 for L1-RSRPs
	Near-real-time
	

	
	NW-side 
	L1-RSRP(s) and/or beam-ID(s)

See Note 4
	Up to 10 bits, or up to 100 bits, or up to hundreds of bits.
See Note 1 for L1-RSRPs
	Near-real-time
	



Note 1: There is no agreement on the data size of L1-RSRPs for Set A or Set B, but the following typical data size is provided as guidance for RAN2 discussion. Based on existing L1-RSRP reporting methodology, i.e., 7 bits for the strongest beam and 4 bits for the remaining beams, for Set B = 16 as an example, the typical data size would be 67 (hence up to ~100 bits), and for Set A = 128 as an example, the typical data size would be 515 (hence up to ~500 bits) if all beams in Set A were to be collected. For BM Case 2, the data size L1-RSRPs for Set A and Set B represents the data size per predicted future time instance and per history measurement time instance, respectively. Payload size may not be fixed.
Note 2: There are no agreements on the reporting type.
Note 4: Feasibility and necessity of the monitoring schemes listed in the table are under discussion.
Note 5: For BM Case 2, the typical value of the number of history measurement time instance used in evaluations is up to 8 and typical value of the number of predicted future time instance is 1~4.

Agreement
For positioning (For reply LS)
	LCM purpose
	Case
	Data content
	Typical data size (per data sample)
	Typical latency requirement
	Notes

	Training
	All Cases


	Measurements (corresponding to model input): timing, power, and/or phase info
See Note 2
	Size depends on number of PRS/SRS resources, measurement type (timing, power, and/or phase info) and report format:
~100 bits to 1000s bits per PRS/SRS resource
See Note 3
	Relaxed
	

	
	Direct AI/ML positioning
	Label: Location coordinates as model output
	56 to 144 bits 
See Note 3
	Relaxed
	

	
	
AI/ML assisted positioning
	Label: Intermediate positioning measurement (timing info, LOS/NLOS indicator) as model output
See Note 2
	10s bits to 100s bits per PRS/SRS resource
See Note 3
	Relaxed
	

	Inference
	1
	Location coordinates as model output
	56 to 144 bits
See Note 3
	See Note 5
	

	
	2a, 3a
	Intermediate positioning measurement (timing info, LOS/NLOS indicator) as model output
See Note 2
	10s bits to 100s bits per PRS/SRS resource
See Note 3
	See Note 5
	

	
	2b, 3b
	Measurements (corresponding to model input):
Timing, power, and/or phase info 
See Note 2
	Size depends on number of PRS/SRS resources, measurement type (timing, power, and/or phase info) and report format:
~100 bits to 1000s bits per PRS/SRS resource
See Note 3
	See Note 5
	

	Monitoring
	All Cases
	See Note 8
	See Note 8
	Near-real-time
	See Note 6 and 7



Note 1: The necessity and feasibility of difference cases (Case1 to Case3b) needs further discussion/conclusion.
Note 2: For measurements as model input, no agreement on measurement types (i.e., time, power, and/or phase) in RAN1 for all cases (i.e., Case1 to Case3b). Measurement types (including their necessity) and sizes/dimension needs to be further discussed. Candidate measurement types discussed/evaluated for model input include CIR (contains timing, power and phase information), PDP (contains timing and power information), DP (contains timing information). For labels (i.e., model output) of AI/ML assisted positioning (Case2a, Case3a), RAN1 identified an initial listing of candidates that provide performance benefits (i.e., timing info, LOS/NLOS indicator). RSRP/RSRPP is for further discussion.
Note 3: The measurement size of one data sample = (measurement data size of one PRS/SRS resource)*(number of PRS/SRS resources needed for model input). The label size of one data sample = (label data size of one PRS/SRS resource)*(number of PRS/SRS resources needed for model output). The quantization and bit representation of time, power, and phase information (including their necessity) still need to be further discussed.  Existing specification allows reporting of up to 64 PRS/SRS resources per frequency layer for one positioning fix. For evaluations, most companies considered up to 18 TRPs. It should be noted that AI/ML positioning is not restricted to work only with maximum of 18 TRPs.
· Example of calculation on a potential lower bound on measurement size per PRS/SRS resource:
· A potential lower bound on measurement size per PRS/SRS resource can be calculated as follows (assuming timing only for 9 measurements per PRS/SRS resource): 16 + 9*8 = 88 bits. The total lower bound can be 88*N bits, where N is number of PRS/SRS resources used as model input for obtaining a positioning fix. This is based on the assumption of timing info as 16 bits for first arrival and 9 bits for relative timing.
· Example of calculation of a potential upper bound on measurement size per PRS/SRS resource:
· A potential upper bound on measurement size per PRS/SRS resource can be calculated as follows (assuming timing, power, and phase for 256 measurements per PRS/SRS resource and assuming 8 bit representation of each real number): 2*(8*256) = 4096 bits. The total upper bound can be 4096*N bits, where N is number of PRS/SRS resources used as model input for obtaining a positioning fix.
· For location coordinates (corresponding to model output)
· The bit representation of location coordinates depends on the type of shape, resolution, and uncertainty used to indicate the location (e.g., ellipsoid point, ellipsoid point with uncertainty circle, high accuracy ellipsoid with uncertainty ellipsoid, etc.) as listed in TS 23.032. The range of bit representation for location coordinates can be 7 bytes to 18 bytes (i.e., 56 to 144 bits). The location information report in existing specifications may contain additional information besides location coordinates (e.g., velocity, location error, integrity info, etc.)
· For intermediate positioning measurement (corresponding to model output):
· The quantization and bit representation of time, [RSRP/RSRPP], and LOS/NLOS information (including their necessity) as model output still need to be discussed in an appropriate working group. As a reference to existing timing representation in Rel17 [TS 37.355], an example on the label size can be of 21 bits per PRS/SRS resource while assuming model output produces one timing of 21 bits per PRS/SRS resource. The label size can be 21*N bits, where N is number of PRS/SRS resources for which intermediate positioning measurement has been generated. If power info LOS/NLOS indicator (7 bits 1 bit per PRS/SRS resource assuming hard value for LOS/NLOS indicator) is included, the label size becomes 2822*N bits. 
Note 4: No agreement on reporting types (i.e., periodicity, event-triggered/on-demand, etc.). 
Note 5: There are no agreements on the reporting latency. 
Note 6: RAN1 agreed on an initial listing of entities that can derive the monitoring metric for AI/ML positioning for different cases (Case1 to Case3b):
 -1: At least UE derives monitoring metric
 -2a: At least UE and LMF (based on ground truth) derives monitoring metric
     - LMF (if monitoring based on ground truth)
 -3a: At least gNB/TRP and LMF (based on ground truth) derives monitoring metric
     - LMF (if monitoring based on ground truth)
 -2b and 3b: At least LMF derives monitoring metric 
Note 7: No agreement yet on a monitoring decision entity or their mapping to other entities (e.g., entity running the inference, entity deriving the monitoring metric, etc.).
Note 8: RAN1 has studied several types of related statistics where potential request/report of Monitoring related statistics and its necessity are for further discussion. 

Agreement
For drafting LS,
This LS reply is meant to capture existing RAN1 agreements/conclusions/observations and discussions for the purpose of replying the RAN2 LS; The LS reply does not serve as additional agreements/conclusions/observations beyond what RAN1 has already agreed/concluded/observed.


Agreement
Common Notes for all sub-use-cases:
· In answering latency requirements, RAN1 used the following descriptions:
· Relaxed (e.g., minutes, hours, days, or no latency requirement)
· Near-real-time (e.g., several tens of msecs to a few seconds)
· Time-critical (e.g., a few msecs)
· In the reply, RAN1 captured the typical data size per each data sample.
· Model training is assumed to be offline training.
· In RAN1’s answer, RAN1 did not list assistance information. RAN1 has informed RAN2 of related conclusions/agreements/observations regarding assistance information in the RAN1 response to Part A.
· There may be other information identified for training not included in the tables. For example, in positioning enhancement, some information has been considered as potential spec impact (e.g., quality indicators, time stamps, RS configuration(s)). 
· In this reply for Part B, the term 'NW-side monitoring' is not explicitly used since RAN1’s understanding of the term is not fully aligned with RAN2 terminology. Rather, RAN1 explained directly the data contents for monitoring. It should also be noted that in the RAN1 response to part A, RAN1 used the term ‘NW-sided monitoring’ aligned with RAN2.
· For monitoring, RAN1 provided replies only for near-real-time monitoring. The requirements for data collection for relaxed monitoring, if necessary, can be considered to be similar to offline training requirements.


Agreement
· For inference for UE-side models, to ensure consistency between training and inference regarding NW-side additional conditions (if identified), the following options can be taken as potential approaches (when feasible and necessary): 
· Model identification to achieve alignment on the NW-side additional condition between NW-side and UE-side
· Model training at NW and transfer to UE, where the model has been trained under the additional condition
· Information and/or indication on NW-side additional conditions is provided to UE 
· Consistency assisted by monitoring (by UE and/or NW, the performance of UE-side candidate models/functionalities to select a model/functionality)
· Other approaches are not precluded
· Note: it does not deny the possibility that different approaches can achieve the same function.
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