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Introduction
This document summarizes the discussions during RAN1#113 for the agenda item 9.2.4.1, Evaluation on AI/ML for positioning accuracy enhancement.

This discussion corresponds to the objectives related to the positioning use case described in RP-213599 (SID) below.
	RP-213599 (SID):
Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 

AI/ML model, terminology and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable 
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g., 
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting at separate or joint ML operation. 
· Characterize lifecycle management of AI/ML model: e.g.,  model training, model deployment , model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference 
· Identify common notation and terminology for AI/ML related functions, procedures and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

For the use cases under consideration:

1. Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.
…

Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced.
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Dataset, model complexity 
Dataset - general
	· Nokia (R1-2304685)
Observation 1: The final technical report should highlight the usability of data augmentation to enhance the model performance used in AI/ML positioning.
Observation 2: One key challenge in AI/ML-based positioning is the availability of good quality data with sufficient diversity of positioning ground truth labels and samples with accurate information for fine tuning, updating, and monitoring.
Observation 3: For data collection, the required sample density (e.g., #samples/m2) as indicator to achieve a given positioning accuracy target is limited to simulated scenarios using UE’s uniform distribution. Thus, it is important to determine a complementary indicator for quality data collection in addition to sample density.
Proposal 2: RAN1 to study and evaluate for AI/M-based positioning additional quality indicators for data collection (e.g., IPD) in addition to sample/density (# samples/m2) for non-uniform UEs distribution.
Observation 5: For data collection, RAN1 to consider additional metrics (e.g., IPD) to sample density (e.g., #samples/m2) to identify potential non-uniform UE distribution. Consequently, to trigger methodologies (e.g., data augmentation) to enhance the data collection and model performance.


	· MediaTek (R1-2305659)
Proposal 11	: Further evaluate performance of AI/ML positioning for non-uniform UE distribution.




Impact of user density/size of the training dataset
Direct AI/ML positioning
	· MediaTek Inc. (R1-2305659)
Table 32. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m], different UE density  
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
UE density 
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	
	Model complexity
	Computation complexity
	AI/ML

	CIR [18,2,256]
	UE pos [x,y]
	0%
	InF-DH{60%,6m,2m}
	InF-DH{60%,6m,2m}
	4.5UEs/
	464.24K
	0.266G
	0.940

	
	
	
	
	
	2.25UEs/
	
	
	1.273

	
	
	
	
	
	1.125UEs/
	
	
	1.839

	
	
	
	
	
	0.5625UEs/
	
	
	3.250

	PDP [18,2,256]
	UE pos [x,y]
	0%
	
	
	4.5UEs/
	463.95K
	0.264G
	0.821

	
	
	
	
	
	2.25UEs/
	
	
	1.357

	
	
	
	
	
	1.125UEs/
	
	
	2.039

	
	
	
	
	
	0.5625UEs/
	
	
	2.758


Observation 42:	Performance of direct AI positioning decreases as the UE density decreases.
Table 33. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m], non-uniform UE distribution  
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	PDP [18,2,256]
	UE pos [x,y]
	0%
	InF-DH{60%,6m,2m}
	Left
InF-DH
	3600
(left)
+14400
(right)=18000
	3600
	463.95K
	0.264G
	1.518

	
	
	
	
	Right
InF-DH
	
	3600
	
	
	1.021


Proposal 11	: Further evaluate performance of AI/ML positioning for non-uniform UE distribution.


	· China Telecom (R1-2304857)
Observation 2: The performance of AI/ML based positioning enhancement decreases when the training dataset size decreases, but it still significantly outperforms the traditional method.


	· NVIDIA (R1-2305164)
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Figure 9: Positioning accuracy of AI/ML based method under different user densities.
Observation 9: Increasing user density can improve the positioning accuracy of the AI/ML model for RF fingerprinting. For example, increasing the user density by 64x can reduce the 90th percentile of the positioning error from 2.3 m to 74 cm.
Observation 10: Increasing user density to improve the positioning accuracy of the AI/ML model for RF fingerprinting comes at the cost of higher requirement on the training dataset for supervised training.
Proposal 4: Study data collection methods (e.g., utilizing digital twin technology) for obtaining training data set with high user density.


	· xiaomi (R1-2304897)
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Figure 3 Relationship between size of training data set and positioning accuracy for direct AI-based positioning



	· Huawei (R1-2304657)
Observation 20 : For direct AI/ML positioning, when the model input is PDP or CIR, over different dataset sizes for training, the performance of AI/ML-based fingerprint positioning decreases when the training dataset becomes smaller. In general, less complex models converge faster and need less labels to achieve a given accuracy, e.g.,
•	4 TRPs with length-128 PDP-based fingerprinting can provide sub-meter accuracy with training 15,000 samples, whereas the more complex CIR based model requires up to 25,000 samples for the same input dimensions.


	· Ericsson (R1-2304339)

Table 7 90%tile 2D positioning accuracy using PDP inputs for different model size classes and different training dataset sizes in the {60%, 6m, 2m} InF-DH scenario. Nt=Nt'=256.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different train set sizes in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	80,000
	40,000
	20,000
	10,000

	Small models PDP
	Dist. Assist.
	0.43 M
	11.5 M
	0.531
	0.680
	0.902
	1.249

	
	Cent. Assist.
	0.36 M
	9 M
	0.426
	0.524
	0.658
	0.873

	
	Cent. Direct
	0.36 M
	9 M
	0.426
	0.510
	0.656
	0.863

	Medium-size models PDP
	Dist. Assist.
	1.69 M
	43 M
	0.351
	0.476
	0.675
	1.004

	
	Cent. Assist.
	1.4 M
	34 M
	0.282
	0.360
	0.474
	0.707

	
	Cent. Direct
	1.4 M
	34 M
	0.269
	0.349
	0.496
	0.735

	Large models PDP
	Dist. Assist.
	5.6 M
	140 M
	0.273
	0.403
	0.596
	0.933

	
	Cent. Assist.
	5.6 M
	132 M
	0.202
	0.271
	0.397
	0.629

	
	Cent. Direct
	5.6 M
	132 M
	0.214
	0.288
	0.425
	0.653



[bookmark: _Toc135002578]Proposal 4	To further 3GPP discussion and preparation of observations/conclusions for the technical report, four train dataset size classes are defined as follows:
- Small datasets: density ~1.39 UE/m2
- Medium-size datasets: density ~2.79 UE/m2
- Large datasets: density ~5.56 UE/m2 
- Very large datasets: >6.94 UE/m2



AI/ML-assisted positioning
	· MediaTek Inc. (R1-2305659)
Table 2. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m, different user density
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	LOS/NLOS identification accuracy

	
	
	
	Training
	test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	6480
	720
	185.7k
	29.4M*18
	92.8%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	185.7k
	29.4M*18
	95.2%


Observation 2:	High user density of training dataset provides an improvement in LOS/NLOS identification accuracy over the low user density.

Table 10. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m, different user density
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized PDP (18*8*256)
	18TOA
	Ideal 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	6480
	720
	205k
	77M
	2.4

	non-normalized PDP (18*8*256)
	18TOA
	Ideal 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	1.05

	non-normalized PDP (18*8*256)
	18TOA
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	6480
	720
	205k
	77M
	3.1

	non-normalized PDP (18*8*256)
	18TOA
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	205k
	77M
	1.56


Observation 13:	High user density of training dataset provides an improvement in AI/ML assisted TOA estimation positioning over the low user density.
Proposal 4	: Support different user density of training dataset for different requirement on AI/ML positioning.


	· Apple (R1-2305973)
Table 1:  AI/ML-assisted Positioning (TOA estimation): Evaluation results for AI/ML model deployed on UE or Network-side, without model generalization, with a CNN, UE distribution area = 100x40 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 1
	47500
	2500
	1.6 M
	3.1 G
	1.138m

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 1
	23750
	1250
	1.6 M
	3.1 G
	1.396m

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 1
	9500
	500
	1.6 M
	3.1 G
	1.748m





	· xiaomi (R1-2304897)
[image: ]
Figure 4 Relationship between size of training data set and positioning accuracy for ToA-based prediction



	· Ericsson (R1-2304339)

Table 7 90%tile 2D positioning accuracy using PDP inputs for different model size classes and different training dataset sizes in the {60%, 6m, 2m} InF-DH scenario. Nt=Nt'=256.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different train set sizes in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	80,000
	40,000
	20,000
	10,000

	Small models PDP
	Dist. Assist.
	0.43 M
	11.5 M
	0.531
	0.680
	0.902
	1.249

	
	Cent. Assist.
	0.36 M
	9 M
	0.426
	0.524
	0.658
	0.873

	
	Cent. Direct
	0.36 M
	9 M
	0.426
	0.510
	0.656
	0.863

	Medium-size models PDP
	Dist. Assist.
	1.69 M
	43 M
	0.351
	0.476
	0.675
	1.004

	
	Cent. Assist.
	1.4 M
	34 M
	0.282
	0.360
	0.474
	0.707

	
	Cent. Direct
	1.4 M
	34 M
	0.269
	0.349
	0.496
	0.735

	Large models PDP
	Dist. Assist.
	5.6 M
	140 M
	0.273
	0.403
	0.596
	0.933

	
	Cent. Assist.
	5.6 M
	132 M
	0.202
	0.271
	0.397
	0.629

	
	Cent. Direct
	5.6 M
	132 M
	0.214
	0.288
	0.425
	0.653







Model complexity
	· Lenovo (R1-2305206)
Observation 1: AI/ML models for positioning require a careful balance between performance and complexity depending on the type of positioning mode (UE-assisted or UE-based).
Proposal 2: Await further discussions and progress on the definition “Nominal Computational Complexity” in AI 9.2.1 to establish a fair complexity comparison of performance evaluations among different companies


	· CMCC (R1-2305089)
Observation 5: As the complexity of the model increases, the positioning accuracy improves.


	· Ericsson (R1-2304339)
Proposal 1	For 3GPP AI/ML for PHY SI discussion, companies shall report nominal computational complexity values based on HLO representations (and not accelerator-optimized computational complexity values). Otherwise, the reported computation complexity value cannot be included for a fair cross-company comparison.
Proposal 2	To further 3GPP discussion and preparation of observations/conclusions for the technical report, three model size classes are defined for the positioning use case as follows:
- Small models: < 1 M model parameters
- Medium-size models: 1 – 8 M model parameters
- Large models: > 8 M model parameters




1st round discussion
Based on the evaluation results submitted by companies (e.g., see section 2.2), the following observations are drawn on training dataset size. Recall that this is a topic that RAN1 has agreed to study.

Observation 2.4-1 
For AI/ML based positioning, based on evaluation results using uniform or grid UE distribution in training data collection, the positioning accuracy is affected by the training dataset size for a given UE distribution area (or equivalently, sample density in #samples/m2), when the UE is distributed uniformly in training data collection. 
· There exists a tradeoff between the training dataset size and the achievable positioning accuracy. The larger the training dataset size (i.e., higher sample density), the smaller the positioning error (in meters), until a saturation point is reached where additional training data does not bring further improvement to the positioning accuracy.
· Note: here a sample refers to the training data collected of one UE at one location. Sample density is equivalent to the density of UEs with data collected in the training dataset.

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	HW/HiSi
	Support

	LG
	Fine

	mtk
	okay

	ZTE
	Agree

	OPPO
	Fine




Observation 2.4-2
For data collection of training dataset for AI/ML based positioning, for a given deployment scenario (e.g., InF-scenario, clutter parameter, drop) and with uniform UE distribution, the required sample density (e.g., #samples/m2) for achieving a given positioning accuracy target varies with AI/ML design choices including:
· different positioning approach (direct AI/ML, AI/ML-assisted), 
· different type of model input (e.g., CIR, PDP, DP), 
· the size of model input (e.g., Nt, N't, N'TRP),
· AI/ML model size (model complexity and computational complexity).

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	HW/HiSi
	[Fine in principle from our own observation], but maybe some more presentation/discussion of the underlying results within the group would be helpful, so that we get all the same understanding of this observation.

	ZTE
	Our thinking is this observation should be based on the assumption that model generalization is not evaluated. We want to check if some further details will be summarized beyond this proposal. For example, the size of model input to achieve sub-meter level positioning accuracy. Is it any chance to incorporate detailed results from companies?

	Qualcomm
	We do not see the need to include the examples in the second and third bullets.



For the topic of non-uniform UE distribution, Nokia (R1-2304685) and MediaTek (R1-2305659) suggest that RAN1 study the impact of non-uniform UE distribution. Moderator's understanding is, this refers to the non-uniform distribution of samples during training data collection. Essentially, this means the agreement below is to be expanded to include an Option 3 (non-uniform distribution). Furthermore, Nokia (R1-2304685) suggest to consider the inter-point distance metric (IPD) in addition to sample density (#samples/m2).

	Agreement
For evaluation of AI/ML based positioning, details of the training dataset generation are to be reported by proponent company. The report may include (in addition to other selected settings, if applicable):
· The size of training dataset, for example, the total number of UEs in the evaluation area for generating training dataset;
· The distribution of UE location for generating the training dataset may be one of the following:
· Option 1: grid distribution, i.e., one training data is collected at the center of one small square grid, where, for example, the width of the square grid can be 0.25/0.5/1.0 m.
· Option 2: uniform distribution, i.e., the UE location is randomly and uniformly distributed in the evaluation area. 



Moderator's understanding is, the UE distribution for testing should follow uniform distribution (see " UE horizontal drop procedure" below) regardless of uniform or non-uniform training data collection. 
	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area should be selected from
- (baseline) the whole hall area, and the CDF values for positioning accuracy is obtained from whole hall area.
- (optional) the convex hull of the horizontal BS deployment, and the CDF values for positioning accuracy is obtained from the convex hull.



Thus, the following proposal is presented accordingly.
Proposal 2.4-3
For AI/M-based positioning, additionally evaluate non-uniform sample distribution in training data collection. 
· For non-uniform sample distribution, companies report inter-point distance metric (IPD) in addition to sample density (#samples/m2)

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	HW/HiSi
	Should be optional

	LG
	Similar view with HW that it can be evaluated ‘optionally’ among the companies who are interested in

	ZTE
	It’s optional at this late stage.

	OPPO
	Agree with companies, this should be optional.

	Qualcomm
	We think the sampling distribution for training data collection is an implementation choice and can be different for different sites/deployments. We do not see the need for this additional evaluation.



3rd round discussion
Observation 2.4-2 and 2.4-3 are updated to reflect some of the comments by companies. 
· For Observation 2.4.-3:  As you see, there are other observations to summarize the impact of model input size, generalization, etc. Thus no details on underlying results are included here.
· For Observation 2.4-4: it's marked as option 3, and put in the context of previous agreement.

Observation 2.5-1
For data collection of training dataset for AI/ML based positioning, for a given deployment scenario (e.g., InF-scenario, clutter parameter, drop) and with uniform UE distribution, the required sample density (e.g., #samples/m2) for achieving a given positioning accuracy target varies with AI/ML design choices including:
· different positioning approach (direct AI/ML, AI/ML-assisted), 
· different type of model input (e.g., CIR, PDP, DP), 
· the size of model input (e.g., Nt, N't, N'TRP),
· AI/ML model size (model complexity and computational complexity).

	Company
	Comments

	Nokia/NSB
	We agree with the direction of this observation. Only a minor rewording/suggestion in the last bullet:
· AI/ML complexity model size (model complexity and computational complexity)

	ZTE
	Support.



Proposal 2.5-2
For AI/ML-based positioning, the distribution of UE location for generating the training dataset additionally include: 
· Option 3: non-uniform sample distribution in the evaluation area. 
· For non-uniform sample distribution, companies report inter-point distance metric (IPD) in addition to sample density (#samples/m2)

	Company
	Comments

	Nokia/NSB
	We believe that this additional scheme to generate a dataset is important to better represent realistic data collection. It has impact on aspects as TRP selection for Assisted and Direct AI/ML positioning. As commented in previous meetings, in this type of non-uniform UEs distribution, the dataset size is not enough to characterize a dataset. 

	Qualcomm
	Same to our comment from previous round. The potential non-uniform sample distributions can be quite large and the conclusions/benefits to be drawn from any potential additional evaluations cannot be scaled and generalized. Companies are still welcomed to provide additional evaluations but there is no need for this proposal.
 It is well-understood that sampling from realistic deployment can be non-uniform, but it is an implementation at training side to select the proper samples depending on training methodology and dataset assumptions.

	ZTE
	Low priority. For uniform distribution, companies are very clear about how to evaluate. At this late stage, we can focus on the issues that majority companies have already provided the inputs.



Model input
Measurement size / signaling overhead for model input
	· Qualcomm (R1-2305332)
Table 1 Reporting/signalling overhead computation for different cases and measurements
	Case
	Reporting
	Reporting/signaling overhead (bits)
	Notes

	Case1
	UE location
	2*Bloc 
	2D UE location (horizontal UE location)

	Case2a
	Existing DL-TDoA signal measurements with first path (i.e., N’t =1)
	N’TRP * 1 * Bt
	measurements include timing for first path (single port)

	Case2a/Case2b (existing or enhanced measurements)
	Existing DL-TDoA signal measurements with N’t  path timing information (i.e., firth path and N’t – 1 additional paths)
	N’TRP * N’t * Bt
	measurements include timing for N’t paths (single port)

	Case2b (new measurements)
	New CIR measurements 
	N’TRP * Nport * N’t * 2 * Breal,CIR  + N’TRP * Nport * Nt  
	measurements include magnitude, phase, and timing for reported samples


Proposal 1: For the study on accuracy and reporting overhead in AI/ML positioning, companies evaluate accuracy, model complexity, and reporting overhead for existing measurements (e.g., timing of first and/or additional multipath measurement reporting) for LMF-sided models.

	· InterDigital (R1-2305123)
Table 10. Comparison between horizontal accuracy, measurement size and signaling overhead (direct AI/ML positioning)
	Model input
	Measurement Size
	90% horizontal positioning accuracy

	UE position (2D horizontal)
	2
	NA

	RSRP (Per beam RSRP from multiple TRPs, 18 TRPs, 6 beams per TRP)
	108
	3.35

	Per beam RSRP from multiple TRPs (18 TRPs, 6 beams per TRP) and per TRP RSTD value (18 RSTD values)
	126
	1.69

	CIR (18 TRPs, 256 taps per TRP, Complex Number=2)
	9216
	0.98

	PDP (18 TRPs, 256 taps per TRP)
	4608
	1.59

	CIR (6 TRPs, 256 taps per TRP, Complex Number=2)
	3072
	1.70

	CIR (18 TRPs, 32 taps per TRP, Complex Number=2)
	1152
	1.85


Proposal 2: For UE assisted AI/ML based positioning, study RSRP+RSTD measurement input as one of the options due to lower signalling overhead.


	· vivo (R1-2304475)
Table 78	Contained information for different model input types
	Model input types
	Contained multipath information related to positioning

	
	Delay
	Power
	Phase

	CIR
	Y
	Y
	Y

	PDP
	Y
	Y
	N

	DP
	Y
	N
	N

	RSRPP
	N
	Y
	N



[image: ]
Observation 57:	The bit overhead of CIR reporting is acceptable when the number of TRPs used for positioning is relatively small, such as 4 TRPs.


	· CATT (R1-2304726)
In most of our simulations, for the evaluation of AI/ML based positioning method, CIR of all (NTRP = 18) TRPs with all (NT = 256) taps are used as the model input, and single port (Nport = 1) is assumed. Each sample is represented by double float type (8 Byte, i.e. 64 bits). Thus, the measurement size is NTRP*Nport*NT*2*64 = 294912bit per UE, unless otherwise stated, e.g. in Section Error! Reference source not found., Error! Reference source not found. and Error! Reference source not found.. We do not optimize the signaling overhead for AI/ML model at LMF side, and thus it can be viewed as the same with the measurement size.
3.1.6.2.	Different CIR taps number as model input
In this section, we evaluate the positioning performance and the computation complexity of the AI/ML model by reducing the number of CIR taps. In the simulation, only the first 128, 64, and 32 CIR taps from the 256 CIR taps in time domain are used as the model input respectively. So the values of measurement size are 147456bits per UE (NT=128), 73728bits per UE (NT=64), 36864bits per UE (NT=32). 


	· Ericsson (R1-2304339)

Table 10 Dataset storage sizes [bytes] for 40,000 samples with different sub-sampled length N't.
	Dataset storage sizes for 40,000 samples [MB] with different sub-sampled length N't

	Input type
	Nt'=256
	Nt'=128
	Nt'=64
	Nt'=32
	Nt'=16
	Nt'=9

	CIR
	2949.1
	1497.6
	760.32
	391.68
	207.36
	126.72

	PDP
	737.3
	391.68
	207.36
	115.2
	69.12
	48.96



Table 12 Dataset storage sizes [bytes] for 40,000 samples with different truncated time domain lengths Nt.
	Dataset storage sizes for 40,000 samples [MB] with different truncated time domain lengths Nt

	Input type
	Nt =256
	Nt =128
	Nt =64
	Nt =32

	CIR
	2949.1
	1474.6
	737.3
	368.6

	PDP
	737.3
	368.6
	184.3
	92.2

	DP
	23.0
	11.5
	5.8
	-




Measurement size and signalling overhead for DP
For the evaluation of AI/ML based positioning method, model input size for one sample of DP is calculated as the following. 
a. [bookmark: _Toc135002581]If using bitmap to indicate the timing of the N't paths: (N'TRP * Nt) bits, where a length Nt bitmap is used to report DP for a link. 
b. [bookmark: _Toc135002582]If directly indicating path timing of the N't paths: (N'TRP * Nt' * Bt ) bits, where Bt is the number bits to represent the timing value of a detected path. 

Measurement size and signalling overhead for CIR and PDP when not applying sub-sampling
For the evaluation of AI/ML based positioning method, model input size for one sample of CIR or PDP is calculated as the following, if sub-sampling is not applied.  
c. [bookmark: _Toc135002584]For CIR: (N'TRP * Nport * Nt * 2 * Breal,CIR ) bits, where Breal,CIR is the number of bits to represent a real value for CIR.  
d. [bookmark: _Toc135002585]For PDP: (N'TRP * 1 * Nt * Breal,PDP ) bits, where Breal,PDP is the number of bits to represent a real value for path power.

Measurement size and signalling overhead for CIR and PDP when sub-sampling is applied
For the evaluation of AI/ML based positioning method, model input size for one sample of CIR or PDP is calculated as the following, if sub-sampling is applied.  
e. [bookmark: _Toc135002587]If using bitmap to indicate the timing of the N't paths: For CIR: (N'TRP * Nt + N'TRP * Nport * N't * 2 * Breal,CIR) bits, where Breal,CIR is the number of bits to represent a real value for CIR. For PDP: (N'TRP * Nt + N'TRP * 1 * N't * Breal,PDP ) bits, where Breal,PDP is the number of bits to represent a real value for path power. 
f. [bookmark: _Toc135002588]If directly indicating path timing of the N't paths: For CIR: (N'TRP * Nport * N't * (Bt + 2 * Breal,CIR )) bits, where Breal,CIR is the number of bits to represent a real value for CIR.  For PDP: (N'TRP * 1 * N't * (Bt + Breal,PDP )) bits, where Breal,PDP is the number of bits to represent a real value for path power.





1st round discussion
As agreed in RAN1#112bis, several companies have reported the measurement size for their model input. When measurements for model input need to be sent to LMF (Case 2a/2b), this has impact to signaling overhead as well.
	Agreement
For the evaluation of AI/ML based positioning method, the measurement size and signalling overhead for the model input is reported. 



Based on the analysis and proposals submitted by companies (see the cited contribution texts in section above), the following are recommended for discussion.
· Observation 3.2.1-1 is inspired by vivo (R1-2304475) description. As CIR/PDP/DP carries different amount of information about the radio link, correspondingly the measurement size and signalling overhead is different, regardless of how the signalling is defined in the end.
· Observation 3.2.1-2 is based on descriptions in Qualcomm (R1-2305332), InterDigital (R1-2305123), vivo (R1-2304475), CATT (R1-2304726), Ericsson (R1-2304339). Several parameter values directly and (approximately) linearly affect the measurement size.

Observation 3.1.1-1
For AI/ML based positioning with multipath measurement for model input, 
· For a given set of parameters (N'TRP, Nt, N't, Nport)
· CIR has the largest measurement size, where CIR is composed of a list of per-path measurements of (a) path delay, (b) path power and (c) path phase.
· PDP has smaller measurement size than CIR, where PDP is composed of a list of per-path measurements of (a) path delay and (b) path power.
· DP has the smallest measurement size, where DP is composed of a list of selected path delays.
· Note: for DP, Nport =1

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	HW/HiSi
	The observation does not seem to be needed in our understanding and at least some more clarifications could be helpful firstly:
Does the measurement size also includes the #bits that are needed to represent the values? DP can be considered as a special case of PDP where 1bit is used for quantization. Thus, we do not think it is needed to explicitly mention DP, it is just one form of the PDP. And if quantization is not considered, wouldn’t then anyway have PDP and DP the same size, or am I missing something here? 

	LG
	The motivation of this observation is unclear. It is based on the measurement size but the corresponding tradeoff is also to be considered in terms of the accuracy performance

	mtk
	1,  DP may be limited to timing based measurement. The angle based measurement method, such as DL-AOD and UL-AOA may not be applicable. 

So, this is a trade off. Maybe it should also be captured within the observation 

	ZTE
	OK with the general conclusion. The note is not necessary. Nport =1 can be applied to all measurement types.



For reference, the observation above is about measurement size and signalling overhead. The related tradeoff of positioning performance is captured in the observation below.
	Observation 6.1.1.1-1 (CIR vs PDP vs DP)
For direct AI/ML positioning, the positioning accuracy at model inference is affected by the type of model input.  Evaluation results submitted to RAN1#113 show that if changing model input type while holding other parameters (e.g., Nt, N't, Nport, N'TRP) constant, 
· The positioning error of PDP as model input is 0.82 ~ 1.42 times the positioning error of CIR as model input.
· The positioning error of DP as model input is 0.84 ~ 1.96 times the positioning error of CIR as model input.
· Note: DP uses Nport=1 only. 




[bookmark: _Hlk135467117]Observation 3.1.1-2
For AI/ML based positioning with multipath measurement for model input, 
· For each model input type (CIR, PDP, DP)
· The measurement size increases linearly as N'TRP increases, where N'TRP is the number of TRPs that provide measurements for the positioning.
· For model input type CIR and PDP,
· The measurement size increases linearly as Nport increases, where Nport is the number of transmit/receive antenna port pairs that provide measurements for the positioning.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, measurement size for model input increases (approximately) linearly with N’t; otherwise (i.e., full set of Nt samples in time domain is used as model input), measurement size for model input increases linearly with Nt;
· Note: for Case 2b and 3b, measurement size of model input has impact to signaling overhead for model inference.

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	HW/HiSi
	This observation does not seem to be needed. It is already clear from the formula that that measurement size increases linearly.

	LG
	To our understanding, the main content of the observation on MTRP construction is to adopt N_t’ instead of N_t that the size/dimension of the model input is reduced with respect to N_t’ but the degradation of the accuracy performance is reasonable (i.e. good tradeoff between input signaling overhead and the accuracy performance)

	mtk
	1, just think that single port may not be un-common for CIR and PDP, since DL-PRS is only single port from spec point of view
2, the motivation to have this observation is not quite clear

	ZTE
	Not necessary.  Observation 3.1.1-1 is clear enough.

	OPPO
	This observation seems not needed.



2nd round discussion
As discussed in offline, the observations are necessary to show the tradeoff of performance and overhead. The observation is updated below according to feedback:
· two observations are combined
· removed " Note: for DP, Nport =1", with the understanding that this is the reasonable implementation, and all evaluations thus far have this assumption.
· "(approximately)" is added, since it may not be exactly linear depending on how the measurement is encoded for signalling (e.g., using relative values).

Observation 3.1.2-1
For AI/ML based positioning with multipath measurement for model input, 
· For a given set of parameters (N'TRP, Nt, N't, Nport)
· CIR has the largest measurement size, where CIR is composed of a list of per-path measurements of (a) path delay, (b) path power and (c) path phase.
· PDP has smaller measurement size than CIR, where PDP is composed of a list of per-path measurements of (a) path delay and (b) path power.
· DP has the smallest measurement size, where DP is composed of a list of selected path delays.
· For each model input type (CIR, PDP, DP)
· The measurement size increases (approximately) linearly as N'TRP increases, where N'TRP is the number of TRPs that provide measurements for the positioning.
· For model input type CIR and PDP,
· The measurement size increases (approximately) linearly as Nport increases, where Nport is the number of transmit/receive antenna port pairs that provide measurements for the positioning.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, measurement size for model input increases (approximately) linearly with N’t; 
· If full set of Nt samples in time domain is used as model input, measurement size for model input increases (approximately) linearly with Nt;
· Note: for Case 2b and 3b, measurement size of model input has impact to signaling overhead for model inference.

	Company
	Comments

	ZTE
	Some minor changes:
· For each model input type (CIR, PDP, DP)
· The measurement size increases (approximately) linearly as N'TRP increases, where N'TRP is the number of TRPs that provide measurements for the positioning.
· For model input type CIR and PDP,
· The measurement size increases (approximately) linearly as Nport increases, where Nport is the number of transmit/receive antenna port pairs that provide measurements for the positioning.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, measurement size for model input increases (approximately) linearly with N’t; 
· If full set of Nt samples in time domain is used as model input, measurement size for model input increases (approximately) linearly with Nt;
· Note: for Case 2b and 3b, measurement size of model input has impact to signaling overhead for model inference and data collection.

	Qualcomm
	We are ok with the intention of the proposal. 
· To account for existing multipath reporting, the selection of N’t samples need not to be restricted to the strongest power samples. We suggest the following edit:
 “If N’t (N’t < Nt) samples with the strongest power are selected as model input, measurement size for model input increases (approximately) linearly with N’t”

· The wording in the heading needs also to reflect that this observation is reflected from evaluation perspective. We suggest this additonal wording:
“ For evaluation of AI/ML based positioning with multipath measurement for model input, ...“
[Moderator] It does not seem reasonable to remove " with the strongest power ". According to the agreement below, Nt samples with the strongest power are selected for the evaluation. The observation simply reused the phrase.
Agreement
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to Nt consecutive time domain samples.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.


	Nokia/NSB
	We agree with the direction. However, in the current evaluation the unique measurement that was collected by companies is CIR. PDP and DP are a consequence of a pos-processing of this measurement (CIR). Thus, we suggest to avoid using the term “measurement“ when referred to PDP and DP. 
We propose the following rewording: 
“Measurement”  (to be replaced by )“input parameter” for each sub bullet. 
[Moderator] This does not seem to be common understanding. In fact, PDP and DP exist in current spec with limited number of paths, while CIR currently does not exist. PDP and DP can be measured without measuring CIR first.	



Apple (R1-2305973) provided simulation results to show that the AI/ML model delivers better performance if the evaluation is the convex hull rather than the entire area. The observation is presented to reflect Apple's results.
Observation 3.1.2-2 
The performance of AI/ML positioning with the evaluation area as the convex hull of the horizontal BS deployment shows better performance than that with the whole hall area as evaluation area.
· For Convex hull: UE distribution area = 100x40 m;
· For whole hall area: UE distribution area = 120x60 m

	Company
	Comments

	HW/HISi
	Ok

	Qualcomm
	We think this is obvious. We are not sure about the implications of this observation.

	Nokia/NSB
	We believe that this observation is a particular case of the observation captured in Observation 2.4-1 (already approved in the fist online session). It is because fixing the same dataset size, using uniform UE distribution, the impact between using convex hull and whole all area is that the UE density is higher in convex hull.  


	ZTE
	Tend to agree Nokia’s comments.



3rd round discussion
Observation 3.1.2-1 is updated to the following according to companies' comments.
· To Qualcomm: It does not seem reasonable to remove " with the strongest power ". According to the agreement made before, Nt samples with the strongest power are selected for the evaluation. The observation simply reused the phrase.
· To Nokia: This does not seem to be common understanding: " PDP and DP are a consequence of a pos-processing of this measurement (CIR)." In fact, PDP and DP exist in current spec with limited number of paths, while CIR currently does not exist. PDP and DP can be measured without measuring CIR first.

Observation 3.1.3-1
For evaluation of AI/ML based positioning with multipath measurement for model input, 
· For a given set of parameters (N'TRP, Nt, N't, Nport)
· CIR has the largest measurement size, where CIR is composed of a list of per-path measurements of (a) path delay, (b) path power and (c) path phase.
· PDP has smaller measurement size than CIR, where PDP is composed of a list of per-path measurements of (a) path delay and (b) path power.
· DP has the smallest measurement size, where DP is composed of a list of selected path delays.
· For each model input type (CIR, PDP, DP)
· The measurement size increases (approximately) linearly as N'TRP increases, where N'TRP is the number of TRPs that provide measurements for the positioning.
· For model input type CIR and PDP,
· The measurement size increases (approximately) linearly as Nport increases, where Nport is the number of transmit/receive antenna port pairs that provide measurements for the positioning.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, measurement size for model input increases (approximately) linearly with N’t; 
· If full set of Nt samples in time domain is used as model input, measurement size for model input increases (approximately) linearly with Nt;
· Note: for Case 2b and 3b, measurement size of model input has impact to signaling overhead for model inference and data collection.

	Company
	Comments

	vivo
	See our comment to section 6.1.3.3.
In previous  Agreement
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to the first Nt consecutive time domain samples.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.

So our understanding is that N’t is the number of time domain samples selected as input. It seems some  company interpreted N’t as the nunber of path reported. If that’s the case, that’s not aligned with previous agreement and should be clarified before we make any observations. 

	Moderator
	The observation is updated below so that N't samples wording is used. It can be discussed in the future how the N't samples relate to the paths. Please continue the checking using the updated observation below.
Observation 3.1.3-1A
For evaluation of AI/ML based positioning with multipath measurement for model input, 
· For a given set of parameters (N'TRP, Nt, N't, Nport)
· CIR has the largest measurement size, where CIR is composed of a list of per-pathsample measurements of (a) path delay, (b) path power and (c) path phase.
· PDP has smaller measurement size than CIR, where PDP is composed of a list of per- pathsample measurements of (a) path delay and (b) path power.
· DP has the smallest measurement size, where DP is composed of a list of selected path delays.
· For each model input type (CIR, PDP, DP)
· The measurement size increases (approximately) linearly as N'TRP increases, where N'TRP is the number of TRPs that provide measurements for the positioning.
· For model input type CIR and PDP,
· The measurement size increases (approximately) linearly as Nport increases, where Nport is the number of transmit/receive antenna port pairs that provide measurements for the positioning.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, measurement size for model input increases (approximately) linearly with N’t; 
· If full set of Nt samples in time domain is used as model input, measurement size for model input increases (approximately) linearly with Nt;
· Note: for Case 2b and 3b, measurement size of model input has impact to signaling overhead for model inference and data collection.


	Qualcomm
	To Moderator:
Our understanding is that existing timing and additional path reporting can be part of PDP and DP, right? (please indicate if it is not.) The Moderator indicated in multiple occasions in previous meetings that PDP and DP can be inclusive to existing timing and additional path reporting. The current specs do not restrict the methodology for UE to measure the reported multipath. That being said, we do not see why the selection of N’t samples need to be restricted to strongest power. We strongly insist on removing “strongest power“.
We also do not support the updated change (i.e., replacing path by sample).


	Nokia/NSB
	Ok with the direction of the Observation. We only have the following rewording in the last bullet:

· Note: for Case 2b and 3b, measurement size of model input has impact to signaling overhead for model inference, data collection, and monitoring.



Regarding Observation 3.1.2-2, Qualcomm and Nokia think it's obvious. This is likely true for everybody who follows the positioning topic closely. Moderator's understanding is, there is no harm to record this observation since the intuition is explicitly backed up by Apple's evaluation. There are two factors that make it easier to perform positioning for convex hull: (a) smaller area as pointed out by Nokia; (b) the UEs that are distributed outside of the convex hull suffer from the 'edge effect' and have worse access to TRPs --- this difficulty is shared with the conventional positioning method. The observation is updated with the reasoning below for further checking.

Observation 3.1.3-2 
Evaluation results demonstrate that the performance of AI/ML positioning with the evaluation area as the convex hull of the horizontal BS deployment shows better performance than that with the whole hall area as evaluation area. This is due to: (a) convex hull has smaller UE distribution area; (b) for whole hall area, the UEs located outside the convex hull have diminished access to TRPs.
· For convex hull: UE distribution area = 100x40 m;
· For whole hall area: UE distribution area = 120x60 m

	Company
	Comments

	Nokia/NSB
	Ok with the current version of the Observation.
Only a minor comment. We can think to extend the convex hull evaluation considering the training step on a convex hull and do the inference in a hall area. This setup will bring new results, not necessarily trivial in our understanding.  Thus, if possible, we suggest to FL to  generate a new proposal on this direction.  



In Samsung (R1-2305509), preprocessing of CIR is applied to obtain signatures, and signatures are used as model input. As suggested by Samsung, the proposal below is presented below to cover model input preprocessing methods.
Proposal 3.1.3-3:
For evaluation of model input for AI/ML based positioning, companies optionally evaluate methods of model input pre-processing, e.g., N’(N’<Nt) features derived/calculated from length Nt CIR are selected as model input. 
· Companies report the details on the pre-processing methods, meaning and size of the features.

	Company
	Comments

	Qualcomm
	This proposal touches on implementation aspects. We do not see the need for this proposal. Individual companies are welcomed to submit related evaluations but we do not see the need to have an agreement.




(Closed) TRP index for model input
	· vivo (R1-2304475)
Table 77	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Selected TRP number


	Total TRP number


	TRP pattern
	Approach
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	
	
	
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	9
	18
	Fixed
0:2:17
	1-A
	1.65M
	22.30M
	1.00

	CIR
	Pos.
	9
	18
	Random
	1-B
	1.65M
	22.30M
	1.76

	CIR
	Pos.
	9
	18
	Fixed
0:2:17
	2-A
	1.65M
	22.30M
	1.01

	CIR
	Pos.
	9
	18
	Random
	2-B w/ TRP coding
	1.65M
	22.30M
	1.54

	CIR
	Pos.
	9
	18
	Random
	2-B w/o TRP coding
	1.65M
	22.30M
	>10


Proposal 35:	Approach 2 should be divided into two branches in the same way as Approach 1, i.e., Approach 2-A and Approach 2-B.  
· Approach 2-A：The set of TRPs (N’TRP) that provide measurements is fixed.
· Approach 2-B：The set of TRPs (N’TRP) that provide measurements can change dynamically.

Observation 54:	Approach 1-a and Approach 2-a with a fixed TRP pattern can achieve similar performance. 
Observation 55:	Approach 1-b and Approach 2-b with random (dynamic) TRP patterns can still achieve great positioning performance (1.54m@90%), indicating that it is feasible to deploy a single AI/ML model to cover dynamic TRP patterns in practice.
Observation 56:	The performance of Approach 2-b is slightly better than that of Approach 1-b when TRP coding is included into the model input, while Approach 2-b suffers from poor positioning performance when TRP coding is not included into the model input.
Proposal 36:	The TRP information, which implicitly or explicitly indicates the TRP identification/index of measurement should be included into the model input for training of Approach 1-b and Approach 2-b with random (dynamic) TRP patterns.






1st round discussion
For the evaluation of TRP reduction, vivo suggested that Approach 2 can be updated to include 2-A and 2-B, so that the set of TRPs providing measurements can change dynamically, similar to Approach 1-B. For Approach 2-B, vivo suggest to develop a robust AI/ML model that can effectively handle various patterns of active TRPs, and the pattern can change dynamically. To achieve this, TRP indices are provided as an input to the AI/ML model.
To reflect vivo suggestion, Proposal 3.2-1 is presented below to include the Approach 2-B.

Proposal 3.2.1-1
The agreement made in RAN1#112bis is updated to the following to include Approach 2-B.
Agreement
For the evaluation of AI/ML based positioning, the study of model input due to different number of TRPs include the following approaches. Proponent of each approach provide analysis for model performance, signaling overhead (including training data collection and model inference), model complexity and computational complexity.
· Approach 1: Model input size stays constant as NTRP=18. The number of TRPs (N’TRP) that provide measurements to model input varies. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs do not provide measurements to model input, i.e., measurement value is set to 0 such that the (NTRP  N’TRP) TRPs do not affect model output.
· Approach 1-A. The set of TRPs (N’TRP) that provide measurements is fixed.
· Approach 1-B. The set of TRPs (N’TRP) that provide measurements can change dynamically.
· Note: for Approach 1, one model is provided to cover the entire evaluation area.
· Approach 2: The TRP dimension of model input is equal to the number of TRPs (N’TRP) that provide measurements as model input. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs are ignored by the given model. For a given AI/ML model, the set of TRPs (N’TRP) that provide measurements is fixed. 
· Approach 2-A. The set of active TRPs (N’TRP) that provide measurements is fixed.
· For Approach 2-A: one model can be provided to cover the entire evaluation area, which is equivalent to deploying N’TRP TRPs in the evaluation area for positioning if ignoring the potential inference from the remaining (18  N’TRP) TRPs.
· Approach 2-B. The set of active TRPs (N’TRP) that provide measurements can change dynamically.
· For Approach 2-B, one model is developed to handle various patterns of active TRPs. 
· For Approach 2, if Nmodel (Nmodel >1) models are provided to cover the entire evaluation area, the total complexity (model complexity is the summation of the Nmodel models.

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	HW/HiSi
	Ok with the update.

	LG
	Fine

	mtk
	The change seems to become better to align between two approaches. We support

	ZTE
	Support.




Other
In the following, selected inputs from companies’ contributions are provided. 
	· CMCC (R1-2305089)
Observation 1: If RSRP is taken as an additional model input to CIR, the positioning accuracy can be improved.


	· China Telecom (R1-2304857)
Observations 1: The positioning accuracy can be further improved when the measurement information is combined as the input of AI/ML model.


	· Indian Institute of Tech (M), IIT Kanpur (R1-2305689)
Observation 1: Combination of CIR and RSRP across different dimensions provides different positioning error.


	· Samsung (R1-2305509)
[image: ]
Fig.6 CDF of positioning errors with normalized or non-normalized CIR
Observation 6: the normalized CIR may degrade the inference performance.
Observation 9: SIG based input could adopt better (e.g., 7~8 times better in pos accuracy) with simple AI/ML model (e.g., MLP) than CIR based input.
Observation 10: the SIG-based input could drastically reduce the input data size and the complexity (e.g., with 98% reduction) without accuracy loss (e.g., even with 1% improvement).


	· vivo (R1-2304475)
[image: ]
Figure 4	CDF of positioning accuracy (m) of different measurements
Observation 2:	Different inputs of AI/ML model will affect the positioning performance for AI/ML based positioning. Time domain channel CIR as the input of AI/ML model obtains the best positioning accuracy.
Proposal 1:	Capture in the TR that time domain CIR as the model input for direct AI/ML positioning obtains the best performance compared to other model inputs.
Proposal 2:	Support time domain CIR as the model input at least for direct AI/ML positioning.


	· Google (R1-2304846)
Proposal 1: For CIR/PDP based model input, study the impact from the following Rx schemes 
· Rx Scheme 1: The CIR/PDP is measured from the Rx port with the strongest RSRP
· Rx Scheme 2: The CIR/PDP is averaged over all the Rx ports
Proposal 2: For CIR/PDP based model input, study at least the following options for CIR/PDP quantization:
· Option 1: The CIR/PDP is quantized based on several DFT bases
· Option 2: The CIR/PDP is quantized based on several DCT bases
Proposal 3: Study to use L1-SINR from each cell in addition to the CIR/PDP as the input to reflect the potential channel estimation accuracy for the CIR/PDP.


	· Ericsson (R1-2304339)
Observation 9	When compared to the averaged PDP input type, the 2-port PDP input type (1) doubles the dataset sizes; (2) requires higher computational complexity; and (3) achieves marginal performance improvements.
Proposal 4	For AI/ML based positioning, do not support multi-port PDP as model input. Single-port PDP as in existing specification is sufficient.



Model output
Hard decision and soft decision output 
	· Qualcomm (R1-2305332)
Observation 21: In AI/ML assisted positioning, evaluations show that the ML-based soft-decision algorithm outperforms the hard-decision approach for AI-ML-assisted positioning. 
· The 90th percentile positioning error improves from 25.0 m to 4.7 m for the {60%, 6m, 2m} clutter setting 
· The 90th percentile positioning error improves from 14.8 m to 0.5 m for the {40%, 4m, 2m} setting. 




Label error 
	· CEWiT (R1-2305896)
Proposal-5: For AI/ML assisted positioning with AOA/AOD as model output, study the im-pact of the labelling error to Angle estimation accuracy and /or positioning accuracy con-sidering the location error to be modeled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range.





Evaluation of generalization issues of direct AI/ML positioning
In this meeting, a large amount of evaluation work has been performed by companies for direct AI/ML positioning. These valuable results are very important to help RAN1 to make progress.
Selected results submitted by companies are copied below.
Evaluation without generalization considerations (same setting for training and testing)
	· MediaTek Inc. (R1-2305659)
Table 21. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	1-port CIR [18,1,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	202.10K
	73.18M
	1.32

	CIR [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	464.24K
	0.266G
	0.940

	PDP [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	463.95K
	0.264G
	0.821


Observation 26:	Direct AI positioning can significantly improve the positioning performance in heavy-NLOS scenarios compared to conventional methods.
Observation 27:	The evaluation results shown that the positioning performance of 2 transmit antenna ports (by different polarization) is better than the existing 1 antenna port in the spec.
Proposal 8	:At least support PDP as model input for direct AI/ML positioning, and further study CIR to check whether the phase part in CIR is useful.
Proposal 9	: Study and evaluate the performance of direct AI/ML positioning with multiple transmit/receive antenna port pairs (for example, 2 ports with different polarization).


	· InterDigital (R1-2305123)
Table 1. Evaluation results for AI/ML model deployed on UE-side, different model inputs, without model generalization, UE distribution area = [120x60 m]
	Model input
	Model output
	(Percentage of training data set without) Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Comp. complexity
	AI/ML

	RSRP 
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M 
	3.35

	RSRP +RSTD
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	334k
	11.41 M
	1.69

	CIR (NTRP =18* Nt = 256*Complex Number=2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000

	37 M
	843 M
	0.98

	PDP (NTRP =18* Nt = 256*Real Number=1)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	37 M
	839 M
	1.59


Observation 1: Direct AI/ML positioning technique based on PDP measurements as model input, achieves ~1.59 m horizontal positioning accuracy for 90% UEs. 
Observation 2: Direct AI/ML positioning technique based on PDP measurements as model input results ~0.61 m worse horizontal accuracy than CIR measurements as model input for 90%ile UEs.  
Observation 3: Direct AI/ML positioning technique based on PDP measurements as model input achieves ~0.1 m better horizontal accuracy than RSRP+RSTD measurements with significantly higher model complexity (~112 times) and computational complexity(~76 times) compared to RSRP+RSTD measurements as model input.


	· Apple (R1-2305973)
Observation 1: For Direct AI/ML positioning
· As the complexity of the model increases, the positioning error performance improves.
· The performance of AI/ML positioning with the evaluation area as the convex hull of the horizontal BS deployment shows better performance than that with the entire factory as evaluation area. 
· Use of the PDP and DP as input shows improved performance compared with using the CIR as input for the default model
· NOTE: This may be model specific and should be investigated. 
· In the case of a uniform distribution of the UEs in the factory, as the user density increase, the positioning performance improves.

Proposal 1: Investigate the effect with a non-uniform distribution of users.


	· China Telecom (R1-2304857)
Observations 1: The positioning accuracy can be further improved when the measurement information is combined as the input of AI/ML model.
Table 2: Positioning accuracy for different schemes
	Methods
	50%
	67%
	80%
	90%

	Traditional method
	11.89
	13.62
	14.78
	16.36

	AI + TOA
	0.37
	0.46
	0.57
	0.69

	AI + DL-TDOA
	0.38
	0.49
	0.59
	0.73

	AI + CIR
	0.27
	0.36
	0.43
	0.54

	AI + RSRP +TOA
	0.22
	0.29
	0.36
	0.43

	AI + RSRP + DL-TDOA
	0.19
	0.25
	0.31
	0.38





	· CAICT (R1-2305019)
Observation 1: The horizontal positioning accuracy of direct AI/ML positioning with complex model (CNN+ CR_CBAM_Block) could be 0.046m at CDF=90% when all samples in training dataset have ground truth label without model generalization.
Observation 2: For AI/ML based directly positioning method, a lower complexity (CNN based) model can still achieve acceptable positioning accuracy (e.g., <1m), when compared to a higher complexity model.
Observation 3: The horizontal positioning accuracy of direct AI/ML positioning could be 0.493m at CDF=90% when partial samples (1000 samples out of 150000 samples) in training dataset have ground truth label and semi-supervised learning is used.


	· Indian Institute of Tech (M), IIT Kanpur (R1-2305689)
Table 1: Horizontal Position Error (m) and Model Complexity for 3 cases of combining CIR and RSRP
	Approach
	10 %
	50 %
	90%
	Model Complexity

	Case 1
	1.15
	2.89
	5.39
	2.66M parameters

	Case 2
	1.09
	2.92
	5.45
	2.66M parameters

	Case 3
	1.07
	2.63
	5.04
	1.48M parameters




	· Huawei (R1-2304657)
Observation 7 : For direct AI/ML positioning, when the model input type is CIR, the positioning accuracy for the scenario setting {60%, 6m, 2m} decreases by 0.22 meters when the number of input time domain points is reduced from 256 to 32. While the positioning accuracy for the scenario setting {40%, 2m, 2m} decreases by 0.64 meters when the number of input time domain points is reduced from 256 to 32. 
Observation 8 : For direct AI/ML positioning, when the model input type is PDP, the positioning accuracy for the scenario setting {60%, 6m, 2m} decreases by 0.08 meters when the number of input time domain points is reduced from 256 to 32. While the positioning accuracy for the scenario setting {40%, 2m, 2m} decreases by 0.64 meters when the number of input time domain points is reduced from 256 to 32.
Proposal 1 : At least for direct positioning, since the required measurement payload size to achieve a given accuracy target varies depending on deployment scenario and channel conditions, measurement reporting with flexible payload size should be supported.


	· CATT (R1-2304726)
Observation 1: For directly estimating UE’s positioning with perfect network synchronization, the horizontal positioning accuracy is 0.58m@90% of CDF percentile.
Observation 2: For directly estimating UE’s positioning with network synchronization error (truncated Gaussian distribution of 50 ns), the horizontal positioning accuracy is 0.84m@90% of CDF percentile.




Evaluation of generalization aspects (different setting for training and testing)
Different drops
	· NVIDIA (R1-2305164)
Observation 3: RF fingerprinting is site specific, i.e., the AI/ML model learns the mapping between channel realizations and the corresponding UE’s positions.
Observation 4: The AI/ML model for RF fingerprinting trained on Drop 1 does not generalize well to a different Drop 2.
Proposal 1: If the AI/ML model for RF fingerprinting trained on Drop 1 is directly applied to a different Drop 2, it should not be expected that the model can generalize well.


	· ZTE (R1-2304538)
Observation 9: 	For model generalization evaluation in various simulation drops, when datasets for training and test are from different simulation drops, direct AI/ML positioning based on CIR cannot generalize its performance in the test dataset.
Observation 10: 	For model generalization evaluation in various simulation drops, when model update (or fine-tuned) is performed based on dataset in a simulation drop that is different from the simulation drop used for model training, 
•	Positioning performance of direct AI/ML positioning based on CIR can be improved in a test dataset that is in the same simulation drop as the dataset for model update;
•	Positioning performance of direct AI/ML positioning based on CIR is increased along with the number of data samples used for model update.
Observation 11: 	For model generalization evaluation in various simulation drops, when training dataset includes mixed data from two simulation drops, direct AI/ML positioning based on CIR has a good model generalization capability in a test dataset from a simulation drop included in the mixed simulation drops.


	· Huawei (R1-2304657)
Observation 9 : When the inference dataset and the training dataset are from different drops, direct AI/ML positioning model provides poor generalization performance. But when the mixed training dataset consists of samples from the same drop as the inference dataset, the generalization performance is improved.
Observation 10 : For direct AI/ML positioning, enriching the composition of the mixed training dataset can improve unseen drop’s positioning accuracy.
Observation 11 : For direct AI/ML positioning, the positioning performance for a seen drop improves when the amount/ratio of data samples from that drop in the mixed training dataset increases.




Model fine-tuning for different drops
	· MediaTek Inc. (R1-2305659)
Table 23. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning for different drop
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	1-port CIR [18,1,256]
	UE pos [x,y]
	0%
	Drop1
	Drop2
	Drop2
	32400
	0
	3600
	202.10K
	73.18M
	9.15

	
	
	
	
	
	
	
	1200
	
	
	
	3.05

	
	
	
	
	
	
	
	2400
	
	
	
	2.52

	
	
	
	
	
	
	
	3600
	
	
	
	2.25

	CIR [18,2,256]
	UE pos [x,y]
	0%
	Drop1
	Drop2
	Drop2
	32400
	0
	3600
	464.24K
	0.266G
	9.36

	
	
	
	
	
	
	
	1200
	
	
	
	3.08

	
	
	
	
	
	
	
	2400
	
	
	
	2.54

	
	
	
	
	
	
	
	3600
	
	
	
	2.17

	PDP [18,2,256]
	UE pos [x,y]
	0%
	Drop1
	Drop2
	Drop2
	32400
	0
	3600
	463.95K
	0.264G
	8.57

	
	
	
	
	
	
	
	1200
	
	
	
	3.23

	
	
	
	
	
	
	
	2400
	
	
	
	3.01

	
	
	
	
	
	
	
	3600
	
	
	
	2.37


Observation 30:	Fine-tuning the model with samples from a drop can achieve positioning accuracy improvement when the pre-trained model is transferred to a new drop for direct AI/ML positioning.


	· Qualcomm (R1-2305332)
Table 12 Evaluation results for AI/ML model deployed on UE-side, with model finetuning generalization (Type 2 – different drops), CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Settings ({60%, 6m, 2m})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	train
	finetune
	Test
	Train 
	Finetune
	Test
	Model complexity [parameters]
	Computational complexity FLOPs
	AI/ML

	CIR (18,4,400)
	2D 
	0%
	drop A (with UE clock drift)
	--
	drop B (with UE clock drift)
	15k
	0
	2K
	1.5M 
	1.54G 
	12.33

	CIR (18,4,400)
	2D
	0%
	drop A (with UE clock drift)
	drop B (with UE clock drift)
	drop B (with UE clock drift)
	15k
	100
	2K
	1.5M 
	1.54G 
	10.47

	CIR (18,4,400)
	2D
	0%
	drop A (with UE clock drift)
	drop B (with UE clock drift)
	drop B (with UE clock drift)
	15k
	240
	2K
	1.5M 
	1.54G 
	6.92

	CIR (18,4,400)
	2D
	0%
	drop A (with UE clock drift)
	drop B (with UE clock drift)
	drop B (with UE clock drift)
	15k
	500
	2K
	1.5M 
	1.54G 
	6.07


Observation 1: Positioning enhancement gains of AI/ML model fine-tuning depends on the size of fine-tuning data.


	· CMCC (R1-2305089)
Table IV. Evaluation results for AI/ML model deployed on UE side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
size:18*1*256

	UE coordinates

	ideal UE coordinates

	{60%, 6m, 2m}, Drop1

	{60%, 6m, 2m}, Drop 2
	{60%, 6m, 2m}, Drop 2
	25000

	500

	2500

	3.71M
	7.42M
	4.14

	
	
	
	
	
	
	
	1000

	
	
	
	3.35

	
	
	
	
	
	
	
	2000
	
	
	
	2.74

	
	
	
	
	
	
	
	3000
	
	
	
	1.95


Observation 4: Model updating with a small amount of fine-tuning data can obviously improve the generalization performance of different drops.


	· NVIDIA (R1-2305164)
Table 4: Summary of CDF percentiles of horizontal positioning accuracy with model finetuning.
	Training
	Testing
	Finetuning
	50%
	67%
	80%
	90%

	Drop 1
	Drop 1
	N/A
	1.1 m
	1.5 m
	1.8 m
	2.3 m

	Drop 1
	Drop 2
	No finetuning
	7.1 m
	9.3 m
	11.6 m
	14.5 m

	Drop 1
	Drop 2
	Finetuning with 1k samples
	2.5 m
	3.3 m
	4.2 m
	5.3 m

	Drop 1
	Drop 2
	Finetuning with 2k samples
	2.1 m
	2.7 m
	3.5 m
	4.3 m

	Note: The original model was trained with 16k samples. Thus, 1k (resp. 2k) finetuning samples corresponds to 6.25% (resp. 12.5%) of the total 16k samples.


Observation 5: When the AI/ML model for RF fingerprinting trained on Drop 1 is finetuned with a small number of samples from Drop 2, the positioning accuracy of the finetuned AI/ML model is much improved compared to the performance of the AI/ML model without finetuning.
Proposal 2: When an AI/ML model for RF fingerprinting trained in a first scenario is transferred to a second scenario, the AI/ML model should be finetuned/retrained with new data from the second scenario.


	· Huawei (R1-2304657)
Observation 21 : From the model updating evaluation results of the above aspect - Different Drops, on top of the dataset with large amount of samples from a different drop, fine-tuned with a relatively small amount of samples from the same drop as the inference dataset will be helpful to improve the generalization performance.




Mixed dataset for different drops
	· MediaTek Inc. (R1-2305659)
Table 22. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], mixed training for different drop
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	1-port CIR [18,1,256]
	UE pos
[x,y]
	0%
	Drop1
	Drop2
	32400
	3600
	202.10K
	73.18M
	9.15

	
	
	
	Drop1+Drop2
	Drop2
	16200+16200
	3600
	
	
	3.63

	CIR [18,2,256]
	UE pos
[x,y]
	0%
	Drop1
	Drop2
	32400
	3600
	464.24K
	0.266G
	9.36

	
	
	
	Drop1+Drop2
	Drop2
	16200+16200
	3600
	
	
	1.52

	PDP
[18,2,256]
	UE pos
[x,y]
	0%
	Drop1
	Drop2
	32400
	3600
	463.95K
	0.264G
	8.57

	
	
	
	Drop1+Drop2
	Drop2
	16200+16200
	3600
	
	
	1.72


Observation 28:	Performance of direct AI/ML positioning degrades when the model trained with dataset of one drop is tested with dataset of other drops since there is no correlation between multipath realization of different drops.
Observation 29:	Training the AI model with mixed dataset can be an effective way to improve the performance of direct AI positioning when the model is deployed at different drops.


	· Ericsson (R1-2304339)
Table 38 90%tile 2D positioning accuracy using CIR inputs for different environmental random seeds in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different datasets.
	Model details
	Positioning approach
	90%tile 2D positioning error [m]
with different train set sizes in 
{60%, 6m, 2m} InF-DH

	
	
	Drop 1
	Drop 2

	CIR trained with drop 1 dataset
	Cent. Assist.
	0.371
	17.332

	
	Cent. Direct
	0.373
	16.802

	CIR trained with drop 1 and drop 2 datasets
	Cent. Assist.
	0.435
	0.446

	
	Cent. Direct
	0.437
	0.439



Table 40 90%tile 2D positioning accuracy using DP inputs for different environmental random seeds in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different datasets.
	Model details
	Positioning approach
	90%tile 2D positioning error [m]
with different train set sizes in 
{60%, 6m, 2m} InF-DH

	
	
	Drop 1
	Drop 2

	DP trained with drop 1 dataset
	Cent. Assist.
	0.653
	21.488

	
	Cent. Direct
	0.658
	20.374

	DP trained with drop 1 and drop 2 datasets
	Cent. Assist.
	0.826
	0.811

	
	Cent. Direct
	0.784
	0.807






Different clutter parameters
	· ZTE (R1-2304538)
Observation 12: 	For model generalization evaluation in various clutter settings, when datasets for training and test are from different clutter settings, direct AI/ML positioning based on CIR cannot achieve cannot generalize its performance in the test dataset.
Observation 13: 	 For model generalization evaluation in various clutter settings, when model update is performed based on dataset in a clutter setting that is different from the clutter setting used for model training,
•	 Positioning performance of direct AI/ML positioning based on CIR can be improved in a test dataset that is in the same clutter setting as the dataset for model update;
•	Positioning performance of direct AI/ML positioning based on CIR is increased along with the number of data samples used for model update.
Observation 14: 	For model generalization evaluation in various clutter settings, when a dataset for training includes data from mixed clutter settings, direct AI/ML positioning based on CIR has a good model generalization capability in a test dataset from a simulation drop included in the mixed clutter settings.


	· Huawei (R1-2304657)
Observation 12 : For direct AI/ML positioning, when the channel parameters of the inference dataset and the training dataset are different, direct AI/ML positioning model provides poor generalization performance.
Observation 13 : For direct AI/ML positioning, when the mixed training dataset consists of samples with the same channel parameters as the inference dataset, the positioning performance is improved and reaches the sub-meter level.




Model fine-tuning for different clutter parameters
	· MediaTek Inc. (R1-2305659)
Table 25. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning for different clutter setting
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	1port-CIR [18,1,256]

	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	0
	3600
	202.10K
	73.18M
	9.10

	
	
	
	
	
	
	
	1200
	
	
	
	4.49

	
	
	
	
	
	
	
	2400
	
	
	
	3.86

	
	
	
	
	
	
	
	3600
	
	
	
	3.50

	CIR [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	0
	3600
	464.24K
	0.266G
	7.43

	
	
	
	
	
	
	
	1200
	
	
	
	3.80

	
	
	
	
	
	
	
	2400
	
	
	
	3.42

	
	
	
	
	
	
	
	3600
	
	
	
	3.09

	PDP [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	0
	3600
	463.95K
	0.264G
	7.72

	
	
	
	
	
	
	
	1200
	
	
	
	3.74

	
	
	
	
	
	
	
	2400
	
	
	
	3.38

	
	
	
	
	
	
	
	3600
	
	
	
	3.10


Observation 33:	Fine-tuning a model with samples of clutter setting ({40%,2m,2m}) can significantly improve the performance of direct AI/ML positioning when the model pre-trained in ({60%,6m,2m}) is transferred to clutter setting({40%,2m,2m}).


	· NVIDIA (R1-2305164)
[image: Diagram

Description automatically generated with low confidence]
Figure 8: Positioning accuracy of AI/ML based method under different drops.
Observation 7: When the AI/ML model for RF fingerprinting trained on clutter parameter set 1 is finetuned with a small number of samples from clutter parameter set 2, the positioning accuracy of the finetuned AI/ML model is much improved compared to the performance of the AI/ML model without finetuning.
Observation 8: Compared to finetuning for different drops, finetuning for different clutter parameter sets provides less positioning accuracy improvement with the same finetuning samples. This shows that finetuning is more effective when the first scenario (for which the AI/ML model is originally trained) and the second scenario (that finetuning targets) are more similar.


	· xiaomi (R1-2304897)
Observation 5: 
-	For fine-tuning with different clutter parameters
o	The positioning accuracy is improved compared with the situation of different clutter parameter between training data set and test data set 
o	The improvement of positioning accuracy in the fine-tuning solution is less than that in the solution of mixed training data set with different clutter parameter


	· Huawei (R1-2304657)
Observation 22 : From the model updating evaluation results of the above aspect - Clutter parameters, on top of the dataset with large amount of samples from a different clutter setting, fine-tuned with a relatively small amount of samples from the same clutter setting as the inference dataset will be helpful to improve the generalization performance.


	· CATT (R1-2304726)
Observation 7: For direct AI/ML positioning, by training the AI/ML model using the dataset that assumes a clutter parameter of {60%, 6m, 2m}, and subsequently fine-tuning it using a small dataset that assumes a clutter parameter of {40%, 2m, 2m}, the horizontal positioning accuracy is significantly improved compared to the performance achieved without fine-tuning. The degree of improvement in the positioning accuracy is greater when the size of the fine-tuning dataset is larger.




Mixed dataset for different clutter parameters
	· MediaTek Inc. (R1-2305659)
Table 24. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], mixed trainig for different clutter setting
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	1port-CIR [18,1,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	202.10K
	73.18M
	9.10

	
	
	
	{60%, 6m, 2m}+{40%, 2m, 2m}
	{40%, 2m, 2m}
	16200+16200
	3600
	
	
	5.49

	CIR [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	464.24K
	0.266G
	7.43

	
	
	
	{60%, 6m, 2m}+{40%, 2m, 2m}
	{40%, 2m, 2m}
	16200+16200
	3600
	
	
	2.30

	PDP [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	463.95K
	0.264G
	7.72

	
	
	
	{60%, 6m, 2m}+{40%, 2m, 2m}
	{40%, 2m, 2m}
	16200+16200
	3600
	
	
	2.43


Observation 31:	Performance of direct AI/ML positioning degrades when the model trained with clutter setting ({60%,6m,2m}) is tested with dataset of another clutter setting ({40%,2m,2m}).
Observation 32:	Training the AI model with mixed dataset can be an effective way to improve the performance of direct AI positioning when the model is deployed at different clutter settings.


	· xiaomi (R1-2304897)
Observation 4: 
-	Generating the training data set with different  cluster parameters could relax the problem of inferior generalization capability



	· CATT (R1-2304726)
Observation 4: For direct AI/ML positioning, by employing the mix-train method and combining the dataset of clutter parameter {60%, 6m, 2m} with a small dataset of clutter parameter {40%, 2m, 2m}, the AI/ML model achieved a horizontal positioning accuracy of 1.77m, which represents an improvement compared to the performance achieved without mix-training and with a positioning accuracy of 2.64m.


	· vivo (R1-2304475)
Observation 9:	Positioning performance of direct AI/ML positioning degrades when the training and testing datasets are of different clutter parameters in an InF-DH scenario.
Observation 10:	Training AI/ML model with a mixed dataset is an effective way to improve model generalization performance.
Proposal 5:	 Capture in the TR the benefits of training dataset with mixed/different configurations for AI/ML based positioning in terms of AI model generalization capability.


	· Ericsson (R1-2304339)

Table 33. 90%tile UE 2D positioning errors for small Model I trained with 40,000 PDP samples from {60%, 6m, 2m} and/or {40%, 2m, 2m} and tested on four different environments.
	Positioning approach
	Model complexity [# of parameters]
	Training
dataset
	90%tile UE 2D positioning errors [m] – small Model I
on different test sets

	
	
	
	{40%, 2m, 2m}
	{60%, 2m, 2m}
	{40%, 6m, 2m}
	{60%, 6m, 2m}

	Dist. Assisted
	0.43 M
	{60%, 6m, 2m}
	8.176
	4.134
	0.728
	0.684

	
	
	{40%, 2m, 2m}
	0.596
	0.891
	2.555
	2.841

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	0.601
	0.701
	0.792
	0.784

	Cent. Assisted
	0.36 M
	{60%, 6m, 2m}
	6.904
	2.453
	0.549
	0.524

	
	
	{40%, 2m, 2m}
	0.854
	0.900
	1.408
	1.518

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	0.816
	0.707
	0.592
	0.586

	Cent. Direct
	0.36 M
	{60%, 6m, 2m}
	6.542
	2.463
	0.544
	0.510

	
	
	{40%, 2m, 2m}
	0.810
	0.883
	1.413
	1.521

	
	
	{40%, 2m, 2m} {60%, 6m, 2m}
	0.807
	0.701
	0.587
	0.579






Network synchronization error
	· ZTE (R1-2304538)
Observation 15: 	For model generalization evaluation in various network synchronization errors, when a dataset for training has ideal network synchronization errors and a dataset for test has network synchronization errors following a truncated Gaussian distribution between [-2T1, 2T1] (T1 is a rms value), the positioning performance degrades seriously compared to ideal network synchronization.
Observation 16: 	For model generalization evaluation in various network synchronization errors, when both training dataset and test dataset have network synchronization errors following a truncated Gaussian distribution between [-2T1, 2T1] (T1 is a rms value), positioning performance is comparable to ideal network synchronization. This may be explained by:
•	CNN model is translation-invariant to the time shift of channel information due to network synchronization error;
•	Add random network synchronization errors on training dataset are analogous to data augmentation on the training dataset, thus increase the model robustness to various network synchronization errors.


	· xiaomi (R1-2304897)
Observation 6: 
-	If the AI/ML model is trained with data set of ideal network synchronization and the tested by  data set is with network synchronization error, poor generalization performance is observed


	· Huawei (R1-2304657)
Observation 14 : For direct AI/ML positioning, when the model is trained without network synchronization error but inferred with the added network synchronization error randomly distributed with the standard deviation value T_1 = 50ns, direct AI/ML positioning model provides poor generalization performance. 
Observation 15 : For direct AI/ML positioning, when the model is both trained and inferred with the added network synchronization error randomly distributed with the standard deviation value T_1 = 50ns, the positioning performance is improved compared with trained without error. 
Observation 16 : For direct AI/ML positioning, when the model is both trained and inferred with the added network synchronization error randomly distributed with mixed T_1 = 0&30&40&50ns, the positioning performance is improved compared with trained without error. The larger synchronization error the network have, the poorer positioning performance they will have.


	· Ericsson (R1-2304339)
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Model fine-tuning for network synchronization error
	· MediaTek Inc. (R1-2305659)
Table 27. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning for timing error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML
10ns
	AI/ML
50ns

	CIR [18,2,256]
	UE pos [x,y]
	0%
	50ns
	10ns
	10ns/50ns
	32400
	0
	3600
	464.24K
	0.266G
	2.714
	3.275

	
	
	
	
	
	
	
	1200
	
	
	
	2.124
	3.496

	
	
	
	
	
	
	
	3600
	
	
	
	2.098
	4.381

	
	
	
	
	
	
	
	7200
	
	
	
	1.869
	4.571

	PDP [18,2,256]
	UE pos [x,y]
	0%
	50ns
	10ns
	10ns/50ns
	32400
	0
	3600
	463.95K
	0.264G
	2.705
	3.366

	
	
	
	
	
	
	
	1200
	
	
	
	2.361
	4.055

	
	
	
	
	
	
	
	3600
	
	
	
	2.154
	4.223

	
	
	
	
	
	
	
	7200
	
	
	
	1.910
	4.594





	· xiaomi (R1-2304897)
Observation 8: 
-	From the aspect that AI model is trained by data set with ideal network synchronization error and fine-tuned by data set with 50ns network synchronization error, improvement in the positioning accuracy is observed. But the improved positioning accuracy is still poor



	· Huawei (R1-2304657)
Observation 23 : From the model updating evaluation results of the above aspect - Network synchronization error, on top of the dataset with large amount of samples without network synchronization error, fine-tuned with a relatively small amount of samples with the same added network synchronization error randomly distributed as the inference dataset will be helpful to improve the generalization performance but the performance is still poor. Fine-tuning helps less in solving the network synchronization error.


	· CATT (R1-2304726)
Observation 8: For direct AI/ML positioning, by training the AI/ML model using the dataset with perfect network synchronization, and subsequently fine-tuning it using a small dataset with network synchronization error, the horizontal positioning accuracy is significantly improved compared to the performance achieved without fine-tuning. The degree of improvement in the positioning accuracy is greater when the size of the fine-tuning dataset is larger.




Mixed dataset for network synchronization error
	· MediaTek Inc. (R1-2305659)
Observation 35:	The positioning performance of direct AI/ML can be improved by mixing dataset with different timing errors at the cost of the training complexity.


	· xiaomi (R1-2304897)
Observation 7: 
-	Generating the training data set with mixed network synchronization error could relax the problem of inferior generalization capability


	· CATT (R1-2304726)
Observation 5: For direct AI/ML positioning, by employing the mix-train method and combining the dataset of ideal network synchronization with a small dataset of network synchronization error of 50ns, the AI/ML model achieved a horizontal positioning accuracy of 3.04m, which represents a significant improvement compared to the performance achieved without mix-training and with a positioning accuracy of 12.6m.


	· vivo (R1-2304475)
[image: ]
Figure 38	 Evaluation of the impact of synchronization error on positioning accuracy
Observation 19:	The positioning accuracy of direct AI/ML positioning significantly degrades with the increase of network synchronization error.
Observation 20:	The positioning accuracy of AI/ML model is significantly improved from 10.18m@90% to 1.52m@90% by mix-training with samples of synchronization error.




UE/gNB RX and TX timing error
	· ZTE (R1-2304538)
Observation 17: 	For model generalization evaluation in various UE Rx timing errors, the positioning performance in a test dataset with UE Rx timing errors degrades slightly compared to the dateset without UE Rx timing errors.
Observation 18: 	For model generalization evaluation in various UE Rx timing errors, when both training dataset and test dataset have UE Rx timing errors following a truncated Gaussian distribution between [-2T1, 2T1] (T1 is a rms value), positioning performance is comparable to the case without UE Rx timing error. This may be explained by:
•	CNN model is translation-invariant to the time shift of channel information due to UE Rx timing error;
•	Add random UE Rx timing errors on training dataset are analogous to data augmentation on the training dataset, thus increase the model robustness to various UE Rx timing errors.


	· xiaomi (R1-2304897)
Observation 9: 
-	If the AI/ML model is trained with data set of ideal Rx timing and the tested by  data set is with Rx timing error, there is some positioning accuracy degradation
Observation 10: 
-	Generating the training data set with mixed Rx timing error could relax the problem of inferior generalization capability 
Observation 11: 
-	From the aspect that AI model is trained by data set with ideal timing error and fine-tuned by data set with 10ns Rx timing error, improvement in the positioning accuracy is observed. But the improved positioning accuracy is still poor


	· Huawei (R1-2304657)
Observation 17 : For direct AI/ML positioning, when the model is trained without UE timing error but inferred with the added UE timing error randomly distributed with the standard deviation value T_1 = 10ns, the direct AI/ML positioning model provides poor generalization performance. 
Observation 18 : For direct AI/ML positioning, when the model is both trained and inferred with the added UE timing error randomly distributed with T_1 = 10ns, the positioning performance is improved compared with trained without error. 
Observation 19 : For direct AI/ML positioning, when the model is both trained and inferred with the added UE timing error randomly distributed with mixed T_1 = 0&10&20&30ns, the positioning performance is improved compared to when trained without error.


	· Ericsson (R1-2304339)
[image: ]
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Model fine-tuning for UE/gNB RX and TX timing error
	· Huawei (R1-2304657)
Observation 24 : From the model updating evaluation results of the above aspect - UE timing error, on top of the dataset with large amount of samples without UE timing error, fine-tuned with a relatively small amount of samples with the same added UE timing error randomly distributed as the inference dataset will be helpful a lot to improve the generalization performance.
Proposal 2 : Model updating should be supported to improve the performance under the presence of UE timing errors and for the occurrence of the unlearned channel characteristics, including unseen drops and clutter settings.




Mixed dataset for UE/gNB RX and TX timing error
	· vivo (R1-2304475)
[image: ]
Observation 24:	The positioning accuracy of AI/ML model is significantly improved from 3.45m@90% to 2.04m@90% by mix-training with samples of UE timing error for direct AI/ML positioning.




Different InF scenarios
	· MediaTek Inc. (R1-2305659)
Table 30. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, InF-DH area = [120x60 m], InF-SH/HH area == [300x150 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML
InF-SH
	AI/ML
InF-HH

	CIR [18,2,256]
	UE pos [x,y]
	0%
	InF-DH({60%, 6m, 2m}),small hall
	InF-SH/HH, large hall
	InF-SH/HH, large hall
	32400
	0
	3600
	464.24K
	0.266G
	>100
	>100

	
	
	
	
	
	
	
	1200
	
	
	
	9.806
	14.073

	
	
	
	
	
	
	
	3600
	
	
	
	5.391
	5.972

	
	
	
	
	
	
	
	7200
	
	
	
	3.815
	5.104

	PDP [18,2,256]
	UE pos [x,y]
	0%
	InF-DH({60%, 6m, 2m})
	InF-SH/HH, large hall
	InF-SH/HH, large hall
	32400
	0
	3600
	463.95K
	0.264G
	>100
	.>100

	
	
	
	
	
	
	
	1200
	
	
	
	8.964
	21.755

	
	
	
	
	
	
	
	3600
	
	
	
	5.186
	14.537

	
	
	
	
	
	
	
	7200
	
	
	
	4.162
	9.581


Observation 40:	Performance of direct AI/ML positioning degrades when the model trained with dataset of InF-DH is tested with dataset of InF-SH/HH with different hall size, and fine-tuning can improve the performance.


	· vivo (R1-2304475)
[image: ]
CDF of positioning accuracy when training dataset and test dataset are not matched
Observation 11:	The positioning accuracy of direct AI/ML positioning trained with dataset from one InF scenario is seriously degraded when tested on dataset from a different InF scenario.




Model fine-tuning for different InF scenarios
	· CATT (R1-2304726)
Observation 9: For direct AI/ML positioning, by training the AI/ML model using the dataset with perfect network synchronization, and subsequently fine-tuning it using a small dataset with network synchronization error, the horizontal positioning accuracy is significantly improved compared to the performance achieved without fine-tuning. The degree of improvement in the positioning accuracy is greater when the size of the fine-tuning dataset is larger.




Mixed dataset for different InF scenarios
	· CATT (R1-2304726)
Observation 6: For direct AI/ML positioning, by employing the mix-train method and combining the dataset of InF-DH {60%, 6m, 2m} with a small dataset of InF-SH {20%, 2m, 10m}, the AI/ML model achieved a horizontal positioning accuracy of 1.81m, which represents a significant improvement compared to the performance achieved without mix-training and with a positioning accuracy of 6.48m.




SNR mismatch
	· Apple (R1-2305973)
Observation 2
· Synchronization and SNR levels have the largest negative effect on the generalization performance of the direct AI-ML model
· An SNR mismatch between the training data and inference input shows increasing performance loss with increasing mismatch as expected.
· Training with a lower SNR data set seems to provide some benefits in the case there is an SNR mismatch between the training and test data.



	· Ericsson (R1-2304339)
Table 35 90%tile 2D positioning accuracy using CIR inputs for different UE transmit powers in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different UE transmit powers.
	Model details
	Positioning approach
	90%tile 2D positioning error [m] with different UE transmit powers in {60%, 6m, 2m} InF-DH

	
	
	23 dBm UE
	15.5 dBm UE
	8.5 dBm UE
	0.5 dBm UE
	-7 dBm UE

	CIR trained with 23 dBm UE
	Cent. Assist.
	0.368
	0.642
	2.284
	6.200
	53.119

	
	Cent. Direct
	0.373
	0.614
	2.029
	5.520
	29.281

	CIR trained with -7 dBm UE
	Cent. Assist.
	7.721
	7.297
	4.990
	1.236
	0.513

	
	Cent. Direct
	7.441
	7.165
	5.401
	1.324
	0.532

	CIR trained with 23, -7 dBm UE
	Cent. Assist.
	0.467
	0.464
	0.467
	0.475
	0.507

	
	Cent. Direct
	0.446
	0.449
	0.446
	0.456
	0.487

	CIR trained with 23, 8, -7 dBm UE
	Cent. Assist.
	0.419
	0.414
	0.421
	0.436
	0.505

	
	Cent. Direct
	0.425
	0.424
	0.427
	0.448
	0.492







Time varying changes
	· MediaTek Inc. (R1-2305659)
Table 31. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning of time varying  
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR [18,2,256]
	UE pos [x,y]
	0%
	without time varying
	with time varying
	with time varying
	32400
	0
	3600
	464.24K
	0.266G
	>100

	
	
	
	
	
	
	
	1200
	
	
	
	11.206

	
	
	
	
	
	
	
	3600
	
	
	
	6.712

	
	
	
	
	
	
	
	7200
	
	
	
	5.076

	PDP [18,2,256]
	UE pos [x,y]
	0%
	without time varying
	with time varying
	with time varying
	32400
	0
	3600
	463.95K
	0.264G
	>100

	
	
	
	
	
	
	
	1200
	
	
	
	9.950

	
	
	
	
	
	
	
	3600
	
	
	
	6.146

	
	
	
	
	
	
	
	7200
	
	
	
	4.796


Observation 41:	Performance of direct AI/ML positioning degrades when there is time varying change between the training data and test data, and fine-tuning can improve the performance.




Channel estimation error
	· vivo (R1-2304475)
[image: ]
Figure 36	Evaluation of the impact of CIR estimation error on positioning accuracy
Observation 18:	The interference from TPRs can dramatically impair the positioning performance of AI/ML model.




Model fine-tuning for channel estimation error
	· MediaTek Inc. (R1-2305659)
Table 29. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning of channel estimation error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML
20dB
	AI/ML
0dB

	CIR [18,2,256]
	UE pos [x,y]
	0%
	0dB
	20dB 
	20dB
	32400
	0
	3600
	464.24K
	0.266G
	3.956
	2.645

	
	
	
	
	
	
	
	1200
	
	
	
	2.024
	7.420

	
	
	
	
	
	
	
	3600
	
	
	
	1.944
	14.220

	
	
	
	
	
	
	
	7200
	
	
	
	1.778
	45.923

	PDP [18,2,256]
	UE pos [x,y]
	0%
	0dB
	20dB
	20dB
	32400
	0
	3600
	463.95K
	0.264G
	2.405
	2.255

	
	
	
	
	
	
	
	1200
	
	
	
	1.875
	3.755

	
	
	
	
	
	
	
	3600
	
	
	
	1.733
	13.873

	
	
	
	
	
	
	
	7200
	
	
	
	1.607
	16.828


Observation 39:	Fine-tuning a model with samples of new parameter setting (e.g., drop, clutter setting, channel estimation error, timing error, scenario) can achieve positioning accuracy improvement when the pre-trained model is transferred to a new parameter setting for direct AI/ML positioning (the more fine-tuning data the better performance), but performance degrades for pre-trained parameter setting.




Mixed dataset for channel estimation error
	· MediaTek Inc. (R1-2305659)
Table 28. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], different channel estimation error
	Model input
	Model output
	Dataset size
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Test
	Test 
Train
	SNR=0dB
	SNR=10dB
	SNR=20dB
	Ideal

	CIR [18,2,256]
	UE pos [x,y]
	32400
	3600
	SNR=0dB
	2.575
	4.697
	4.878
	4.887

	
	
	
	
	SNR=10dB
	53.064
	1.541
	1.520
	1.516

	
	
	
	
	SNR=20dB
	60.615
	46.2
	1.168
	1.220

	
	
	
	
	Ideal
	53.918
	59.543
	43.803
	0.940

	
	
	32400+32400
	3600
	0dB & 10dB
	2.211
	1.456
	1.453
	1. 452

	PDP [18,2,256]
	UE pos [x,y]
	32400
	3600
	SNR=0dB
	2.252
	3.036
	3.108
	3.102

	
	
	
	
	SNR=10dB
	43.713
	1.418
	1.455
	1.457

	
	
	
	
	SNR=20dB
	57.18
	37.334
	1.034
	1.00

	
	
	
	
	Ideal
	64.88
	37.01
	1.561
	0.821

	
	
	32400+32400
	3600
	0dB & 10dB
	1.825
	1.253
	1.259
	1.260


Observation 36:	The direct AI Model trained by dataset with large channel estimation error can be generalized to dataset with small channel estimation error.
Observation 37:	The positioning performance can be improved by mixing dataset with different channel estimation errors at the cost of the training complexity.
Observation 38:	 In fact, channel estimation errors can be used as a type of data augmentation to enhance trained model performance and to increase the model robustness to various channel estimation errors.


	· CEWiT (R1-2305896)
Observation-8: From the evaluation result, it is observes that the performance of AI/ML model for inference dataset with channel estimation error is better than the  inference da-taset without channel estimation error.




Hall size
	· Samsung (R1-2305509)
[image: ]
Fig.7 CDF of positioning errors with different deployment (hall size)
Observation 4:  When the training dataset is from DH662 small hall size, and the testing/inference dataset generated from different scenario (InF-SH), or different clutter parameter (DH422), or different deployment (large hall size), the performance of all three genralzation cases are degraded severely. 
Observation 5:  When the training dataset is from DH662 small hall size, and 1k training data update and the testing/inference dataset generated from different scenario (InF-SH), or different clutter parameter (DH422), or different deployment (large hall size), the performance of all three generalizations cases are recovered significantly. The larger FH size, the better performance could be achieved.




High-level summary of methods to address generalization problem
Model fine-tuning
	· vivo (R1-2304475)
Table 61	Evaluation of model fine-tuning for different cases
	Cases
	Training
	Fine-tuning
	Testing
	Positioning accuracy @90%

	Direct AI/ML positioning
	{0.6, 6, 2} 
	{0.4, 2, 2} 
	{0.4, 2, 2} 
	4.40 

	
	{0.4, 2, 2} 
	{0.6, 6, 2} 
	{0.6, 6, 2} 
	3.23 

	
	Drop1
	Drop2
	Drop2
	3.97

	
	InF-DH
	InF-HH
	InF-HH
	8.78

	
	Sync 0ns
	50ns
	50ns
	2.39

	
	Sync 0ns
	10ns
	10ns
	1.28

	
	Sync 0ns
	2ns
	2ns
	1.11

	AI/ML assisted positioning
	{0.6, 6, 2} 
	{0.4, 2, 2} 
	{0.4, 2, 2} 
	0.63

	
	Drop1
	Drop2
	Drop2
	5.50

	
	InF-DH
	InF-HH
	InF-HH
	0.17

	
	InF-DH
	InF-SH
	InF-SH
	0.17

	
	Sync 0ns
	50ns
	50ns
	3.40

	
	Sync 0ns
	10ns
	10ns
	1.78

	
	Sync 0ns
	2ns
	2ns
	1.30


Observation 38:	Model fine-tuning is suitable for the following tasks:
•	The source domain and the target domain are greatly similar, such as with different synchronization error.
•	The target domain is easy to fit, such as TOA estimation of LOS path.
[image: ]
Figure 72	The curve of positioning error reduction with increasing number of sample size (data efficiency)

Proposal 19:	Model fine-tuning can flexibly adapt AI/ML model to various dynamic changes in environment, while mix-training is more suitable for these static changes.
Proposal 20:	It is benefit to integrate model fine-tuning and mix-training so as to fully leverage their advantages.


	· Apple (R1-2305973)
Observation 3
· Finetuning improves the performance with more improvement as the data size increases. 
· Note: Results may improve with optimization
· Study the relative performance between model finetuning and model training with the same amount of data. 


	· Huawei (R1-2304657)
Observation 25 : For direct AI/ML positioning, when the model input is CIR, over different dataset sizes for fine-tuning, the positioning accuracy increases when the size of fine-tuning dataset increases. At least 5000 samples are needed for fine-tuning to maintain sub-meter level accuracy.
Observation 26 : For direct AI/ML positioning, when the model input is PDP, over different dataset sizes for fine-tuning, the positioning accuracy increases when the size of fine-tuning dataset increases. At least 5000 samples are needed for fine-tuning to maintain meter level accuracy.



	· Qualcomm (R1-2305332)
Observation 16: In direct AI/ML positioning, evaluations show that model fine-tuning with small dataset can only offer slight to moderate enhancement to positioning performance of AI/ML positioning when tested with different drops (i.e., inter-site generalization).

	· Ericsson (R1-2304339)
Table 23. 90%tile UE 2D positioning errors for small Model I trained with 40,000 CIR samples from {60%, 6m, 2m} and fine-tuned with different number of CIR samples from {40%, 2m, 2m}. Tested on {40%, 2m, 2m} test dataset.
	Positioning approach
	Model complexity [# of parameters]
	90%tile UE 2D positioning errors [m] – small Model I

	
	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from 
{60%, 6m, 2m} and fine-tuned with 
different number of samples from {40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	Dist. Assist.
	0.86 M
	0.409
	0.420
	0.543
	0.782
	1.285
	1.808
	2.404
	8.720

	Cent. Assist.
	0.73 M
	0.697
	0.621
	0.818
	1.141
	1.806
	2.284
	2.885
	6.913

	Cent. Direct
	0.73 M
	0.674
	0.621
	0.841
	1.177
	1.801
	2.329
	3.030
	7.354



Table 24. 90%tile UE 2D positioning errors for small Model I trained with 40,000 PDP samples from {60%, 6m, 2m} and fine-tuned with different number of PDP samples from {40%, 2m, 2m}. Tested on {40%, 2m, 2m} test dataset.
	Positioning approach
	Model complexity [# of parameters]
	90%tile UE 2D positioning errors [m] – small Model I

	
	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from 
{60%, 6m, 2m} and fine-tuned with 
different number of samples from {40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	Dist. Assist.
	0.43 M
	0.596
	0.552
	0.738
	0.989
	1.408
	1.882
	2.486
	8.176

	Cent. Assist.
	0.36 M
	0.854
	0.782
	0.983
	1.269
	1.879
	2.378
	2.843
	6.904

	Cent. Direct
	0.36 M
	0.810
	0.791
	0.991
	1.267
	1.876
	2.418
	2.880
	6.542



Table 25. 90%tile UE 2D positioning errors for small Model I trained with 40,000 DP samples from {60%, 6m, 2m} and fine-tuned with different number of DP samples from {40%, 2m, 2m}. Tested on {40%, 2m, 2m} test dataset.
	Positioning approach
	Model complexity [# of parameters]
	90%tile UE 2D positioning errors [m] – small Model I

	
	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from 
{60%, 6m, 2m} and fine-tuned with 
different number of samples from {40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	Cent. Assist.
	0.36 M
	1.071
	1.025
	1.281
	1.614
	2.455
	3.164
	3.972
	11.940

	Cent. Direct
	0.36 M
	1.033
	1.036
	1.294
	1.618
	2.441
	3.230
	3.902
	11.554


Observation 32	Once the models are fine-tuned to operate for a substantially different, new, environment, they no long perform adequately for the original environment. That is, if operation at state-of-the-art performance in multiple environments is needed, multiple sets of model weights need to be stored.
Table 26. 90%tile UE 2D positioning errors for small Model I trained with 40,000 CIR samples from {60%, 6m, 2m} and fine-tuned with different number of CIR samples from {40%, 2m, 2m} and test on {60%, 6m, 2m} test dataset.
	Positioning approach
	Model
complexity 
[# of 
parameters]
	90%tile UE 2D positioning errors [m] – small Model I

	
	
	Trained with samples from {60%, 2m, 2m}
	Originally trained with 40,000 samples from 
{60%, 6m, 2m} and fine-tuned with 
different number of samples from {40%, 2m, 2m}

	
	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000

	Dist. Assist.
	0.86 M
	0.451
	2.111
	2.653
	3.465
	4.293
	5.267
	5.863

	Cent. Assist.
	0.73 M
	0.371
	1.358
	1.549
	1.865
	2.473
	2.911
	3.258

	Cent. Direct
	0.73 M
	0.373
	1.351
	1.668
	1.993
	2.632
	3.453
	3.352



Table 27. 90%tile UE 2D positioning errors for small Model I trained with 40,000 PDP samples from {60%, 6m, 2m} and fine-tuned with different number of PDP samples from {40%, 2m, 2m} and test on {60%, 6m, 2m} test dataset.
	Positioning approach
	Model
complexity 
[# of 
parameters]
	90%tile UE 2D positioning errors [m] – small Model I

	
	
	Trained with samples from {60%, 2m, 2m}
	Originally trained with 40,000 samples from 
{60%, 6m, 2m} and fine-tuned with 
different number of samples from {40%, 2m, 2m}

	
	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000

	Dist. Assist.
	0.43 M
	0.684
	2.424
	2.813
	3.417
	4.123
	4.962
	5.110

	Cent. Assist.
	0.36 M
	0.524
	1.383
	1.515
	1.803
	2.352
	2.917
	2.911

	Cent. Direct
	0.36 M
	0.510
	1.379
	1.591
	1.795
	2.455
	2.794
	3.013



Table 28. 90%tile UE 2D positioning errors for small Model I trained with 40,000 DP samples from {60%, 6m, 2m} and fine-tuned with different number of DP samples from {40%, 2m, 2m} and test on {60%, 6m, 2m} test dataset.
	Positioning approach
	Model
complexity 
[# of 
parameters]
	90%tile UE 2D positioning errors [m] – small Model I

	
	
	Trained with samples from {60%, 2m, 2m}
	Originally trained with 40,000 samples from 
{60%, 6m, 2m} and fine-tuned with 
different number of samples from {40%, 2m, 2m}

	
	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000

	Cent. Assist.
	0.36 M
	0.653
	1.880
	2.143
	2.430
	3.264
	3.580
	4.047

	Cent. Direct
	0.36 M
	0.658
	1.957
	2.242
	2.436
	3.346
	3.715
	3.967






Mixed dataset
	· CMCC (R1-2305089)
Observation 3: If the mixed training dataset comprises the samples of the drop as the test dataset, the positioning accuracy can be improved obviously.


	· Ericsson (R1-2304339)
Observation 37	Even with small model sizes, models trained with mixed datasets can operate at state-of-the-art performance in multiple substantially different environments with no need of explicit environment identification and model switching.
Observation 38	For the alternative approach of keeping multiple models for multiple operating environments, reliability of environment identification becomes the critical point of failure.
Observation 39	To operate at state-of-the-art performance in multiple substantially different environments, mixed dataset training is superior to either training multiple models from scratch or storing multiple fine-tuned models with explicit environment identification and model switching.




1st round discussion
In RAN1#112, the following observation was made for direct AI/ML positioning:
	Observation (RAN1#112)
Evaluation of the following generalization aspects show that the positioning accuracy of direct AI/ML positioning deteriorates when the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario. 
· The generalization aspects include:
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· Network synchronization error 
· Companies have provided evaluation results which show that the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning/re-training.
· Better training dataset construction: The training dataset is composed of data from multiple deployment scenarios, which include data from the same deployment scenario as the test dataset. 
· Model fine-tuning/re-training: the model is re-trained/fine-tuned with a dataset from the same deployment scenario as the test dataset.
Note: ideal model training and switching may provide the upper bound of achievable performance when the AI/ML model needs to handle different deployment scenarios.



The generalization aspects "UE/gNB RX and TX timing error", "SNR mismatch", and "Channel estimation error" were not included due to insufficient evaluation results. Based on the evaluation results to this meeting, the following observations are proposed to address this. The intention of the Observation 5.1-1 is to clarify, model fine-tuning/re-training and mixed dataset are also effective for addressing the generalization issues, based on the evaluation results from companies. It is noted that "time varying changes" is not included, since there is no evaluation results of fine-tuning or mixed dataset for it.
· For UE/gNB RX and TX timing error: please see exemplary evaluation results in section 5.2.4 and the references therein.
· For SNR mismatch: please see exemplary evaluation results in section 5.2.6 and the references therein.
· For channel estimation error: please see exemplary evaluation results in section 5.2.8 and the references therein.

Observation 5.4-1 
For direct AI/ML positioning, evaluation results demonstrate that for the generalization aspects of: UE/gNB RX and TX timing error, SNR mismatch, and channel estimation error,
· the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning/re-training.
· Better training dataset construction: The training dataset is composed of data from multiple deployment scenarios, which include data from the same deployment scenario as the test dataset. 
· Model fine-tuning/re-training: the model is re-trained/fine-tuned with a dataset from the same deployment scenario as the test dataset.


The observation 5.4-2 below on fine-tuning is based on evaluation results submitted by companies. For example,
· Huawei (R1-2304657) showed that at least 5000 samples are needed for fine-tuning to maintain sub-meter level accuracy.
· Qualcomm (R1-2305332) showed that with 500 samples for fine-tuning, a model trained for Drop A and tested for Drop B, have positioning error=6.07 at CDF=90%, i.e., still poor performance, and fine-tuning with a small dataset is not effective.
· NVIDIA (R1-2305164) showed that when fine-tuning a model of clutter parameter 1 to clutter parameter 2, fine-tuning with 4000 samples achieves 6.5m at CDF=90%, which is still far from the 2.3m accuracy expected.
· vivo (R1-2304475) showed that with CIR as model input, when using 1000 samples for fine-tuning,
· a model trained with synchronization error=0ns can be updated for the new scenario of synchronization error=10ns, and have positioning error = 1.28m at CDF=90%;
· however, a model trained in InF-DH can be updated for the new scenario of InF-HH, and have positioning error = 8.78m at CDF=90%;
· Ericsson (R1-2304339) showed that for CIR, PDP, or DP as model input, a model trained with 40,000 samples from {60%, 6m, 2m} requires 40,000 samples to retrain the model for {40%, 2m, 2m}, in order to achieve the same performance as a model trained from scratch for {40%, 2m, 2m}.

Observation 5.4-2
For direct AI/ML positioning,
· Model fine-tuning with a small dataset size is most useful for enhancing positioning accuracy for small unseen changes (e.g., synchronization error). 
· If the new deployment scenario is significantly different from the deployment scenario the model was trained for (e.g., different drops, different clutter parameter, different InF scenarios), fine-tuning is less effective. Re-training an existing model requires similarly large training dataset size as training the model from scratch, in order to achieve the converged performance for the new deployment scenario.

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	HW/HiSi
	Do not agree.
The observation seems vague in our opinion, how to quantify a small unseen change and what a new scenario? It seems it would be difficult to draw a borderline which could lead to wrong conclusions or different understandings across companies.
In table 16 in our paper (R1-2304657), we have e.g. evaluated different clutter parameters and used fine-tuning with 3000 and 5000 samples (compared to training 25000) and achieved very good accuracy. Thus, according to our simulations, fine-tuning with small dataset, can be useful for new scenarios as well.


	LG
	It is somewhat vague on Observation 5.4-2 that what is the granularity of the deploy scenario is different?

	ZTE
	Agree with Huawei. It’s unclear about the unseen change.

	OPPO
	Similar view with Huawei. It’s unclear about the definition of small unseen changes and small dataset size.

	ZTE2
	We already have observations for timing errors in last meeting. We cand do similar exercises for different drops, different clutter parameters and different InF scenarios. Based on this, we don’t need to differetiate what is unseen change. People can refer to corresponding value ranges for different scenarios.
Observation
For direct AI/ML positioning, based on evaluation results of timing error in the range of 0-50 ns, when the model is trained by a dataset with UE/gNB RX and TX timing error t1 (ns) and tested in a deployment scenario with UE/gNB RX and TX timing error t2 (ns), for a given t1,
· For a case evaluated by a given source, the positioning accuracy of cases with t2 smaller than t1 is better than the cases with t2 equal to t1. For example,
· For the case of (t1, t2)=(50ns, 30ns), evaluation results submitted to RAN1#112bis show the positioning error of (t1, t2)=(50ns, 30ns) is 0.82~0.86 times that of (t1, t2)=(50ns, 50ns).
· For the case of (t1, t2)=(50ns, 0ns), evaluation results submitted to RAN1#112bis show the positioning error of (t1, t2)=(50ns, 0ns) is 0.80~0.82 times that of (t1, t2)=(50ns, 50ns).
· For a case evaluated by a given source, the positioning accuracy of cases with t2 greater than t1 is worse than the cases with t2 equal to t1. The larger the difference between t1 and t2, the more the degradation. For example,
· For the case of (t1, t2)=(0ns, 10ns), evaluation results submitted to RAN1#112bis show the positioning error of (t1, t2)=(0ns, 10ns) is 1.25~18.7 times that of (t1, t2)=(0ns, 0ns).
· For the case of (t1, t2)=(0ns, 50ns), evaluation results submitted to RAN1#112bis show the positioning error of (t1, t2)=(0ns, 50ns) is 3.5~18.3 times that of (t1, t2)=(0ns, 0ns).
Note: here the positioning error is the horizontal positioning error (meters) at CDF=90%.

Observation
For direct AI/ML positioning, based on evaluation results of network synchronization error in the range of 0-50 ns, when the model is trained by a dataset with network synchronization error t1 (ns) and tested in a deployment scenario with network synchronization error t2 (ns), for a given t1,
· For a case evaluated by a given source, the positioning accuracy of cases with t2 smaller than t1 is better than the cases with t2 equal to t1. For example,
· For the case of (t1, t2)=(50ns, 10ns), evaluation results submitted to RAN1#112bis show the positioning error of (t1, t2)=(50ns, 10ns) is 0.74~0.83 times that of (t1, t2)=(50ns, 50ns).
· For the case of (t1, t2)=(50ns, 0ns), evaluation results submitted to RAN1#112bis show the positioning error of (t1, t2)=(50ns, 0ns) is 0.73~0.82 times that of (t1, t2)=(50ns, 50ns).
· For a case evaluated by a given source, the positioning accuracy of cases with t2 greater than t1 is worse than the cases with t2 equal to t1. The larger the difference between t1 and t2, the more the degradation. For example,
· For the case of (t1, t2)=(0ns, 10ns), evaluation results submitted to RAN1#112bis show the positioning error of (0ns, 10ns) is 1.17~9.5 times that of (0ns, 0ns).
· For the case of (t1, t2)=(0ns, 50ns), evaluation results submitted to RAN1#112bis show the positioning error of (0ns, 50ns) is 10~40 times that of (0ns, 0ns).
Note: here the positioning error is the horizontal positioning error (meters) at CDF=90%.




There has been a question whether a model fine-tuned for a new scenario could still works well for the old scenario. Ericsson (R1-2304339, Table 26-28) showed that when a model previously trained for {60%, 6m, 2m} is fine-tuned for {40%, 2m, 2m}, the new model does not work well for {60%, 6m, 2m} any more. Accordingly, the following observation is suggested.
Observation 5.4-3 
For direct AI/ML positioning, evaluation results show that fine-tuning/re-training an old model with dataset of the new deployment scenario (e.g., new clutter parameter setting) can improve positioning accuracy when the updated model is deployed in a new deployment scenario. On the other hand, the performance of the updated model degrades for the previous deployment scenario (e.g., previous clutter parameter setting) that the old model was trained for.

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	HW/HiSi
	We think that this observation is not relevant. The dataset for the old model is for the old scenario but here we should look at how we can adapt from a generically trained model to a given scenario.

	LG
	Generally fine. But, as similar comment as the above, it is based on the amount of difference on a new deployment scenario compared to that of old model. If the difference is relatively small, the old model can still work.




Impact of direct AI/ML positioning performance by model input type and size
Evaluation of input size reduction
Different type of model input
	· vivo (R1-2304475)
Table 79	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Number of TRP
	Length
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)
	Average bits overhead

	
	
	
	
	Train
	test
	Model complexity
	Computation complexity
	AI/ML
	

	Delay 
	Pos.
	6
	64
	25k
	1k
	1.65M
	22.30M
	0.86
	455

	Delay + Power (PDP)
	Pos.
	6
	64
	25k
	1k
	1.65M
	22.30M
	0.68
	1174

	Delay + Power+ Phase (CIR)
	Pos.
	6
	64
	25k
	1k
	1.65M
	22.30M
	0.62
	1842

	RSRPP
	Pos.
	6
	9
	25k
	1k
	1.65M
	22.30M
	2.00
	432





	· Qualcomm (R1-2305332)
Observation 4: We observe the following regarding the trade-off between positioning accuracy and reporting overhead for AI/ML positioning: 
	Case1 produces the best performance with least reporting overhead (e.g., 2.24m with 24 bits).
	Case2a with N’t =1 (i.e., one path) produces higher positioning accuracy (e.g., 2.93m vs. 3.17m) and has smaller reporting overhead (e.g., 272 vs. 13824 bits) than Case2b with CIR of N’t =8 samples.
	Case2b with multipath measurements (up to N’t =8 multipaths) produces higher positioning accuracy (e.g., 2.52m vs. 3.17m) and has smaller reporting overhead (e.g., 1152 vs. 13824 bits) than Case2b with CIR of N’t =8 samples.
	Case2b with multipath measurements (up to N’t =8 multipaths) produces comparable positioning accuracy (e.g., 2.52m vs. 2.51m)   and has smaller reporting overhead (e.g., 1152 vs. 23040 bits) than Case2b with CIR of N’t =16 samples.
	Case2b with multipath measurements (up to N’t =16 multipaths) produces higher positioning accuracy (e.g., 2.31m vs. 2.51m)    and has smaller reporting overhead (e.g., 2304 vs. 23040 bits) than Case2b with CIR of N’t =16 samples.
	Case2b with multipath measurements (up to N’t =16 multipaths) produces comparable positioning accuracy (e.g., 2.31m vs. 2.29m) and has much smaller reporting overhead (e.g., 2304 vs. 78336 bits) than Case2b with CIR of N’t =64 samples.

Observation 5: For AI/ML positioning evaluation of reporting overhead (Case2b), evaluations show that reporting of CIR measurements with N’t > 64 incurs huge reporting overhead and the expected performance gain is minimal (e.g., enhancing accuracy from 2.29m to 2.24m). 
Observation 6: For AI/ML positioning evaluation of reporting overhead (Case2b), evaluations show that reporting of CIR measurements with N’t ≤ 64 can have less or comparable performance gain to multipath reporting and has higher reporting overhead. 
Observation 7: For AI/ML positioning evaluation of reporting overhead (Case2b), when considering same reporting overhead for N’t ≤ 64, evaluations show that Case2b achieves higher positioning accuracy with multipath reporting than CIR measurement reporting. 
Proposal 9:  For specifying model input in Case2b in AI/ML positioning, deprioritize CIR measurement reporting due to its the huge reporting overhead and comparable or minimal performance gain when compared to existing multipath reporting.


	· Apple (R1-2305973)
Table 5: Direct AI/ML Positioning: Evaluation results for AI/ML model deployed on UE or Network side, without model generalization, with a CNN, UE distribution area = 100x40 m, Model Input Comparison Study (CIR, PDP, DP)
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	47500
	2500
	1.48 M
(default)
	2.75G
(default)
	0.884m

	Delay Profile
[18,1,256,1]
DP
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	47500
	2500
	1.48 M
	2.75G
	0.7289m

	Power Delay Profile
[18,1,256,1]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	47500
	2500
	1.48 M
	2.75G
	0.7441m




	· Ericsson (R1-2304339)
[image: ]
[image: ]
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	· Samsung (R1-2305509)
A new CIR post processing method on the model input, which called “signature transform” or “log signature transform” over the CIR. The target is to keep the useful information from the CIR and extract them as “signatures” to be used in the model training. 
The log signature transform is the mapping from a path to the logarithm of its signature. The signature of a path, which was originally introduced [4], can be seen as a collection of features extracted from the path by iterated integrals. The signature provides a well summary of the path and has meaningful interpretations from the geometrical or statistical point of view. The log signature, i.e., the logarithm of the signature, is a lossless compression of the signature, providing the same amount of information with fewer features. The key points to using log signature transform as a feature extraction are constructing a suitable path (continuous mapping) and doing necessary augmentation from the collected raw discrete time series. For the purpose of positioning, the path constructed by cumulative sum of energy (CSE) of the CIR and time augmentation are proposed, with the benefit of keeping the vital information for positioning. The log signature transform is applied to the constructed path to obtain features for subsequent AI/ML model training and inference. The basic procedure is shown in following figure:
[image: ]
Fig. 10 illustration of log-signature transform based processing over CIR
Among the procedure, most importantly, the specifically constructed time-augmented CSE path of each CIR keeps the critical information (power and time) for the positioning purpose and becomes suitable for feature derivation. Then the features of the path signature and log signature are obtained. With closed-form expressions of these features, the superior knowledge of filtering the necessary features can be derived before feeding into an AI model for learning and inference. Experiments in show that the proposed method can drastically reduce the input data size and model complexity and without accuracy reduction or achieve better positioning accuracy with a simple AI/ML model (like MLP) compared with CIR-based AI/ML models.  
Using simple AI/ML model, MLP

[image: ]
Fig.11 comparison of CIR-based and SIG based in MLP
It’s clear that the SIG based positioning achieves better performance than the CIR based one when using the MLP (in case of 2 layers, 4 layers and 6 layers).
Observation 9: SIG based input could adopt better (e.g., 7~8 times better in pos accuracy) with simple AI/ML model (e.g., MLP) than CIR based input.
Using ResNet
[image: ]
Fig.12 comparison of CIR-based and SIG based in ResNet

[image: ]
Fig.13 illustration of complexity reduction and Data size reduction
It shows that the pos accuracy when using ResNet for both input type are comparable but the used input data size and the complexity are quite different, in which the SIG based input type reduced with 98% in both aspects. 
Observation 10: the SIG-based input could drastically reduce the input data size and the complexity (e.g., with 98% reduction) without accuracy loss (e.g., even with 1% improvement).

	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	SIG 
With
18*6
	2D-coordinates
	2D-coordinates
	DH662(normalized  CIR)
	DH662(normalized  CIR)
	18000
	2000
	74K
	0.21M
	3.13

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662(normalized  CIR)
	DH662(normalized  CIR)
	18000
	2000
	76K
	9.5M
	3.18



Table X. Evaluation results for AI/ML model deployed on UE-side or network-side, MLP 
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	DH662
	18000
	2000
	932K
	1.86M
	36.23(2 layer)

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	DH662
	18000
	2000
	952K
	1.91M
	35.35 (4 layer)

	CIR with 18x256x2
	2D-coordinates
	2D-coordinates
	DH662
	DH662
	18000
	2000
	972K
	1.94M
	34.23 (6 layer)

	SIG 
With
18*6
	2D-coordinates
	2D-coordinates
	DH662
	DH662
	18000
	2000
	21.2K
	42.2K
	5.24(2 layer)

	SIG 
With
18*6
	2D-coordinates
	2D-coordinates
	DH662
	DH662
	18000
	2000
	41..2K
	82.3K
	4.20 (4 layer)

	SIG 
With
18*6
	2D-coordinates
	2D-coordinates
	DH662
	DH662
	18000
	2000
	61.2K
	0.123M
	4.17 (6 layer)






1st round discussion
Evaluation results submitted by companies are summarized below in Table 2 for different types of model input. Please add/correct if anything is missing or wrong.
[bookmark: _Ref135466737]Table 2. Positioning error of different types of model input
	 
	E_CIR
	E_PDP
	E_DP
	E_PDP/E_CIR
	E_DP/E_CIR

	MediaTek R1-2305659, Table 35
	0.94
	0.821
	 
	0.87
	 

	MediaTek R1-2305659, Table 35
	0.915
	1.089
	 
	1.19
	 

	MediaTek R1-2305659, Table 35
	1.017
	1.133
	 
	1.11
	 

	MediaTek R1-2305659, Table 35
	0.984
	0.942
	 
	0.96
	 

	MediaTek R1-2305659, Table 35
	0.851
	0.965
	 
	1.13
	 

	MediaTek R1-2305659, Table 35
	1.097
	1.057
	 
	0.96
	 

	vivo R1-2304475, Table 79
	0.62
	0.68
	0.86
	1.10
	1.39

	Apple R1-2306112, Table 5
	0.884
	0.741
	0.7289
	0.84
	0.82

	Apple R1-2306112, Table 5
	0.5615
	0.6602
	0.6624
	1.178
	1.176

	Ericsson R1-2304339, Table 4 & Table 7
	0.3
	0.426
	0.558
	1.42
	1.86

	Ericsson R1-2304339, Table 4 & Table 7
	0.373
	0.51
	0.658
	1.37
	1.76

	Ericsson R1-2304339, Table 4 & Table 7
	0.498
	0.656
	0.789
	1.32
	1.58

	Ericsson R1-2304339, Table 4 & Table 7
	0.718
	0.863
	1.014
	1.20
	1.41

	Ericsson R1-2304339, Table 4 & Table 7
	0.199
	0.269
	0.391
	1.35
	1.96

	Ericsson R1-2304339, Table 4 & Table 7
	0.268
	0.349
	0.465
	1.30
	1.74

	Ericsson R1-2304339, Table 4 & Table 7
	0.385
	0.496
	0.6
	1.29
	1.56

	Ericsson R1-2304339, Table 4 & Table 7
	0.597
	0.735
	0.823
	1.23
	1.38

	Ericsson R1-2304339, Table 4 & Table 7
	0.155
	0.214
	0.298
	1.38
	1.92

	Ericsson R1-2304339, Table 4 & Table 7
	0.233
	0.288
	0.379
	1.24
	1.63

	Ericsson R1-2304339, Table 4 & Table 7
	0.354
	0.425
	0.522
	1.20
	1.47

	Ericsson R1-2304339, Table 4 & Table 7
	0.556
	0.653
	0.758
	1.17
	1.36

	ZTE R1-2302538 Excel
{Nport, NTRP, Nt, N't}
= {2, 18, 256, 128}
	0.28
	0.45
	
	1.61
	

	Qaulcomm R1-2305332, Table 2 (N’t=8)
	3.17
	-
	2.52
	-
	0.79

	Qaulcomm R1-2305332, Table 2 (N’t=16)
	2.51
	-
	2.31
	-
	0.92

	Huawei/HiSilicon, R1-2304657, Table 4 & Table 6 
	0.62
	0.56
	
	0.90
	

	 
	 
	 
	max
	1.61
	1.96

	 
	 
	 
	min
	0.82
	0.79



Based on the summary table above, the following observation is drawn.

Observation 6.1.1.1-1 (CIR vs PDP vs DP)
For direct AI/ML positioning, the positioning accuracy at model inference is affected by the type of model input.  Evaluation results submitted to RAN1#113 show that if changing model input type while holding other parameters (e.g., Nt, N't, Nport, N'TRP) the same, 
· Three sources (MediaTek R1-2305659, vivo R1-2304475, Ericsson R1-2304339) showed The positioning error of PDP as model input is 1.1 ~ 1.42 times the positioning error of CIR as model input.
· Two sources (MediaTek R1-2305659, Apple R1-2305973) showed that the positioning error of PDP as model input is 0.82 ~ 0.96 times the positioning error of CIR as model input.
· When comparing DP and CIR as model input, The positioning error of PDP as model input is 0.82 ~ 1.42 times the positioning error of CIR as model input
· Three sources (vivo R1-2304475, Ericsson R1-2304339) showed The positioning error of DP as model input is 1.36 ~ 1.96 times the positioning error of CIR as model input.
· One source (Apple R1-2305973) showed that the positioning error of DP as model input is 0.84 times the positioning error of CIR as model input.
· Note: DP uses Nport=1 only. 

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	HW/HiSi
	Not agree.
We do not think that DP needs to be treated separately. In our view the DP is just one quantization realization of the PDP. And the quantization of the PDP itself has not be discussed yet.
Therefore. We could say that depending on the quantization level of the PDP, its accuracy is between 0.82 and 1.96 times CIR. 

	ZTE
	Not clear about the assumptions on Nt, N't, Nport, N'TRP.  It’s not appropriate to take CIR as baseline to compare the results. Our suggestion is to take PDP as baseline since it’s alrady defined in the spec. For example, PDP { Nt, N't, Nport, N'TRP}= {256, 256, 1, 18} can be the baseline for comparison. 
Companies have different numbers of training data, which is not reflected in this observation.
 In addition, ZTE also provides the evaluation results for PDP and CIR. It’s not captured in here. For example, when the training samples are 28800:
	 
	E_CIR
	E_PDP
	E_DP
	E_PDP/E_CIR
	E_DP/E_CIR

	ZTE R1-2302538 Excel
{Nport, NTRP, Nt, Nt'}
= {2, 18, 256, 128}
	0.28
	0.45
	 
	1.60
	 



[Moderator] OK. Added above to the summary table



2nd round discussion
ZTE and Qualcomm results are added to Table 2 --- thanks to ZTE and Qualcomm for the input! 
The observation is updated to the following. The main change is to reflect vivo comment: split the bullet into those that observe PDP can perform better than CIR, and those observe that PDP perform worse than CIR. The same is done for DP.

Observation 6.1.1.2-1 (CIR vs PDP vs DP)
For direct AI/ML positioning, the positioning accuracy at model inference is affected by the type of model input.  Evaluation results submitted to RAN1#113 show that if changing model input type while holding other parameters (e.g., Nt, N't, Nport, N'TRP) the same, 
· When comparing PDP and CIR as model input, 
· Four sources (MediaTek R1-2305659, vivo R1-2304475, ZTE R1-2302538, Ericsson R1-2304339) showed evaluation results where the positioning error of PDP as model input is 1.10 ~ 1.61 times the positioning error of CIR as model input.
· Two sources (MediaTek R1-2305659, Apple R1-2305973) showed evaluation results where the positioning error of PDP as model input is 0.82 ~ 0.96 times the positioning error of CIR as model input.
· When comparing DP and CIR as model input, 
· Two sources (vivo R1-2304475, Ericsson R1-2304339) showed evaluation results where the positioning error of DP as model input is 1.36 ~ 1.96 times the positioning error of CIR as model input.
· Two sources (Apple R1-2305973, Qaulcomm R1-2305332) showed evaluation results where the positioning error of PDP as model input is 0.79~0.92 times the positioning error of CIR as model input.
· Note: DP uses Nport=1 only. 

	Company
	Comments

	HW/HiSi
	For comparing PDP and CIR, please add our results from R1-2304657 for CIR (Table 4) and PDP (Table6), showing that PDP is 0.9 times the positioning error of CIR:
· Two sources (MediaTek R1-2305659, Apple R1-2305973, Huawei R1-2305332) showed evaluation results where the positioning error of PDP as model input is 0.82 ~ 0.96 times the positioning error of CIR as model input.


	Samsung 
	We are generally fine for this proposal, however, we are actually introducing another processing of CIR to derive another model input. We hope to get the window open for further update this observation if other model input type are used and reported.
For our proposal, pls see following:
Proposed Updated Agreement from RAN1#111
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to the first Nt consecutive time domain samples.
       Approach 1: If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.
       Approach 2: if N’(N’<Nt) features(elements) derived/calculated based on Nt CIR are selected as model input, the companies report the details on the methods, meaning and size of the features(elements).


	Qualcomm
	There is a typo in the last sub bullet. Replace PDP by DP.

	Nokia/NSB
	In our Tdoc R1-2300608 (RAN1#112), Table 9, for clutter density of 40%, at CDF 90%til, PDP outperforms CIR by a ratio of E_PDP/E_CIR= 0.61 . However, this evaluation is under the condition that a simplistic model is used. It is expected that using a model with high complexity, the CIR could outperform PDP. Thus, to do a fair comparison between CIR and PDP the observation should consider the Model complexity and computational complexity associated to the performance. 
We propose the following rewording:
Observation 6.1.1.2-1 (CIR vs PDP vs DP) (Updated)
For direct AI/ML positioning, the positioning accuracy at model inference is affected by the type of model input.  Evaluation results submitted to RAN1#113 show that if changing model input type while holding other parameters (e.g., Nt, N't, Nport, N'TRP) the same, 
· When comparing PDP and CIR as model input, 
· Four sources (MediaTek R1-2305659, vivo R1-2304475, ZTE R1-2302538, Ericsson R1-2304339) showed evaluation results where the positioning error of PDP as model input is 1.10 ~ 1.61 times the positioning error of CIR as model input.
· Two sources (MediaTek R1-2305659, Apple R1-2305973, Nokia R1-2300608) showed evaluation results where the positioning error of PDP as model input is 0.61 ~ 0.96 times the positioning error of CIR as model input.


	Apple
	We have additional results that verify Nokia’s statement  “It is expected that using a model with high complexity, the CIR could outperform PDP. Thus, to do a fair comparison between CIR and PDP the observation should consider the Model complexity and computational complexity associated to the performance.”

Additional results with a complex CNN show the order CIR < PDP < DP
Original results with a simple CNN show the order DP < PDP < CIR 

Updated proposal:
For direct AI/ML positioning, the positioning accuracy at model inference is affected by the type of model input and model complexity.  Evaluation results submitted to RAN1#113 show that if changing model input type while holding other parameters (e.g., Nt, N't, Nport, N'TRP) the same, 
· When comparing PDP and CIR as model input, 
· Four Five sources (MediaTek R1-2305659, vivo R1-2304475, ZTE R1-2302538, Ericsson R1-2304339, Apple R1-2306112) showed evaluation results where the positioning error of PDP as model input is 1.10 ~ 1.61 times the positioning error of CIR as model input.
· Two sources (MediaTek R1-2305659, Apple R1-2306112  R1-2305973) showed evaluation results where the positioning error of PDP as model input is 0.82 ~ 0.96 times the positioning error of CIR as model input.
· When comparing DP and CIR as model input, 
· Two Three sources (vivo R1-2304475, Ericsson R1-2304339, Apple R1-2306112) showed evaluation results where the positioning error of DP as model input is 1.176 1.36 ~ 1.96 times the positioning error of CIR as model input.
· Two sources (Apple R1-2305973 Apple R1-2306112, Qaulcomm R1-2305332) showed evaluation results where the positioning error of PDP as model input is 0.79~0.92 times the positioning error of CIR as model input.
· Note: DP uses Nport=1 only. 
· Note: For Apple R1-2306112, the difference in relative performance is based on the complexity of the AI/ML model. 







3rd round discussion
After further offline discussion, the observation on CIR vs PDP vs DP is updated to the following. A take-away message is added. The conjecture is, a simple model design may not benefit from the rich information provided by CIR, and CIR may even provide worse positioning accuracy when compared with PDP and DP. Thus, depending on the AI/ML model (e.g., large vs small) one wishes to deploy, the best choice of model input type may be different.

Observation 6.1.1.3-1 (CIR vs PDP vs DP)
For direct AI/ML positioning, the positioning accuracy at model inference is affected by the type of model input and model complexity. For a given AI/ML model design, the model input can be selected based on tradeoffs such as signalling overhead and positioning accuracy requirement. Evaluation results submitted up to RAN1#113 show that if changing model input type while holding other parameters (e.g., Nt, N't, Nport, N'TRP) the same, 
· When comparing PDP and CIR as model input, 
· Five sources (MediaTek R1-2305659, vivo R1-2304475, ZTE R1-2302538, Ericsson R1-2304339, Apple R1-2306112) showed evaluation results where the positioning error of PDP as model input is 1.10 ~ 1.61 times the positioning error of CIR as model input.
· Four sources (MediaTek R1-2305659, Apple R1-2306112, Huawei R1-2305332, Nokia R1-2300608) showed evaluation results where the positioning error of PDP as model input is 0.61 ~ 0.96 times the positioning error of CIR as model input.
· When comparing DP and CIR as model input, 
· Three sources (vivo R1-2304475, Ericsson R1-2304339, Apple R1-2306112) showed evaluation results where the positioning error of DP as model input is 1.18 ~ 1.96 times the positioning error of CIR as model input.
· Two sources (Apple R1-2306112, Qualcomm R1-2305332) showed evaluation results where the positioning error of DP as model input is 0.79~0.92 times the positioning error of CIR as model input.
· Note: DP uses Nport=1 only. 
· Note: For Apple R1-2306112, the difference in relative performance is based on the complexity of the AI/ML model. 

	Company
	Comments

	Qualcomm
	The red-colored part in the proposal heading seems to imply how model input type would need to be selected, which has not been discussed before. The wording needs to be modified to avoid confusion.
E.g., 
“ For direct AI/ML positioning, the evaluation of positioning accuracy at a given model inference is affected by the type of model input, and model complexity, and signalling overhead. For a given AI/ML model design, the model input can be selected based on tradeoffs such as signalling overhead and positioning accuracy requirement.“

	ZTE
	We don’t need to mention siganling overhead in observation. We have another observation to explain how to calculate the overhead. Regarding the model complexity, it should be in the subbullets that companies use different model assumption for CIR and PDP.
 For direct AI/ML positioning, the evaluation of positioning accuracy at a given model inference is affected by the type of model input. For a given AI/ML model design, the model input can be selected based on tradeoffs such as signalling overhead and positioning accuracy requirement. Evaluation results submitted up to RAN1#113 show that if changing model input type while holding other parameters (e.g., Nt, N't, Nport, N'TRP) the same, 
· When comparing PDP and CIR as model input, 
· Five sources (MediaTek R1-2305659, vivo R1-2304475, ZTE R1-2302538, Ericsson R1-2304339, Apple R1-2306112) showed evaluation results where the positioning error of PDP as model input is 1.10 ~ 1.61 times the positioning error of CIR as model input.
· Four sources (MediaTek R1-2305659, Apple R1-2306112, Huawei R1-2305332, Nokia R1-2300608) showed evaluation results where the positioning error of PDP as model input is 0.61 ~ 0.96 times the positioning error of CIR as model input. 
· The difference in relative performance in above sources is based on the complexity of the AI/ML model. 
· When comparing DP and CIR as model input, 
· Three sources (vivo R1-2304475, Ericsson R1-2304339, Apple R1-2306112) showed evaluation results where the positioning error of DP as model input is 1.18 ~ 1.96 times the positioning error of CIR as model input.
· Two sources (Apple R1-2306112, Qualcomm R1-2305332) showed evaluation results where the positioning error of DP as model input is 0.79~0.92 times the positioning error of CIR as model input.
· The difference in relative performance in above sources is based on the complexity of the AI/ML model. 
· Note: DP uses Nport=1 only. 
· Note: For Apple R1-2306112, the difference in relative performance is based on the complexity of the AI/ML model. 





Model input truncated in time domain
	· MediaTek Inc. (R1-2305659)
Table 35. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m], different N’t and Nt  
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Nt
	N’t
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR [18,2,256]
	UE pos [x,y]
	0%
	256
	25
	32400
	3600
	464.24K
	0.266G
	0.940

	
	
	
	
	20
	
	
	
	
	0.915

	
	
	
	
	15
	
	
	
	
	1.017

	
	
	
	64
	25
	
	
	243.058K
	0.066G
	0.984

	
	
	
	
	20
	
	
	
	
	0.851

	
	
	
	
	15
	
	
	
	
	1.097

	PDP [18,2,256]
	UE pos [x,y]
	0%
	256
	25
	32400
	3600
	463.95K
	0.264G
	0.821

	
	
	
	
	20
	
	
	
	
	1.089

	
	
	
	
	15
	
	
	
	
	1.133

	
	
	
	64
	25
	
	
	242.770K
	0.066G
	0.942

	
	
	
	
	20
	
	
	
	
	0.965

	
	
	
	
	15
	
	
	
	
	1.057


Observation 44:	By selecting appropriate Nt and N’t, the computational complexity, model complexity and signaling overhead can be reduced without significant performance loss.


	· Apple (R1-2305973)
Table 10: Direct AI/ML Positioning: Evaluation results for AI/ML model deployed on UE or Network side, using a different # of consecutive taps , with a CNN, UE distribution area = 100x40 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
18 TRP
	Drop 1
18 TRP
	47500
	2500
	1,480,140
	2.75G
	0.884m

	CIR
[18,1,128,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
9 TRP
	Drop 1
9 TRP
	47500
	2500
	1,480,140
	2.75G
	0.884

	CIR
[18,1,64,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
4 TRP 
	Drop 1
4 TRP
	47500
	2500
	1,480,140
	2.75G
	1.1206



Observation 5: For direct AI/ML based positioning
· Reducing the number of taps from 256 to 128 does not affect the performance
· Reducing the number of taps to 64 starts affecting the performance negatively
· Reducing the number of taps ultimately reduces the overhead by the same factor



	· Huawei (R1-2304657)
Observation 2 : For direct AI/ML positioning, when the model input is CIR and consists of different numbers of time domain samples, sub-meter level accuracy can be maintained with short CIR lengths while the computational complexity can be reduced significantly.
•	For 18 CIRs as model input, sub-meter level accuracy is still kept when the number of CIR samples is reduced from 256 to 32. The computational complexity can be reduced from 25.81M to 3.36M accordingly.
•	For 4 CIRs as model input, sub-meter level accuracy is still kept when the number of CIR samples is reduced from 256 to 64. The computational complexity can be reduced from 6.52M to 1.68M accordingly.

Observation 3 : For direct AI/ML positioning, when the model input is CIR, compared to the initial assumptions of 18 TRPs and 256 samples per CIR as model input, the signaling payload could be reduced to 1/18 when going down to 4 TRPs and 64 samples per CIR, while still maintaining sub-meter level accuracy.
Observation 4 : For direct AI/ML positioning, when the AI/ML model input is PDP (one PDP per TRP) and different numbers of TRPs are evaluated,
•	The positioning accuracy decreases slightly when the number of TRPs is reduced from 18 to 4. But to maintain sub-meter level accuracy, the number of TRPs should be at least 4.
•	Model and computational complexity decrease significantly with a smaller number of TRPs. The model complexity and computation complexity are both reduced by more than 70% when reducing the number of TRPs from 18 to 4.
Observation 5 : For direct AI/ML positioning, when the model input is PDP and consists of different numbers of time domain samples, sub-meter level accuracy can be maintained with short PDP lengths while the computational complexity can be reduced significantly.
•	For 4 PDPs as model input, sub-meter level accuracy is still kept when the number of PDP samples is reduced from 256 to 32. The computational complexity can be reduced from 4.11M to 0.623M accordingly.


	· vivo (R1-2304475)
Table 71	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Truncated CIR 
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	1-30
	DH
	DH
	25k
	1k
	1.65M
	22.30M
	1.04

	CIR
	Pos.
	1-100
	DH
	DH
	25k
	1k
	1.65M
	22.30M
	1.04

	CIR
	Pos.
	30-100
	DH
	DH
	25k
	1k
	1.65M
	22.30M
	2.99





	· CATT (R1-2304726)
Observation 14: For direct AI/ML positioning, reducing the number of CIR taps can reduce the computation complexity of a model while keeping similar inference accuracy.



	· Ericsson (R1-2304339)
Table 13 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of time domain window size Nt (training dataset size = 40,000 samples, Nt=Nt').
	Input type
	Time domain window size Nt
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m] in {60%, 6m, 2m} InF-DH

	
	
	
	
	Cent. Assist.
	Cent. Direct

	CIR
	256
	0.73 M
	32 M
	0.371
	0.373

	CIR
	128
	0.73 M
	15 M
	0.463
	0.443

	CIR
	64
	0.73 M
	7 M
	0.704
	0.668

	CIR
	32
	0.73 M
	3 M
	1.627
	1.602

	PDP
	256
	0.36 M
	9 M
	0.520
	0.510

	PDP
	128
	0.36 M
	4 M
	0.596
	0.563

	PDP
	64
	0.36 M
	2 M
	0.713
	0.711

	PDP
	32
	0.36 M
	0.8 M
	1.261
	1.165

	DP
	256
	0.36 M
	9 M
	0.653
	0.658

	DP
	128
	0.36 M
	4 M
	0.679
	0.658

	DP
	64
	0.36 M
	2 M
	1.970
	1.976







1st round discussion
Evaluation results submitted by companies are summarized in Table 3 below for truncation in time domain (i.e. vary Nt; no sub-sampling). Model input CIR and PDP are considered. DP is not included since DP always select a subset of taps from timing window Nt.
Please add/correct if anything in Table 3 is missing or wrong.

[bookmark: _Ref135433757]Table 3. Positioning error E_* (meter) when time window size Nt varies. Model input is CIR or PDP. Full set of Nt samples are used as model input (i.e., N't=Nt)
	 
	Nt=256
	Nt=128
	Nt=64
	Nt=32
	 
	 
	 

	 
	E_256
	E_128
	E_64
	E_32
	E_128/E_256
	E_64/E_256
	E_32/E_256

	MediaTek R1-2305659, Table 35
	0.94
	 
	0.984
	 
	 
	1.05
	 

	MediaTek R1-2305659, Table 35
	0.915
	 
	0.851
	 
	 
	0.93
	 

	MediaTek R1-2305659, Table 35
	1.017
	 
	1.097
	 
	 
	1.08
	 

	MediaTek R1-2305659, Table 35
	0.821
	 
	0.942
	 
	 
	1.15
	 

	MediaTek R1-2305659, Table 35
	1.089
	 
	0.965
	 
	 
	0.89
	 

	MediaTek R1-2305659, Table 35
	1.133
	 
	1.057
	 
	 
	0.93
	 

	vivo R1-2304475, Table 71
	0.99
	 
	1.04
	1.04
	 
	1.05
	1.05

	Apple R1-2305973, Table 10
	0.884
	0.884
	1.1206
	 
	1.00
	1.27
	 

	Huawei R1-2304657, Table 4
	0.62
	0.5
	0.64
	0.71
	0.81
	1.03
	1.15

	Huawei R1-2304657, Table 5
	0.97
	0.85
	0.85
	1.19
	0.88
	0.88
	1.23

	Ericsson R1-2304339, Table 13
	0.373
	0.443
	0.668
	1.602
	1.19
	1.79
	4.29

	Ericsson R1-2304339, Table 13
	0.51
	0.563
	0.711
	1.165
	1.10
	1.39
	2.28

	CATT R1-2304726, Table 1 & Table 14
	0.58m
	0.57m
	0.58m
	0.62m
	0.98
	1
	1.07

	 
	 
	 
	 
	max
	1.19
	1.79
	4.29

	 
	 
	 
	 
	min
	0.81
	0.88
	1.05



Observation 6.1.2.1-1 (time domain truncation of Nt)
For direct AI/ML positioning, the positioning accuracy at model inference tends to degrade as the time domain window size Nt decreases, where Nt consecutive time domain samples are used as model input. Evaluation results submitted to RAN1#113 show that show that when CIR or PDP are used as model input, using different Nt while holding other parameters constant,  
· Positioning error of Nt=128 is 0.81 ~ 1.19 times the positioning error of Nt=256;
· Thus: Reducing Nt from 256 to 128 does not appreciably degrade the positioning accuracy, while the measurement size and signaling overhead shrink to ½ of Nt=256.
· Positioning error of Nt=64 is 0.88 ~ 1.79 times the positioning error of Nt=256;
· Positioning error of Nt=32 is 1.05 ~ 4.29 times the positioning error of Nt=256;
· Thus: Reducing Nt from 256 to 64~32 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to 1/4 ~1/8 of Nt=256, respectively. 
· In terms of achievable positioning accuracy, Nt can be reduced to 64~32 while maintaining positioning accuracy around or below 1 meter.

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	HW/HiSi
	Not sure if we can capture these result so straight forwardly. Should we really only take the extreme cases to set the range? For example for E_32/E_256, the 4.29 seems to stick out from the rest of the numbers.

	ZTE
	Better to have different observations for CIR and PDP. The following comment may be applied to all the observations in the paper. Otherwise, it may be confused when reading the TR.
Each observation should accompanied by the detailed assumptions:
1) Dataset generation for training
2) With/without generalization
3) Model input types
4) The values of {Nport, NTRP, Nt, Nt'}
5) Other details if necessary

	CATT
	CATT’s result is missing for this case (see Table 1 and Table 14 in R1-2304726).
Add it back to the table. Though it seems the min and max is not changed.

	Qualcomm
	We think the wording “the positioning accuracy at model inference tends to degrade as the time domain window size Nt decreases” somehow conflicts with some of the observed numbers in the bullet points. 
E.g., 

“For direct AI/ML positioning, the positioning accuracy at model inference tends to degrade as the time domain window size Nt decreases, where when Nt consecutive time domain samples are used as model input. Evaluation results submitted to RAN1#113 show …”




2nd round discussion
CATT result is added to Table 3 now --- Thanks to CATT for the addition!
The observation is updated to the following, reflecting Qualcomm and vivo comment.
· For vivo comment: the take-away messages are made the bullets, while the performance results are made sub-bullets. 

Observation 6.1.2.2-1 (time domain truncation of Nt)
For direct AI/ML positioning, the positioning accuracy at model inference tends to degrade as the time domain window size Nt decreases, where with Nt consecutive time domain samples used as model input, evaluation results submitted to RAN1#113 show that show that when CIR or PDP are used as model input, using different Nt while holding other parameters constant,  
· Reducing Nt from 256 to 128 does not appreciably degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/2 that of Nt=256.
· Positioning error of Nt=128 is 0.81 ~ 1.19 times the positioning error of Nt=256;
· Reducing Nt from 256 to 64~32 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/4 ~1/8 that of Nt=256, respectively. In terms of achievable positioning accuracy, Nt can be reduced to 64~32 while maintaining positioning accuracy around or below 1 meter.
· Positioning error of Nt=64 is 0.88 ~ 1.79 times the positioning error of Nt=256;
· Positioning error of Nt=32 is 1.05 ~ 4.29 times the positioning error of Nt=256;

	Company
	Comments

	Samsung 
	1. we dont think it’s approparate to capture the absolute pos error value, since the absolute value is dependent on the model, input size and so many others. Anyway, the important message should be how much the varation on performance has been observed, which are already shown in the sub-sub-bullet. 
2. For sub-sub-bullet, it’s better to align the structure as in 6.1.1.2;
3. Holding the other parameters constant is too strong and could be misleading, suggested change to „while holding with other given parameters constant,“


	Qualcomm
	For the second bullet, it is not clear that the positioning error can be around or below 1 meter. From the Table in 1st round, the error can reach 1.6 meter.



3rd round discussion
For Observation 6.1.2.2-1, it is updated below to reflect the feedback. "Note" is added in front of the evaluation results.
Observation 6.1.2.3-1 (time domain truncation of Nt)
For direct AI/ML positioning, with Nt consecutive time domain samples used as model input, evaluation results submitted to RAN1#113 show that show that when CIR or PDP are used as model input, using different Nt while holding other parameters the same,  
· Reducing Nt from 256 to 128 does not appreciably degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/2 that of Nt=256.
· Note: Positioning error of Nt=128 is 0.81 ~ 1.19 times the positioning error of Nt=256;
· Reducing Nt from 256 to 64~32 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/4 ~1/8 that of Nt=256, respectively. 
· Note: Positioning error of Nt=64 is 0.88 ~ 1.79 times the positioning error of Nt=256;
· Note: Positioning error of Nt=32 is 1.05 ~ 4.29 times the positioning error of Nt=256;

	Company
	Comments

	Qualcomm
	This also needs to include the (1) DP option and  (2) the case when Nt=1 (this is the equivalent to N’t=1).

· Reducing Nt from 256 to 1 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/28 ~1/256 that of Nt=256, respectively. 
· Note: Positioning error of Nt=1 is 0.7 ~ 1.44 times the positioning error of Nt=256;


	ZTE
	Quanclcomm’s observation differs too much from majority comapnies. One thing is unfair that different companies have different assumptions on the data number for training. The intention to increase the Nt value is to reduce the efforts to collect large number of data for training.



Reduced number of taps as model input
	· ZTE (R1-2304538)

Observation 2. For direct AI/ML positioning by using PDP as model input, when the width of square grid is 1.0 m in grid distribution used for training dataset generation(InF-DH, Clutter parameters {60%, 6m,2m}), the N_t^' value should be larger than 32 in order to have sub-meter level positioning accuracy at 90% UEs.
Observation 3. For direct AI/ML positioning by using PDP as model input, when the width of square grid is 1.0 m in grid distribution used for training dataset generation (InF-DH, Clutter parameters {60%, 6m,2m}), the N_t^' value should be larger than 8 in order to have sub-meter level positioning accuracy at 90% UEs.
Observation 4. With the decrease in N_t^' value, positioning performances degrade significantly. In the following exemplary results, the positioning accuracy at 90% UEs is even smaller than the width of square grid in grid distribution used for training dataset generation (InF-DH, Clutter parameters {60%, 6m,2m}):
· N_t^'=8,16,32,64 when the width of square grid is 1.0 m;
· N_t^'=8 when the width of square grid is 0.5 m.
Observation 5. AI/ML positioning accuracy is affected by user density/size of the training dataset (InF-DH, Clutter parameters {60%, 6m,2m}). When the training dataset generation follows the grid distribution, the positioning performance is increased in a smaller grid width. Exemplary results are:
The sub-meter level positioning accuracy (i.e., 0.98 m) can be reached at N_t^'=16 when the width of square grid is 0.5 m. However, the positioning accuracy is 1.40m in the same settings when the width of square grid is 1.0 m.


	· MediaTek Inc. (R1-2305659)
Table 35. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m], different N’t and Nt  
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Nt
	N’t
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR [18,2,256]
	UE pos [x,y]
	0%
	256
	25
	32400
	3600
	464.24K
	0.266G
	0.940

	
	
	
	
	20
	
	
	
	
	0.915

	
	
	
	
	15
	
	
	
	
	1.017

	
	
	
	64
	25
	
	
	243.058K
	0.066G
	0.984

	
	
	
	
	20
	
	
	
	
	0.851

	
	
	
	
	15
	
	
	
	
	1.097

	PDP [18,2,256]
	UE pos [x,y]
	0%
	256
	25
	32400
	3600
	463.95K
	0.264G
	0.821

	
	
	
	
	20
	
	
	
	
	1.089

	
	
	
	
	15
	
	
	
	
	1.133

	
	
	
	64
	25
	
	
	242.770K
	0.066G
	0.942

	
	
	
	
	20
	
	
	
	
	0.965

	
	
	
	
	15
	
	
	
	
	1.057


Observation 44:	By selecting appropriate Nt and N’t, the computational complexity, model complexity and signaling overhead can be reduced without significant performance loss.


	· Ericsson (R1-2304339)
Table 11 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps (training dataset size = 40,000 samples, Nt=256).
	Model class
	Positioning approach
	Model complexity
[# paras]
	90%tile 2D positioning error [m] with numbers of down sampled taps in {60%, 6m, 2m} InF-DH

	
	
	
	Nt'=256
	Nt'=128
	Nt'=64
	Nt'=32
	Nt'=16
	Nt'=9

	Small models CIR
	Dist. Assist.
	0.86 M
	0.453
	0.478
	0.558
	0.764
	1.208
	1.995

	
	Cent. Assist.
	0.73 M
	0.371
	0.372
	0.434
	0.545
	0.678
	0.805

	
	Cent. Direct
	0.73 M
	0.373
	0.382
	0.425
	0.540
	0.678
	0.824

	Small models PDP
	Dist. Assist.
	0.43 M
	0.680
	0.687
	0.732
	0.856
	1.001
	1.452

	
	Cent. Assist.
	0.36 M
	0.524
	0.534
	0.514
	0.604
	0.698
	0.868

	
	Cent. Direct
	0.36 M
	0.510
	0.522
	0.522
	0.580
	0.689
	0.824






1st round discussion
Evaluation results submitted by companies are summarized in Table 4 below for reduced number of taps (N't), where the full set of taps is Nt = 256. Please add/correct if anything in Table 4  is missing or wrong.
[bookmark: _Ref135432688][bookmark: _Hlk135432875]Table 4. Positioning error when Nt = 256 and N't varies
	N't
	256
	128
	64
	32
	25
	20
	16
	15
	9
	8
	1

	MediaTek R1-2305659, Table 35
	 
	 
	 
	 
	0.94
	0.915
	 
	1.017
	 
	 
	

	MediaTek R1-2305659, Table 35
	 
	 
	 
	 
	0.821
	1.089
	 
	1.133
	 
	 
	

	ZTE R1-2302538 Excel
	0.69
	0.71
	0.83
	1.4
	 
	 
	1.75
	 
	 
	1.93
	

	ZTE R1-2302538 Excel
	0.42
	0.45
	0.51
	0.63
	 
	 
	0.98
	 
	 
	1.38
	

	Ericsson R1-2304339, Table 11
	0.373
	0.382
	0.425
	0.54
	 
	 
	0.678
	 
	0.824
	 
	

	Ericsson R1-2304339, Table 11
	0.51
	0.522
	0.522
	0.58
	 
	 
	0.689
	 
	0.824
	 
	

	Qaulcomm R1-2305332, Table 2(CIR)
	2.24
	
	2.29
	
	
	
	2.51
	
	
	3.17
	

	
	
	
	
	
	
	
	
	
	
	
	

	Inter Digital R1-2305123
	1.59
	
	
	
	
	
	
	
	
	
	



Based on Table 4, Table 5 calculates the positioning error with a reduced N't over the positioning error with the full set of 256 taps.
[bookmark: _Ref135432698]Table 5. Positioning error of N't over positioning error of Nt = 256
	N't
	 
	E_128
/E_256
	E_64
/E_256
	E_32
/E_256
	E_25
/E_256
	E_20
/E_256
	E_16
/E_256
	E_15
/E_256
	E_9
/E_256
	E_8
/E_256
	E_1
/E_256

	MediaTek R1-2305659, Table 35
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	

	MediaTek R1-2305659, Table 35
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	

	ZTE R1-2302538 Excel
	 
	1.03
	1.20
	2.03
	 
	 
	2.54
	 
	 
	2.80
	

	ZTE R1-2302538 Excel
	 
	1.07
	1.21
	1.50
	 
	 
	2.33
	 
	 
	3.29
	

	Ericsson R1-2304339, Table 11
	 
	1.02
	1.14
	1.45
	 
	 
	1.82
	 
	2.21
	 
	

	Ericsson R1-2304339, Table 11
	 
	1.02
	1.02
	1.14
	 
	 
	1.35
	 
	1.62
	 
	

	Qaulcomm R1-2305332, Table 2(CIR)
	
	
	1.02
	
	
	
	1.12
	
	
	1.42
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	

	max
	 
	1.07
	1.21
	2.03
	 
	 
	2.54
	 
	2.21
	3.29
	

	min
	 
	1.02
	1.02
	1.14
	 
	 
	1.12
	 
	1.62
	1.42
	



Based on Table 4 and Table 5, the following observation is drawn.
Observation 6.1.3.1-1 (size of sub-sampled taps N't)
For direct AI/ML positioning, the positioning accuracy at model inference tends to degrade as N't decreases, where N't time domain samples (i.e., paths) with the strongest power are selected as model input. Evaluation results submitted to RAN1#113 show that for model input of CIR or PDP and Nt=256, using different N't while holding other parameters constant,
· Positioning error of N't=64 is 1.02 ~ 1.21 times the positioning error of Nt=N't=256;
· Thus: Reducing N't from 256 to 64 does not appreciably degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) ¼ of Nt=N't=256.
· Positioning error of N't=32 is 1.14 ~ 2.03 times the positioning error of Nt=N't=256;
· Positioning error of N't=16 is 1.35 ~ 2.54 times the positioning error of Nt=N't=256;
· Thus: Reducing N't from 256 to 32~16 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/8 ~ 1/16 of Nt=N't=256. 
· In terms of achievable positioning accuracy, N't can be reduced to 32~16 while maintaining positioning accuracy around or below 1 meter.
· Positioning error of N't=9~8 is 1.62 ~ 3.29 times the positioning error of Nt=N't=256;
· Thus: Reducing N't from 256 to 9~8 degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/32 of Nt=N't=256. 
· In terms of achievable positioning accuracy, N't can be reduced to 9~8 while maintaining positioning accuracy in the range of 1 to 2 meters.

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	ZTE
	Similar comments as Observation 6.1.2.1-1.



2nd round discussion
The observation is updated to the following, reflecting Qualcomm and vivo comment.
· For vivo comment: the take-away messages are made the bullets, while the performance results are made sub-bullets. 

Observation 6.1.3.2-1 (size of sub-sampled taps N't)
For direct AI/ML positioning, when N't time domain samples (i.e., paths) with the strongest power are selected as model input, evaluation results submitted to RAN1#113 show that for model input of CIR or PDP and Nt=256, using different N't while holding other parameters constant,
· Reducing N't from 256 to 64 does not appreciably degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/4  that of Nt=N't=256.
· Positioning error of N't=128 is 1.02 ~ 1.07 times the positioning error of Nt=N't=256;
· Positioning error of N't=64 is 1.02 ~ 1.21 times the positioning error of Nt=N't=256;
· Reducing N't from 256 to 32~16 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/8 ~ 1/16 that of Nt=N't=256. In terms of achievable positioning accuracy, N't can be reduced to 32~16 while maintaining positioning accuracy around or below 1 meter.
· Positioning error of N't=32 is 1.14 ~ 2.03 times the positioning error of Nt=N't=256;
· Positioning error of N't=16 is 1.35 ~ 2.54 times the positioning error of Nt=N't=256;
· Reducing N't from 256 to 9~8 degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/32 that of Nt=N't=256. In terms of achievable positioning accuracy, N't can be reduced to 9~8 while maintaining positioning accuracy in the range of 1 to 2 meters.
· Positioning error of N't=9~8 is 1.62 ~ 3.29 times the positioning error of Nt=N't=256;

	Company
	Comments

	HW/HiSI
	Ok

	Samsung 
	For the „achievalbe positioning“ in second and third sub-bullet, we dont think it’s approparate to capture the absolute pos error value, since the absolute value is dependent on the model, input size and so many others. Anyway, the important message should be how much the varation on performance has been observed, which are already shown in the sub-sub-bullet. 
Suggested change:

· Reducing N't from 256 to 32~16 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/8 ~ 1/16 that of Nt=N't=256. In terms of achievable positioning accuracy, N't can be reduced to 32~16 while maintaining positioning accuracy around or below 1 meter.
· Positioning error of N't=32 is 1.14 ~ 2.03 times the positioning error of Nt=N't=256;
· Positioning error of N't=16 is 1.35 ~ 2.54 times the positioning error of Nt=N't=256;
· Reducing N't from 256 to 9~8 degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/32 that of Nt=N't=256. In terms of achievable positioning accuracy, N't can be reduced to 9~8 while maintaining positioning accuracy in the range of 1 to 2 meters.
· Positioning error of N't=9~8 is 1.62 ~ 3.29 times the positioning error of Nt=N't=256;


	ZTE
	It’s really depending on the measurement types and data number for training. At least, based on our evaluation results, <32 cannot achieve sub-meter accuracy when the training number is 7200. Please also capture our observations.
	Model input
	Training
	test
	Horizontal positioning accuracy at CDF=90% (meters)

	PDP 

= {1, 18, 256, 8}

	7200
	800
	1.93

	PDP

= {1, 18, 256, 16}
	7200
	800
	1.40

	PDP 

= {1, 18, 256, 32}
	7200
	800
	1.75

	PDP

= {1, 18, 256, 64}
	7200
	800
	0.83

	PDP 

= {1, 18, 256, 128}
	7200
	800
	0.71

	PDP

= {1, 18, 256, 256}
	7200
	800
	0.69



	Model input
	Training
	test
	Horizontal positioning accuracy at CDF=90% (meters)

	PDP 

= {1, 18, 256, 8}

	28800
	1800
	1.379

	PDP

= {1, 18, 256, 16}
	28800
	1800
	0.984

	PDP 

= {1, 18, 256, 32}
	28800
	1800
	0.634

	PDP

= {1, 18, 256, 64}
	28800
	1800
	0.508

	PDP 

= {1, 18, 256, 128}
	28800
	1800
	0.446

	PDP

= {1, 18, 256, 256}
	28800
	1800
	0.424



[Moderator] Thanks – ZTE results are already in the summary table.

	Qualcomm
	· The current version does not incorporate all related evaluations (e.g. DP and other options with N’t=1,). There are many key important evaluations submitted by Qualcomm, Vivo, InterDigital, and China Telecom. To accomodate various reporting of multipath options, the selection of N‘t in the proposal description needs not to be only restricted to strongest power. 

· We summarized evaluations for N’t=1 from different contributions (Qualcomm R1-2305332, Vivo R1-2304475, China Telecom R1-2304857, Inter Digital R1-2305123)
Error values below are in meters
Qualcomm R1-2305332, Table 2(CIR) E_256 is 2.24
Vivo R1-2304475,Table 2 (CIR) E_256 is 0.99
China Telecom R1-2304857, Table 2 (CIR) E_256 is 0.54
Inter Digital R1-2305123, Table 1 (PDP) E_256 is 1.59


Qualcomm R1-2305332, Table 2(RSTD) E_1 is 2.92 and E_1/E_256 is 1.30
Vivo R1-2304475,Table 2 (Power + delay + angle of the first path) E_1 is  1.19 and E_1/E_256 is 1.2
Vivo R1-2304475,Table 2 (Power + delay of the first path) E_1 is  1.31 and E_1/E_256 is 1.32
Vivo R1-2304475,Table 2 (Delay + angle of the first path) E_1 is  1.43 and E_1/E_256 is 1.44
China Telecom R1-2304857, Table 2 (AI + TOA) E_1 is  0.69 and E_1/E_256 is 1.27
China Telecom R1-2304857, Table 2 (AI + DL-TDOA ) E_1 is  0.73 and E_1/E_256 is 1.35
China Telecom R1-2304857, Table 2 (AI + RSRP +TOA ) E_1 is  0.48 and E_1/E_256 is 0.88
China Telecom R1-2304857, Table 2 (AI + RSRP + DL-TDOA) E_1 is  0.38 and E_1/E_256 is 0.7
Inter Digital R1-2305123, Table 1 (RSRP + RSTD) E_1 is  1.69 and E_1/E_256 is 1.06
E_1/E_256 Min: 0.7
E_1/E_256 Max: 1.44
E_1 Min error: 0.38 meter
E_1 Max error: 2.95
	Qaulcomm R1-2305332, Table 2(DP)
	
	
	
	
	
	
	2.31
	
	
	2.52
	2.92



· Please consider the following modified version:
For direct AI/ML positioning, when N't time domain samples (i.e., paths) with the strongest power are selected as model input, evaluation results submitted to RAN1#113 show that for model input of CIR, PDP, or DP and Nt=256, using different N't while holding other parameters constant,
· Reducing N't from 256 to 64 does not appreciably degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/4  that of Nt=N't=256.
· Positioning error of N't=128 is 1.02 ~ 1.07 times the positioning error of Nt=N't=256;
· Positioning error of N't=64 is 1.02 ~ 1.21 times the positioning error of Nt=N't=256;
· Reducing N't from 256 to 32~16 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/8 ~ 1/16 that of Nt=N't=256. In terms of achievable positioning accuracy, N't can be reduced to 32~16 while maintaining positioning accuracy around or below 1 meter.
· Positioning error of N't=32 is 1.14 ~ 2.03 times the positioning error of Nt=N't=256;
· Positioning error of N't=16 is 1.12 ~ 2.54 times the positioning error of Nt=N't=256;
· Reducing N't from 256 to 9~8 degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/32 that of Nt=N't=256. In terms of achievable positioning accuracy, N't can be reduced to 9~8 while maintaining positioning accuracy in the range of 1 to 2 meters.
· Positioning error of N't=9~8 is 1.13 ~ 3.29 times the positioning error of Nt=N't=256;
· Reducing N't from 256 to 1 degrades the positioning accuracy, while the measurement size and signaling overhead shrinks to (approximately) 1/128~1/256 that of Nt=N't=256. In terms of achievable positioning accuracy, N't can be reduced to 1 while maintaining positioning accuracy in the range 0.38 to 2.92 meters.
· Positioning error of N't=1 is 0.7 ~ 1.44  times the positioning error of Nt=N't=256;
[Moderator] OK. Included the N't=1 results. DP results are not included, since DP behavior is different and can have a separate observation
To Moderator:
· We do not understand why DP needs to be treated separatley. The DP is a PDP without power information, right? What is the different behavior? The goal of this observation is to provide undertanding on postioning accuracy gains and signaling reporting overhead for different potential measurements, isn‘t? Why would DP need to be excluded at this point?


	
	



3rd round discussion
Based on companies' feedback, Observation 6.1.3.2-1 is updated below. As suggested by QC, results by vivo for " Power + delay of the first path" and InterDigital for  "power + RSTD" are included as N't=1. However, it's not clear if this is a correct interpretation of vivo and InterDigital results. @vivo @InterDigital Please check and verify if it is correct to capture your results in this way (see yellow highlight in Table 4, Table 5.
Follow up: Based on vivo and InterDigital checking, their results do not belong to N't=1. Thus the Observation is updated to Observation 6.1.3.3-1A below.

Observation 6.1.3.3-1 (size of sub-sampled taps N't)
For direct AI/ML positioning, when N't time domain samples (i.e., paths) with the strongest power are selected as model input, evaluation results submitted to RAN1#113 show that for model input of CIR or PDP and Nt=256, using different N't while holding other parameters constant,
· Reducing N't from 256 to 64 does not appreciably degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/4  that of Nt=N't=256.
· Positioning error of N't=128 is 1.02 ~ 1.07 times the positioning error of Nt=N't=256;
· Positioning error of N't=64 is 1.02 ~ 1.21 times the positioning error of Nt=N't=256;
· Reducing N't from 256 to 32~16 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/8 ~ 1/16 that of Nt=N't=256. 
· Positioning error of N't=32 is 1.14 ~ 2.03 times the positioning error of Nt=N't=256;
· Positioning error of N't=16 is 1.12 ~ 2.54 times the positioning error of Nt=N't=256;
· Reducing N't from 256 to 9~8 degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/32 that of Nt=N't=256. 
· Positioning error of N't=9~8 is 1.42 ~ 3.29 times the positioning error of Nt=N't=256;
· Reducing N't from 256 to 1 degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/256 that of Nt=N't=256. 
· Positioning error of N't=1 is 1.06 ~ 1.32 times the positioning error of Nt=N't=256;

Observation 6.1.3.3-1A (size of sub-sampled taps N't)
For direct AI/ML positioning, when N't time domain samples (i.e., paths) with the strongest power are selected as model input, evaluation results submitted to RAN1#113 show that for model input of CIR or PDP and Nt=256, using different N't while holding other parameters constant,
· Reducing N't from 256 to 64 does not appreciably degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/4  that of Nt=N't=256.
· Positioning error of N't=128 is 1.02 ~ 1.07 times the positioning error of Nt=N't=256;
· Positioning error of N't=64 is 1.02 ~ 1.21 times the positioning error of Nt=N't=256;
· Reducing N't from 256 to 32~16 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/8 ~ 1/16 that of Nt=N't=256. 
· Positioning error of N't=32 is 1.14 ~ 2.03 times the positioning error of Nt=N't=256;
· Positioning error of N't=16 is 1.12 ~ 2.54 times the positioning error of Nt=N't=256;
· Reducing N't from 256 to 9~8 degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/32 that of Nt=N't=256. 
· Positioning error of N't=9~8 is 1.42 ~ 3.29 times the positioning error of Nt=N't=256;

	Company
	Comments

	vivo
	To Qualcomm and Moderator:
In previous  Agreement
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to the first Nt consecutive time domain samples.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.

So our understanding is that N’t is the number of samples selected as input. In our evaluation, when the input is first path delay/power/angle etc, N’t is not 1 and is depending on when the first path arrives. Please don’t mis-interpret our results and assume N’t is 1.

Now on the proposal, it says „when N't time domain samples (i.e., paths) with the strongest power are selected as model input,“. It seems some  company interpreted N’t as the nunber of path. If that’s the case, that’s not aligned with previous agreement and should be clarified before we make any observations. Otherwise, we have serious concern. When N’t =1 or 8/9 time domain channel measurement samples, there may not even have any path detected, how could it be possible for AI/ML to work?


	InterDigital
	We made corrections to Table 4 and Table 5 in the 1st round discussion. I don’t think our results were captured accurately. We don’t have any observations corresponding to N't=1.

	Moderator
	Based on vivo and InterDigital feedback, the observation is updated to Observation 6.1.3.3-1A. Please continue the checking with it.

	Qualcomm
	To Moderator:
· We do not understand why DP needs to be treated separatley. The DP is a PDP without power information (below), right? What is the different behavior? The goal of this observation is to provide undertanding on postioning accuracy gains and signaling reporting overhead for different potential measurements, isn‘t? Why would DP need to be excluded at this point?
· In addition, N’t selection need not be restricted to strongest power. It can be an implementation how to select the N’t samples. 
· We strongly insist on adding DP and avoiding description of N’t selection criterion.

Agreement RAN1-112be-9.2.4.1
For evaluation of both the direct AI/ML positioning and AI/ML assisted positioning, company optionally adopt delay profile (DP) as a type of information for model input.
· DP is a degenerated version of PDP, where the path power is not provided.

To Moderator, Vivo, and InterDigital:
The Moderator indicated that existing timing and additional path reporting can be treated as part of the PDP and DP description and Observation 6.1.3.3-1 is agood proof of this one.  The agreement above also mentions path not sample. In 9.2.4.2, Vivo also treat potential new measurements with “path“ description. It seems we are not on the same page when it comes to interpreting the meaning of PDP and DP. Therefore, we cannot agree on any further observations related to CIR/PDP/DP until alignment is done across companies on this matter. The comparison between existing reporting and any optimized new measurement should be the starting point.



	ZTE
	OK with the current version. Quanclcomm’s observation differs too much from majority comapnies. One thing is unfair that different companies have different assumptions on the data number for training. The intention to increase the Nt’ value is to reduce the efforts to collect large number of data for training.



Reduced number of TRPs
	· Qualcomm (R1-2305332)
Table 3 Evaluation results for AI/ML model complexity and reporting overhead when deployed on NW-side for different TRP measurement optimizations (Bt=8 bits, Nt=64, Bcir_real=8bits, Bloc=12 bits), without model generalization, CNN, UE distribution area = 120x60 m
	Model input
[bookmark: _Int_MFkC6uOL](N’TRP , Nport , N’t)
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Reporting/signalling complexity (bits)
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Training
	test
	Model complexity [parameters]
	Computational complexity
	
	AI/ML

	Case2b: CIR (18,4, 8)
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	13824 bits

	3.17

	Case2b: CIR (8,4, 8) [dynamic TRP selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	6144 bits

	3.89

	Case2b: CIR (4,4, 8) [dynamic TRP selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	3072 bits

	5.32

	Case2b: CIR (8,4, 8) [Fixed TRP selection: TRPs= {0,2,6,8,9, 11, 15,17}]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	6144 bits

	3.34

	Case2b: CIR (4,4, 8) [Fixed TRP selection: TRPs= {0,2,15,17}]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	3072 bits

	12.02

	Case2b: CIR (18,4, 400)
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	489600 bits

	2.24


Observation 8: For Case2b in AI/ML positioning, reducing the number of reported TRPs degrades the positioning accuracy; in dynamic TRP selection with CIR measurement type, the positioning accuracy drops from 3.17m to 3.89m and 5.32m, when the number of TRPs reduces from 18 to 8 and 4, respectively; in fixed TRP selection with CIR measurement type, the positioning accuracy drops from 3.17m to 3.34m and 12.02m, when the number of TRPs reduces from 18 to 8 and 4, respectively.


	· MediaTek Inc. (R1-2305659)
Observation 45:	The performance of direct AI/ML positioning decreases with the decrease of NTRP.
Observation 46:	For reduced number of TRP evaluation, the direct AI/ML performance of Approach 2 (one model) is better than that of Approach 1-B.
Proposal 12	: For reduced number of TRP evaluation, Approach 2 is recommended because in addition to better performance than Approach 1, it is also superior to Approach 1 in terms of reducing model complexity and computational complexity.


	· vivo (R1-2304475)
Approach 2
Observation 50:	The loss of positioning accuracy is negligible when reducing the number of TRPs from 18 to 4, indicating that the information contained in the CIRs of 4 TRPs is sufficient to determine the UEs’ location under the given simulation assumption. 
Observation 51:	Reducing the number of TRPs from 4 to 2 results in a relatively large performance loss, indicating that the information contained in the CIRs of 2 TRPs is insufficient to achieve a high-accuracy positioning.


	· Indian Institute of Tech (M), IIT Kanpur (R1-2305689)
Observation 2: If (NTRP - N’TRP) is small, there is only a small difference between approaches 1A and 2. 
Observation 3: If (NTRP - N’TRP) is large, then Approach 2 is better than Approach 1A. 
Observation 4: If (NTRP - N’TRP) is random, then Approach 1B is better than Approach 2.


	· Nokia (R1-2304685)
[image: ]
Figure 10 - Positioning accuracy vs. IPD for 18, 9, and 6 TRPs cases.
Table 18 – For approach 1 - Evaluation for different number of TRPs (N_TRPs) considering an arbitrarily TRPs selection and compared with their respective model complexity and computational complexity. The input parameter is PDP, the N’t =128, UE distribution area = 120x60 m and using a highest computational complexity than Table 17.
	N_TRPs
(input parameter fixed = 18)
	4 TRPs with real values and 14 TRPs set zero
	8 TRPs with real values and 10 TRPs set zero
	12 TRPs with real values and 6 TRPs set zero
	16 TRPs with real values and 2 TRPs set zero
	18 TRPs with real values and 0 TRPs set Zero

	Model complexity (parameters)
	466.9K
	466.9K
	466.9K
	466.9K
	466.9K

	computational complexity (flops)
	6390M
	6390M
	6390M
	6390M
	6390M

	Horizontal 2D error at CDF 90% (meters)
	53.17
	26.94
	17.3
	1.39
	0.732


Table 20 – For approach 2 - Evaluation for different number of TRPs (N_TRPs) considering an arbitrarily TRPs selection and compared with their respective model complexity and computational complexity. The input parameter is PDP, the N’t =128, UE distribution area = 120x60 m and using a highest computational complexity than Table 19.
	N_TRPs
	4
	8
	12
	16
	18

	Model complexity (parameters)
	462.8K
	464K
	465.2K
	466.3K
	466.9K

	computational complexity (flops)
	2490M
	3600M
	4720M
	5830M
	6390M

	Horizontal 2D error at CDF 90% (meters)
	1.3106
	1.13219
	1.0132

	0.9266
	0.6838


Observation 18: The horizontal performance is enhanced when the number of TRPs is increased at the expense of the computational complexity.


	· Apple (R1-2305973)
Observation 4: For direct AI-ML positioning, as the # of TRPs reduces, the positioning performance suffers. It may be possible to regain some of those losses by mixing different input types e.g. CIR for X TRPs and L1-RSRP for Y TRPs
Proposal 2: Study the performance using mixed inputs


	· Huawei (R1-2304657)
Observation 1 : For direct AI/ML positioning, when the AI/ML model input is CIR (one CIR per TRP) and different numbers of TRPs are evaluated,
· The positioning accuracy decreases slightly when the number of TRPs is reduced from 18 to 4. But to maintain sub-meter level accuracy, the number of TRPs should be at least 4.
· Model and computational complexity decrease significantly with a smaller number of TRPs. The model complexity is reduced by more than 50% and computational complexity about 75% when reducing the number of TRPs from 18 to 4.
· When Approach 2 is applied, using different sets of TRPs for model input may lead to slightly different but still comparable positioning performance.


	· CATT (R1-2304726)
3.1.6.1.1.	One model covers entire area
The first case is to select 9 fixed TRPs and train a model to cover the entire simulation area. In inference phase, this model is used to cover the entire evaluation area.
In this simulation, since NTRP = 9, the measurement size is NTRP*Nport*NT*2*64 = 147456bit per UE.
In our first design, Approach 2 is applied, i.e. the TRP dimension of model input is equal to the number of TRPs (N’TRP) that provides measurements as model input.
In our second design, Approach 1-A is applied, i.e. 9 fixed TRPs provides the effective input value to the model and the input of the other 9 TRPs are zero-padded.
Observation 11: For direct AI/ML positioning, when the input dimension is reduced from 18 TRPs to 9 TRPs, the AI/ML model performance will not significantly degrade.
Observation 12: For direct AI/ML positioning, when the input dimension is reduced from 18 TRPs to 9 TRPs, the FLOPs can be significantly reduced.
3.1.6.1.2.	Two models, each covers half the area
The second case is to divide the original area into two regions with equal size, and two models are trained based on the region-specific dataset separately. In inference phase, each model is used to cover the corresponding region, and the whole evaluation area can be covered by these two models.
In our design, Approach 2 is applied,
Observation 13: For direct AI/ML positioning, when the input dimension is reduced from 18 TRPs to 9 TRPs and the total dataset size is unchanged, the horizontal position accuracy of using two models to cover the entire area is slightly degraded compared to the performance of using single model to cover the entire area.



	· Ericsson (R1-2304339)
[image: ]
Figure 13: Positioning accuracy vs number of active TRP (N'TRP) for centralized ML assisted positioning and centralized ML direct positioning.




Other
	· vivo (R1-2304475)
[image: ]
Figure 77	CDF of positioning accuracy of multi-port positioning and single-port positioning.
Observation 40:	Positioning with multi-port data can achieve a more accurate position estimation as compared to single-port positioning.


	· MediaTek Inc. (R1-2305659)
Observation 27:	The evaluation results shown that the positioning performance of 2 transmit antenna ports (by different polarization) is better than the existing 1 antenna port in the spec.
Proposal 9	: Study and evaluate the performance of direct AI/ML positioning with multiple transmit/receive antenna port pairs (for example, 2 ports with different polarization).


	· ZTE (R1-2304538)
Observation 7. When the model input includes channel observation from multi-port PRS, better positioning performance can be observed when compared to single port PRS. Exemplary results are:
· When the width of square grid is 0.5 m in grid distribution used for training dataset generation, positioning error of single port PRS is about 1.27 times that of multi-port PRS at N_t^'=256 for PDP based positioning;
· When the width of square grid is 0.5 m in grid distribution used for training dataset generation, positioning error of single port PRS is about 1.58 times that of multi-port PRS at N_t^'=256 for CIR based positioning;
Observation 8. Due to the enriched channel observations from multi-port PRS, positioning performance is improved under a given number of data samples for model training, which can relief the efforts to collect training data in reality.
Proposal 2. Study and identify the benefits of AI/ML based positioning when the model input includes channel observations from multi-port PRS.
Proposal 3. When multi-port PRS is evaluated for AI/ML based positioning, companies should report its assumption on the number of ports for a single data sample used in model input.


	· Samsung (R1-2305509)
[image: ]
Fig.13 illustration of complexity reduction and Data size reduction
Observation 9: SIG based input could adopt better (e.g., 7~8 times better in pos accuracy) with simple AI/ML model (e.g., MLP) than CIR based input.
Observation 10: the SIG-based input could drastically reduce the input data size and the complexity (e.g., with 98% reduction) without accuracy loss (e.g., even with 1% improvement).





Impact of direct AI/ML positioning performance by model output

Evaluation of noisy ground truth labels
	· vivo (R1-2304475)
9.1.	Data cleaning
Table 81	Evaluation results for AI/ML model deployed on UE or Network side, without model generalization, ViT, UE distribution area = [120x60 m]
	Model input
	Model output
	Threshold T m
	Training samples
	Settings (e.g., drops, clutter param, mix)
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Total samples before data cleaning
	Retained samples for training
	Train
	Test
	AI/ML

	CIR
	Pos.
	T = 1m
	25k
	2.4k
	L = 4
	L = 0
	5.58

	CIR
	Pos.
	T = 2m
	25k
	5.0k
	L = 4
	L = 0
	3.58

	CIR
	Pos.
	T = 3m
	25k
	7.5k
	L = 4
	L = 0
	3.30

	CIR
	Pos.
	T = 4m
	25k
	10k
	L = 4
	L = 0
	3.58

	CIR
	Pos.
	T = 8m, i.e., w/o data cleaning
	25k
	25k
	L = 4
	L = 0
	5.90


9.2.	Sample-wise weighting for model training
Table 82	Evaluation results for AI/ML model deployed on UE or Network side, without model generalization, ViT, UE distribution area = [120x60 m]
	Model input
	Model output
	Hyper-parameter a
	Dataset
	Settings (e.g., drops, clutter param, mix)
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Training dataset
	Testing dataset
	Train
	Test
	AI/ML

	CIR
	Pos.
	a = 0.1
	25k
	1k
	L = 4
	L = 0
	3.53

	CIR
	Pos.
	a = 0.5
	25k
	1k
	L = 4
	L = 0
	3.39

	CIR
	Pos.
	a = 1.0
	25k
	1k
	L = 4
	L = 0
	3.18

	CIR
	Pos.
	a = 1.5
	25k
	1k
	L = 4
	L = 0
	3.12

	CIR
	Pos.
	a = 2.0
	25k
	1k
	L = 4
	L = 0
	3.19

	CIR
	Pos.
	a = 3.0
	25k
	1k
	L = 4
	L = 0
	3.77

	CIR
	Pos.
	a = 0.0
(no weighting)
	25k
	1k
	L = 4
	L = 0
	5.90


9.3.	Model training with estimated labels
Table 83	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Number of samples with ground truth labels
	Number of samples with noisy labels
	Usage of label quality
	Legacy positioning method to generate noisy labels
	Horizontal pos. accuracy at CDF=90% (m)

	CIR
	Pos.
	25k
	0
	/
	/
	0.89

	CIR
	Pos.
	5k
	0
	/
	/
	3.73

	CIR
	Pos.
	5k
	20k
	Sample-wise weighting
	RSTD based
	2.23

	CIR
	Pos.
	5k
	20k
	Sample-wise weighting
	TOA based
	1.72

	CIR
	Pos.
	5k
	0
	/
	Semi-supervised learning
	2.78





	· OPPO (R1-2305463)
Impact of noisy labels based on NR positioning
Observation 10: For the InF-DH scenario, if the label for the training data set of AI model is obtained by traditional NR DL-TDOA scheme, the AI model inference performance for the case will suffer larger performance loss
· Compared to the traditional NR DL-TDOA scheme, the AI model doesn’t show obvious performance gain in this case. 
Observation 11: For the InF-DH scenario, if the number of total training data is fixed, the AI model inference performance will degrade as the ratio of the labels that are obtained by traditional NR DL-TDOA scheme increases
Observation 12: For the InF-DH scenario, when the number of training data with ideal label is fixed, the AI model inference performance will degrade if training data with the labels that are obtained by traditional NR DL-TDOA scheme are added to the training data set.
Impact of noisy labels noisy labels based on truncated Gaussian modeling
Observation 14: For the InF-DH scenario, if the label for the training data set of AI model is obtained by truncated Gaussian modeling, the AI model inference performance cannot reflect that of a practical AI model (e.g., an AI model trained by labels based on NR positioning
· The estimation errors of NR positioning are correlated for the close UEs due to the spatial consistency, whereas the error of truncated Gaussian modelling are independent even for collocated UEs.


	· Qualcomm (R1-2305332)

Observation 9: For data labelling in AI/ML positioning, evaluations show it is feasible to consider data labelling using NR RAT-positioning methods when the number of clean labelled data is limited. The performance of direct AI/ML positioning with 1k clean labelled samples improves from 13.76m to 8.72m when considering additional 350 samples that are labelled using NR-RAT positioning method.

Table 4 Evaluation results for feasibility of labelling using NR RAT positioning methods when deployed on UE- or NW-side, without model generalization, CNN, UE distribution area = 120x60 m
	Model input
[bookmark: _Int_Q0AQBn3Z](N’TRP , Nport , N’t)
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Training
	test
	Model complexity [parameters]
	Computational complexity
	AI/ML

	CIR (18,4, 400)
	2D 
	0%
	Drop A 
	Drop A 
	1k clean labels
	2k
	1.5M 
	1.54G FLOPs
	13.76

	CIR (18,4, 400)
	2D 
	25.9% noisy label
	Drop A 
	Drop A 
	1k clean+ 350 noisy labels (NR RAT positioning)
	2k
	1.5M 
	1.54G FLOPs
	8.72




	· MediaTek Inc. (R1-2305659)

Observation 47: Performance of direct AI/ML positioning degrades with increasement the of labelling error.
Observation 48: When the standard deviation of label error is less than 0.2, the positioning accuracy can reach the sub-meter level with the UE density 4.5UEs/m^2 in the scenario InF-DH({60%, 6m, 2m}).


	· vivo (R1-2304475)
[image: ]
Figure 40	Evaluation of the impact of labeling error on positioning accuracy

Observation 21:	The positioning accuracy gradually degrades with the increase of labeling error, but is still acceptable until standard deviation   is 1 m. The maximum acceptable labeling errors (standard deviation) in the horizontal direction should be less than 1m to achieve 2m@90% positioning accuracy.
Observation 22:	AI/ML based positioning is robust to label noise to some extent.
Proposal 8:	According to the requirement of positioning accuracy, the maximum acceptable labeling error should be identified firstly before data collection

	· CMCC (R1-2305089)
Observation 6: The positioning error may not increase approximately in proportion to L, if the model of the label error generation changed


	· CEWiT (R1-2305896)
Observation-9: It is observed that AI/ML based positioning is sensitive to labelling noise. Therefore it is important to consider and identify the labelling error before the data collec-tion.


	· NVIDIA (R1-2305164)
[image: Chart
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Figure 10: Positioning accuracy of AI/ML based method under different degrees of label errors.


	· Nokia (R1-2304685)
Table 10 - Evaluation of ground truth labelling error with different noise standard deviation and their impact on the horizontal 2D error at CDF 90% for N_TRP=18. The error is indicated using the mean and the variance between 20 different realizations of the same experiment (UE distribution area = 120x60 m).
	Standard deviation of L meters.
	0.0
	0.5
	1.0
	1.5
	2.0
	2.5
	3.0

	Horizontal 2D error at CDF 90% (meters)
	0.7
	0.8617
	1.0268
	1.4153
	1.7279
	1.8259
	1.9751


Observation 12: In the evaluation, Direct AI/ML positioning is robust to label noise with Gaussian distribution. However, modeling this error type in real-world scenarios could be a challenge.  


	· InterDigital (R1-2305123)
Observation 4: For direct AI/ML positioning with RSRP measurements as model input, when different labelling errors(L) are evaluated, 
•	For labelling error values less than or equal to 0.5 m, the horizontal positioning accuracy degrades slightly (less than ~ 0.03 m) for 90% of the UEs. 
•	For labelling error values greater equal to 1 m, the horizontal accuracy degrades in proportion to labelling error (L) for 90% of the UEs.  
Observation 5: For direct AI/ML positioning with RSRP+ RSTD measurements as model input, when different labelling errors(L) are evaluated, 
•	For labelling error values less than or equal to 0.25 m, the horizontal positioning accuracy degrades slightly (less than ~ 0.05 m) for 90% of the UEs. 
•	For labelling error values greater than or equal to 0.5 m, the horizontal accuracy degrades in proportion to labelling error (L) for 90% of the UEs.  
Observation 6: For direct AI/ML positioning with CIR measurements as model input (larger model in table 4), when different labelling errors(L) are evaluated, 
•	For labelling error values equal to 0.05 m, the horizontal positioning accuracy degrades slightly (~ 0.12 m) for 90% of the UEs. 
•	For labelling error values greater than or equal to 0.5 m, the horizontal accuracy degrades in proportion to labelling error (L) for 90% of the UEs.  
Observation 7: For direct AI/ML positioning with CIR measurements as model input (less complex model in table 5), when different labelling errors(L) are evaluated, 
•	For labelling error values equal to 0.05 m, the horizontal positioning accuracy degrades ~ 0.31 m for 90% of the UEs. 
•	For labelling error values greater than or equal to 0.5 m, the horizontal accuracy degrades significantly (greater than ~0.39 m) which is in proportion to labelling error(L) for 90% of the UEs.  
[image: ]
Observation 8: For direct AI/ML positioning, for L in the range of 0.25 m to 2 m, degradation in positioning accuracy (due to labelling error) increase in proportion to L.  
Observation 9: For direct AI/ML positioning, for different model inputs (RSRP, RSRP+RSTD and CIR) while keeping the same amount of labelling error, we observe different values of positioning accuracy degradation.    
Observation 10: For direct AI/ML positioning, for different model complexity (more complex and lesser complex model), while keeping model inputs (CIR) and labelling error same, we observe different values of positioning accuracy degradation.     


	· Apple (R1-2305973)
[image: ]
Figure 4: Performance Accuracy vs label accuracy
Observation 6: 
•	label error that is on the order of (less than or equal to) the positioning accuracy without label errors does not hurt (or even helps) the overall performance. 
•	Label error larger than the order of the performance error hurts overall performance as expected. 

Proposal 4:
•	The expected label error is needed during data collection for training and for  performance monitoring.


	· CATT (R1-2304726)
Observation 10: When AI/ML model is trained with different value of label error, as value of L increases, direct AI/ML positioning error increases approximately in proportion to L.


	· Ericsson (R1-2304339)
[image: ]
Figure 14: Positioning accuracy vs label error standard deviation L (meters) for three positioning approaches and model input type of CIR, PDP, and DP.




Semi-supervised learning
	· MediaTek Inc. (R1-2305659)
Table 34. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m], semi-supervised learning
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400 labelled
	3600
	464.24K
	0.266G
	0.940

	
	
	0%
	
	
	7200 labelled
	7200
	
	
	2.018

	
	
	75%
	
	
	7200 labelled + 21600 unlabelled
	7200
	
	
	1.722

	PDP [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400 labelled
	3600
	463.95K
	0.264G
	0.821

	
	
	0%
	
	
	7200 labelled
	7200
	
	
	2.213

	
	
	75%
	
	
	7200 labelled + 21600 unlabelled
	7200
	
	
	2.070





	· vivo (R1-2304475)
[image: ]
Figure 74	 Positioning accuracy comparison of semi-supervised learning and supervised learning with different numbers of labeled samples
Observation 39:	 Semi-supervised learning can achieve a more accurate position estimation as compared to supervised learning with less amount of labeled data.


	· ZTE (R1-2304538)
Observation 19: 	Semi-supervised learning (i.e., using a large number of unlabeled samples to pretrain a model and the model is further fine-tuned by a small number of labeled samples) outperforms supervised learning (e.g., training from scratch) under the same am of labeled samples for model training. Exemplary results are:
•	The positioning error of supervised learning based on 2K labeled samples is about 2.29 times that of semi-supervised learning based on 100K unlabeled samples and 2K labeled samples (i.e., 98% data samples are unlabeled);
•	The positioning error of supervised learning based on 4K labeled samples is about 1.96 times that of semi-supervised learning based on 100K unlabeled samples and 4K labeled samples (i.e., 96% data samples are unlabeled); 
•	The positioning error of supervised learning based on 8K labeled samples is about 1.37 times that of semi-supervised learning based on 100K unlabeled samples and 8K labeled samples (i.e., 93% data samples are unlabeled);
Observation 20: 	As the increase of labeled samples used for model training, semi-supervised learning has a similar performance as supervised learning. Exemplary results are:
•	The positioning error of supervised learning based on 16K labeled samples is similar as that of semi-supervised learning based on 100K unlabeled samples and 16K labeled samples (i.e., 86% data samples are unlabeled).
Proposal 4: 	Study and identify the benefits of semi-supervised learning for AI/ML based positioning.


	· Ericsson (R1-2304339)
Observation 27	For a dataset with both labeled and unlabeled samples, semi-supervised learning is a viable solution to utilize both labeled and unlabeled samples for training the AI/ML models. However, semi-supervised learning training requires more computational complexity than supervised learning training.
Observation 28	It is not clear that semi-supervised learning training using both labeled and unlabeled samples brings clear improvement over well-designed supervised learning training using only the limited labeled samples.
Table 17 90%tile 2D positioning accuracy using PDP inputs for AI/ML direct positioning approach and different unlabeled sample percentages in the {60%, 6m, 2m} InF-DH dataset.
	Input
	Unlabeled %
	Labeled
	Unlabeled
	Total
	M paras
	M FLOPs
	90%tile [m]

	PDP
	97.50%
	1,000
	39,000
	40,000
	1.4
	34
	3.206

	PDP
	97.50%
	2,000
	78,000
	80,000
	1.4
	34
	2.038

	PDP
	95.00%
	1,000
	19,000
	20,000
	1.4
	34
	3.261

	PDP
	95.00%
	2,000
	38,000
	40,000
	1.4
	34
	2.059

	PDP
	95.00%
	4,000
	76,000
	80,000
	1.4
	34
	1.309

	PDP
	90.00%
	1,000
	9,000
	10,000
	1.4
	34
	3.324

	PDP
	90.00%
	2,000
	18,000
	20,000
	1.4
	34
	2.164

	PDP
	90.00%
	4,000
	36,000
	40,000
	1.4
	34
	1.348

	PDP
	90.00%
	8,000
	72,000
	80,000
	1.4
	34
	0.863

	PDP
	80.00%
	4,000
	16,000
	20,000
	1.4
	34
	1.357

	PDP
	80.00%
	8,000
	32,000
	40,000
	1.4
	34
	0.906

	PDP
	80.00%
	16,000
	64,000
	80,000
	1.4
	34
	0.626







1st round discussion
On label error, observation can be drawn based on evaluation results to RAN1#113 together with the agreement from RAN1#112bis.
	Observation (RAN1#112bis)
[bookmark: _Hlk135468684]For direct AI/ML positioning, for L in the range of 0.25m to 5m, the positioning error increases approximately in proportion to L, where L (in meters) is the standard deviation of truncated Gaussian Distribution of the ground truth label error.  



Observation 7.3-1
Evaluation shows that direct AI/ML positioning is robust to small label error. The exact range of label error that can be tolerated depends on the positioning accuracy requirement,  where tighter positioning accuracy requirement demands smaller label error.
	
	Company

	Support
	

	Not support
	



	Company
	Comments

	LG
	Fine with the observation

	ZTE
	Ok with the general observation. It would be better to have more detailed results.
In addition, do we have a separate proposal for semi-supervised learning. Our evaluation results are not captured.

	OPPO
	Generally fine with the observation. But the description in the observation is very general, we think it would be better to add evaluation results to show the relation between output accuracy and label error.



2nd round discussion
Regarding evaluation results for Observation 7.3-1, moderator's understanding is, the observation made in last meeting was sufficient. If you have suggestion to add more results, please provide the exact phrase that reflect the evaluation results across companies.

Observation 7.4-1
Evaluation shows that direct AI/ML positioning is robust to small label error. The exact range of label error that can be tolerated depends on the positioning accuracy requirement,  where tighter positioning accuracy requirement demands smaller label error.

	Company
	Comments

	Samsung
	Suggest to adding sub-bullets like many other obserations:
· [X] sources show that with [Y] label error, the obtained pos error is [Z] times of that with zero label error.

	Nokia/NSB
	Ok with the direction.




Based on ZTE comment, an observation on semi-supervised learning is added below.
Observation 7.4-2
For AI/ML based positioning, evaluation results show that semi-supervised learning is helpful for improving the positioning accuracy when the same amount of labelled data is used for supervised learning, and the number of labelled data is limited.

	Company
	Comments

	Samsung 
	Similar suggestion as in above, general descrition + detailed observations
· [X] sources show that semi-supervised learning with [Y]%  data with label, the obtained pos error is [Z] times of that using supervised learning with 100% data wiht label.
[Moderator] Please, proponents of this direction, collect all companies' results and find out [X], [Y], [Z] and make the sub-bullet to your liking.

	ZTE
	Support. OK with Samsung’s suggestion.
[Moderator] Please, proponents of this direction, collect all companies' results and find out [X], [Y], [Z] and make the sub-bullet to your liking.

	Qualcomm
	We are not sure whether this observation for semisupervised positioning still holds anymore. Some companies have concerns on the feasibility and performance enhancement when considering noisy samples (e.g., using NR RAT positioning methods), so we are not sure if such gain can be obtained with unlabeled samples.
[Moderator] Using noisy label is different from no label. With noisy label, training pushes the model to approach the noisy label, thus the model can perform close to, but worse than the noisy label.  Training does not do this to data without label.

To Moderator:
We do not fully agree with the Moderator’s understanding on how to train with noisy labels. There are other training strategies and/or scenarios in which noisy labels can be quite helpful. At the worst case, treat the samples with noisy labels as unlabeled samples, you still get gains as the observation mentions, right? There are hundreds of literature that discusses training and benefits of noisy labels for scenarios with limited clean labels and ensuring model robustness.
Song, H., Kim, M., Park, D., Shin, Y. and Lee, J.G., 2022. Learning from noisy labels with deep neural networks: A survey. IEEE Transactions on Neural Networks and Learning Systems.


	Nokia/NSB
	We support the Observation.



3rd round discussion
For Observation 7.4-1 and 7.4.2, some proponents ask to add some statistical text ("[X] sources show that [Y] is ...") about companies' evaluations.  This is not considered necessary or preferable according to the Chairman. If such text is provided, Chairman may simply mark it as "Note". 
If any company strongly wish to have such text, please gather all results from companies and provide the text for companies to check.

Observation 7.5-1
Evaluation shows that direct AI/ML positioning is robust to small label error. The exact range of label error that can be tolerated depends on the positioning accuracy requirement, where tighter positioning accuracy requirement demands smaller label error.

	Company
	Comments

	Nokia/NSB
	ok

	ZTE
	OK



Observation 7.5-2
For AI/ML based positioning, evaluation results show that semi-supervised learning is helpful for improving the positioning accuracy when the same amount of labelled data is used for supervised learning, and the number of labelled data is limited.

	Company
	Comments

	Nokia/NSB
	ok

	Qualcomm
	To Moderator:
We do not fully agree with the Moderator’s understanding on how to train with noisy labels. There are other training strategies and/or scenarios in which noisy labels can be quite helpful. At the worst case, treat the samples with noisy labels as unlabeled samples, you still get gains as the observation mentions, right? There are hundreds of literature that discusses training and benefits of noisy labels for scenarios with limited clean labels and ensuring model robustness.
Song, H., Kim, M., Park, D., Shin, Y. and Lee, J.G., 2022. Learning from noisy labels with deep neural networks: A survey. IEEE Transactions on Neural Networks and Learning Systems. 

	ZTE
	Support. Qualcomm’s comment is included in Observation 7.5-1.



Evaluation of generalization issues of AI/ML-assisted positioning
In this meeting, a large amount of evaluation work has been performed by companies for AI/ML-assisted positioning. These valuable results are crucial to help RAN1 to make progress.
Representative results submitted by companies are copied below.
Evaluation of single-TRP construction with same model for N TRP
Evaluation without generalization considerations (same setting for training and testing)
	· MediaTek Inc. (R1-2305659)
Table 8. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized PDP (1*8*256)
	1TOA
	Ideal 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	187k
	15M*18
	20.1

	non-normalized PDP (18*8*256)
	18TOA
	Ideal 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	1.05

	non-normalized PDP (1*8*256)
	1TOA
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	187k
	15M*18
	14.9

	non-normalized PDP (18*8*256)
	18TOA
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	205k
	77M
	1.56


Observation 11:	Multi-TRP approach outperforms single-TRP for AI/ML assisted TOA estimation positioning.


	· ZTE (R1-2304538)
Observation 23: 	The AI/ML assisted positioning method can achieve a good accuracy rate in LOS/NLOS identification. Exemplary results are:
•	When the training samples are 60K (InF-DH, Clutter parameters: {40%, 2m, 2m}), Los/NLos accuracy rate by using CIR from single TRP as model input is about 94.7%.
Proposal 7: 	Study and evaluate the performance of AI/ML assisted positioning where the model output includes confidence level of LOS/NLOS identification.


	· OPPO (R1-2305463)
Observation 3: For AI/ML assisted positioning
•	The performance of “Indirect: Normalized CIR of single TRP” is much worse than “Indirect: Normalized CIR of all TRPs”
•	The performance of “Indirect: Normalized CIR of single TRP” is comparable to the traditional non-AI scheme
Proposal 1: For AI/ML assisted positioning, if the output of AI model is timing-based result (e.g., TOA), prioritize the scheme where the measurement results corresponding to all TRPs are used as the input of AI model
•	the scheme where the measurement results corresponding to single TRP are used as the input of AI model is deprioritized.


	· Huawei (R1-2304657)
Observation 27 : From the evaluation results, it is observed that for a small number of gNB antennas, AI/ML-based LOS/NLOS identification could significantly improve the positioning accuracy.
Observation 28 : For AI/ML-based LOS/NLOS identification evaluation, the applied model only needs very small number of parameters and does not require tremendous FLOPs.
Observation 32 : From the evaluation results, it is observed that AI/ML-based TOA estimation could significantly improve the positioning accuracy in NLOS environments both in Multi-TRP and Single-TRP construction.


	· vivo (R1-2304475)
Table 5	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR w. BS info.
	TOA
	0
	Drop1
	Drop1
	25k*18
	1k*18
	11.92M*1
	23.79M*1
	0.83

	CIR w/o. BS info.
	TOA
	0
	Drop1
	Drop1
	25k*18
	1k*18
	11.92M*1
	23.79M *1
	2.57


Observation 4:	For Construction 2 (Single-TRP, same model for N TRPs), it is beneficial to incorporate TRP’s information into model input so as to improve the positioning accuracy.




Generalization aspects (different setting for training and testing)

Different drops
	· Qualcomm (R1-2305332)
Observation 23: For AI/ML assisted positioning, evaluations show that the ML-based soft information reporting method using single-TRP approach generalizes well across inter-site changes with homogeneous clutter settings.
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Figure 21 CDF of horizontal positioning error for ML-based soft information reporting across drops

	· ZTE (R1-2304538)
Observation 26: 	For model generalization evaluation on AI/ML assisted LOS/NLOS identification,
•	The model performance can generalize well to a test dataset that is in a different simulation drop of training dataset but in the same InF-DH scenario (clutter parameters {40%, 2m, 2m});
•	The model performance degrades slightly when the training data is in InF-DH scenario (clutter parameters {40%, 2m, 2m}) and test data is in InF-SH scenario (clutter parameters {30%, 2m, 2m}).
Proposal 8: 	To evaluate model performance on AI/ML assisted LOS/NLOS identification, the evaluation assumptions for dataset generation should have a moderate LOS probability (e.g., Clutter parameters {40%, 2m, 2m} for InF-DH scenario and clutter parameters {30%, 2m, 2m} for InF-SH scenario)


	· OPPO (R1-2305463)
Observation 4: For the InF-DH scenario, if the training and testing data sets for AI model training and testing are generated from different drops, there will be large performance degradation for AI-based positioning.


	· Huawei (R1-2304657)
Observation 33 : When the inference dataset and the training dataset are from different drops, AI/ML-based TOA estimation model provides poor generalization performance.




Different clutter parameters
	· Qualcomm (R1-2305332)

Observation 24: In AI/ML assisted positioning, evaluations show that training on a mix of clutter settings achieves good accuracy in each setting without the overhead of model switching, while training a separate model for each setting provides better accuracy. 
· The 90th percentile error increases from 4.74 m to 7.34 m when testing on (60%, 6m, 2m) clutter, and
· from 0.53 m to 0.91 m when testing on (40%, 2m, 2m) clutter 


	· OPPO (R1-2305463)
Observation 5: For the InF-DH scenario, if the training and testing data sets for AI model training and testing are generated with different clutter settings, there will be large performance degradation for AI-based positioning.
Observation 6: For the InF-DH scenario, by training AI model based on the mixed data set with different clutter settings, the performance of AI model inference for the data set with one of these clutter settings can be improved. 


	· Huawei (R1-2304657)
Observation 29 : When the channel parameters of the inference dataset and the training dataset are different, AI/ML-based LOS/NLOS identification model provides great generalization performance of the intermediate LOS/NLOS identification rate.
Observation 34 : When the channel parameters of the inference dataset and the training dataset are different, AI/ML-based TOA estimation model provides poor generalization performance.


	· CATT (R1-2304726)
Observation 30: For the AI/ML-assisted positioning with LOS/NLOS identification, the generalization performance with different clutter parameters and different scenarios is good.





Network synchronization error
	· MediaTek Inc. (R1-2305659)
Table 5. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	LOS/NLOS identification accuracy

	
	
	
	Training
{40%, 2m, 2m}
	Test
{40%, 2m, 2m}
	Training & validation
	Test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	50ns
	50ns
	32400
	3600
	185.7k
	29.4M*18
	93.3%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	20ns
	32400
	3600
	185.7k
	29.4M*18
	93.9%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	0ns
	32400
	3600
	185.7k
	29.4M*18
	93.9%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	20ns
	50ns
	32400
	3600
	185.7k
	29.4M*18
	93.2%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	20ns
	32400
	3600
	185.7k
	29.4M*18
	94.2%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	0ns
	32400
	3600
	185.7k
	29.4M*18
	94.4%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	0ns
	50ns
	32400
	3600
	185.7k
	29.4M*18
	74.2%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	20ns
	32400
	3600
	185.7k
	29.4M*18
	75.4%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	0ns
	32400
	3600
	185.7k
	29.4M*18
	95.2%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	Mix 50ns and 20ns
	50ns
	32400
	3600
	185.7k
	29.4M*18
	93.1%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	20ns
	32400
	3600
	185.7k
	29.4M*18
	93.8%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	0ns
	32400
	3600
	185.7k
	29.4M*18
	93.8%


Observation 6:	Performance of AI/ML assisted LOS/NLOS identification positioning significantly degrades when the model is trained with small timing error and tested with large timing error.  
Observation 7:	AI/ML model in AI/ML assisted LOS/NLOS identification positioning has robust generalization capability when the model is trained with large timing error and tested with small timing error.


	· OPPO (R1-2305463)
Observation 7: For the InF-DH scenario, if the training data set of AI model is generated without NW synchronization error, the AI model performance for the case with NW synchronization error will suffer larger performance loss
•	In this case, the AI/ML assisted positioning scheme “Indirect: Normalized CIR for all TRPs” achieves similar performance as the traditional non-AI based scheme.




UE/gNB RX and TX timing error
	· OPPO (R1-2305463)
Observation 8: For the InF-DH scenario, if the training data set of AI model is generated without UE timing error, the AI model inference performance for the case with UE timing error will suffer larger performance loss
•	In this case, the AI/ML assisted positioning scheme “Indirect: Normalized CIR for all TRPs” is more sensitive to the UE timing error, e.g., its performance is even worse than the traditional non-AI based scheme




Different InF scenarios
	· MediaTek Inc. (R1-2305659)
Table 3. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = [DH 120x60 m, SH 300x150 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	LOS/NLOS identification accuracy

	
	
	
	Training
	test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	InF-DH {40%, 2m, 2m}
	InF-DH {40%, 2m, 2m}
same drop
	32400
	3600
	185.7k
	29.4M*18
	95.2%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	InF-DH {40%, 2m, 2m}
new drop
	32400
	3600
	185.7k
	29.4M*18
	93.0%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	InF-DH {60%,6m, 2m}
	32400
	3600
	185.7k
	29.4M*18
	97.2%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	InF-SH
hall size 300x150
	32400
	3600
	185.7k
	29.4M*18
	60.3%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	Mix
InF-DH {40%, 2m, 2m} and InF-SH
	InF-DH {40%, 2m, 2m}
	32400
	3600
	185.7k
	29.4M*18
	93.7%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	InF-SH
hall size 300x150
	32400
	3600
	185.7k
	29.4M*18
	92.9%


Observation 3:	Performance of AI/ML assisted LOS/NLOS identification positioning degrades when the model is trained with dataset of InF-DH scenario and tested with dataset of InF-SH large hall size scenario. And the performance is improved when mix InF-DH and InF-SH training data.


	· Huawei (R1-2304657)
Observation 30 : When the model is trained under the InF-DH scenario but inferred under the InF-SH scenario, the performance deteriorates significantly. But when trained under the InF-SH scenario and inferred under the InF-DH scenario, the AI/ML-based LOS/NLOS identification model provides great generalization performance of the intermediate LOS/NLOS identification rate.
Observation 31 : When the mixed training dataset of InF-DH and InF-SH consists of samples with the same scenarios as the inference dataset, the performance of the intermediate LOS/NLOS identification rate is improved under both scenarios’ inference.




Time varying changes
	· Qualcomm (R1-2305332)
Observation 25: In AI/ML assisted positioning, evaluations show that the ML-based soft information reporting using single-TRP approach has good robustness to zone-specific time varying changes.
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Figure 23. CDF of horizontal positioning error for ML-based soft information reporting across time varying changes in a specific zone.




Channel estimation error
	· MediaTek Inc. (R1-2305659)
Table 4. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m, channel estimation error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	LOS/NLOS identification accuracy

	
	
	
	Training
{40%, 2m, 2m}
	Test
{40%, 2m, 2m}
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	SNR=0dB
	SNR=0dB
	32400
	3600
	185.7k
	29.4M*18
	95.9%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	SNR =10dB
	32400
	3600
	185.7k
	29.4M*18
	91.1%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	SNR =20dB
	32400
	3600
	185.7k
	29.4M*18
	90.9%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	Without noise
	32400
	3600
	185.7k
	29.4M*18
	90.9%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	SNR=10dB
	SNR=0dB
	32400
	3600
	185.7k
	29.4M*18
	75%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	SNR =10dB
	32400
	3600
	185.7k
	29.4M*18
	94.3%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	SNR =20dB
	32400
	3600
	185.7k
	29.4M*18
	93.9%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	Without noise
	32400
	3600
	185.7k
	29.4M*18
	93.8%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	SNR=20dB
	SNR=0dB
	32400
	3600
	185.7k
	29.4M*18
	56.9%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	SNR =10dB
	32400
	3600
	185.7k
	29.4M*18
	84.3%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	SNR =20dB
	32400
	3600
	185.7k
	29.4M*18
	95.1%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	Without noise
	32400
	3600
	185.7k
	29.4M*18
	95.1%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	Without noise
	SNR=0dB
	32400
	3600
	185.7k
	29.4M*18
	56.3%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	SNR =10dB
	32400
	3600
	185.7k
	29.4M*18
	65.6%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	SNR =20dB
	32400
	3600
	185.7k
	29.4M*18
	90.3%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	Without noise
	32400
	3600
	185.7k
	29.4M*18
	95.2%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	mix
SNR=0dB and SNR =20dB
	SNR=0dB
	32400
	3600
	185.7k
	29.4M*18
	91.7%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	SNR =10dB
	32400
	3600
	185.7k
	29.4M*18
	93.1%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	SNR =20dB
	32400
	3600
	185.7k
	29.4M*18
	93.3%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	Without noise
	32400
	3600
	185.7k
	29.4M*18
	93.3%


Observation 4:	Performance of AI/ML assisted LOS/NLOS identification positioning significantly degrades when the model is trained with small channel estimation error and tested with large channel estimation error.  
Observation 5:	AI/ML model in AI/ML assisted LOS/NLOS identification positioning has robust generalization capability when the model is trained with large channel estimation error and tested with small channel estimation error.





Evaluation of single-TRP construction with N models for N TRP
Evaluation without generalization considerations (same setting for training and testing)
	· vivo (R1-2304475)
Table 3	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	Drop1
	Drop1
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	TOA
	0
	Drop1
	Drop1
	25k
	1k
	4.26M*18
	8.50M*18
	0.73


Observation 3:	For Construction1 (Single-TRP, N models for N TRPs), the AI/ML based TOA estimation positioning method achieves remarkable performance gain compared to direct AI/ML positioning method.




Generalization aspects (different setting for training and testing)
Different drops
	· vivo (R1-2304475)
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Figure 26	CDF of positioning accuracy when AI model is tested on other drops




Different clutter parameters
	· vivo (R1-2304475)
[image: ]
Figure 28	CDF of positioning accuracy when AI model is tested on other clutter
Observation 13:	Positioning performance of AI/ML assisted positioning is slightly degraded but still acceptable when the model trained with dataset of one clutter parameter is tested with dataset of another clutter parameter.
Observation 14:	AI/ML assisted positioning enjoys better generalization performance than direct AI/ML positioning across clutter parameters.




Network synchronization error
	· vivo (R1-2304475)
[image: ]
Observation 26:	The positioning accuracy of AI/ML assisted positioning significantly degrades with the increase of network synchronization error, but it is still better than direct AI/ML positioning.




UE/gNB RX and TX timing error
	· vivo (R1-2304475)
Table 39	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	TOA
	0
	0ns
	0ns
	25k
	1k
	4.26M*18
	8.50M*18
	0.73

	CIR
	TOA
	0
	0ns
	2ns
	25k
	1k
	4.26M*18
	8.50M*18
	0.75

	CIR
	TOA
	0
	0ns
	10ns
	25k
	1k
	4.26M*18
	8.50M*18
	1.51

	CIR
	TOA
	0
	0ns
	50ns
	25k
	1k
	4.26M*18
	8.50M*18
	10.18







Different InF scenarios
	· vivo (R1-2304475)
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Observation 15:	Positioning performance of AI/ML assisted positioning is degraded when the model trained with dataset of DH is tested with datasets of SH and HH.
Observation 16:	For those scenarios whose positioning does not rely on fingerprint features, AI/ML based TOA estimation has better generalization ability than direct AI/ML positioning.
Observation 17:	AI/ML based TOA estimation has great advantages in positioning performance, deployment flexibility, compatibility with existing positioning protocol framework, and generalization capability.




Channel estimation error
	· vivo (R1-2304475)
[image: ]
Observation 25:	CIR estimation error can dramatically degrade the positioning performance of AI/ML assisted positioning, while is more robust to small CIR estimation error compared to direct AI/ML positioning.




Evaluation of multi-TRP construction
Evaluation without generalization considerations (same setting for training and testing)
	· MediaTek Inc. (R1-2305659)
Table 8. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized PDP (1*8*256)
	1TOA
	Ideal 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	187k
	15M*18
	20.1

	non-normalized PDP (18*8*256)
	18TOA
	Ideal 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	1.05

	non-normalized PDP (1*8*256)
	1TOA
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	187k
	15M*18
	14.9

	non-normalized PDP (18*8*256)
	18TOA
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	205k
	77M
	1.56


Observation 11:	Multi-TRP approach outperforms single-TRP for AI/ML assisted TOA estimation positioning.


	· vivo (R1-2304475)
Table 7	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Construction
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	Construction 1
	CIR
	TOA
	0
	Drop1
	Drop1
	25k
	1k
	4.26M*18
	8.50M*18
	0.73

	Construction 2
	CIR
	TOA
	0
	Drop1
	Drop1
	25k*18
	1k*18
	11.92M*1
	23.79M *1
	0.83

	Construction 3
	CIR
	TOA
	0
	Drop1
	Drop1
	25k
	1k
	1.65M 
	22.30M
	1.08





	· CATT (R1-2304726)
Observation 15: For AI/ML-assisted positioning with perfect network synchronization, the intermediate result of ToA estimating is 1.59ns@90% and the horizontal position accuracy is 0.655m@90% of CDF percentile.
Observation 16: For AI/ML-assisted positioning with network synchronization error, the intermediate result of ToA estimating is 1.74ns@90% and the eventual result is 0.7m@90% of CDF percentile of horizontal accuracy.




Evaluation of generalization aspects
Different drops
	· ZTE (R1-2304538)
Observation 24: 	For model generalization evaluation in various simulation drops, when datasets for training and test are from different simulation drops, AI/ML assisted positioning using DL RSTD value as model output cannot generalize its performance in the test dataset. 
Observation 25: 	For model generalization evaluation in various simulation drops, when model update (or fine-tuned) is performed based on dataset in a simulation drop that is different from the simulation drop used for model training, 
•	Positioning performance of AI/ML assisted positioning using DL RSTD value as model output can be improved in a test dataset that is in the same simulation drop as the dataset for model update;
•	Positioning performance of AI/ML assisted positioning using DL RSTD value as model output is increased along with the number of data samples used for model update.




Different clutter parameters
	· CATT (R1-2304726)
Observation 18: For AI/ML-assisted positioning, by employing the mix-train method and combining the dataset of clutter parameter {60%, 6m, 2m} with a small dataset of clutter parameter {40%, 2m, 2m}, the AI/ML model achieved a horizontal positioning accuracy of 1.51m, which represents an improvement compared to the performance achieved without mix-training and with a positioning accuracy of 3.11m.
Observation 21: For AI/ML-assisted positioning, by training the AI/ML model using the dataset that assumes a clutter parameter of {60%, 6m, 2m}, and subsequently fine-tuning it using a small dataset that assumes a clutter parameter of {40%, 2m, 2m}, the horizontal positioning accuracy is significantly improved compared to the performance achieved without fine-tuning. The degree of improvement in the positioning accuracy is greater when the size of the fine-tuning dataset is larger.




Network synchronization error
	· CATT (R1-2304726)
Observation 19: For AI/ML-assisted positioning, by employing the mix-train method and combining the dataset of ideal network synchronization with a small dataset of network synchronization error of 50ns, the AI/ML model achieved a horizontal positioning accuracy of 1.81m, which represents a significant improvement compared to the performance achieved without mix-training and with a positioning accuracy of 12.8m.
Observation 22: For AI/ML-assisted positioning, by training the AI/ML model using the dataset with perfect network synchronization, and subsequently fine-tuning it using a small dataset with network synchronization error, the horizontal positioning accuracy is significantly improved compared to the performance achieved without fine-tuning. The degree of improvement in the positioning accuracy is greater when the size of the fine-tuning dataset is larger.




UE/gNB RX and TX timing error
	· MediaTek Inc. (R1-2305659)
Observation 17:	Performance of AI/ML assisted TOA estimation positioning significantly degrades when the model is trained with small timing error and tested with large timing error.  
Observation 18:	AI/ML model in AI/ML assisted TOA estimation positioning has robust generalization capability when the model is trained with large timing error and tested with small timing error.




Different InF scenarios
	· MediaTek Inc. (R1-2305659)
Table 11. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = [DH 120x60 m, SH 300x150 m], different scenario
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	Test
	Training & validation
	Test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized PDP (18*8*256)
	18TOA
	Ideal 
	InF-DH {40%, 2m, 2m}
	InF-DH {40%, 2m, 2m}
same drop
	32400
	3600
	205k
	77M
	1.56

	non-normalized PDP (18*8*256)
	18TOA
	Ideal 
	
	InF-DH {40%, 2m, 2m}
new drop
	32400
	3600
	205k
	77M
	4.50

	non-normalized PDP (18*8*256)
	18TOA
	Ideal 
	
	InF-DH {60%,6m, 2m}
	32400
	3600
	205k
	77M
	4.36

	non-normalized PDP (18*8*256)
	18TOA
	Ideal
	
	InF-SH
Large hall size
	32400
	3600
	205k
	77M
	>100

	non-normalized PDP (18*8*256)
	18TOA
	Ideal
	InF-DH {60%,6m, 2m}
	InF-DH {60%,6m, 2m}
same drop
	32400
	3600
	205k
	77M
	1.05

	non-normalized PDP (18*8*256)
	18TOA
	Ideal
	
	InF-DH {60%,6m, 2m}
new drop
	32400
	3600
	205k
	77M
	7.42

	non-normalized PDP (18*8*256)
	18TOA
	Ideal
	
	InF-DH {40%, 2m, 2m}
	32400
	3600
	205k
	77M
	8.14

	non-normalized PDP (18*8*256)
	18TOA
	Ideal
	
	InF-SH
Large hall size
	32400
	3600
	205k
	77M
	>100

	non-normalized PDP (18*8*256)
	18TOA
	Ideal 
	Mix
InF-DH {40%, 2m, 2m} and InF-SH
	InF-DH {40%, 2m, 2m}
	32400
	3600
	205k
	77M
	2.42

	non-normalized PDP (18*8*256)
	18TOA
	Ideal
	
	InF-SH
Large hall size
	32400
	3600
	205k
	77M
	3.6


Observation 14:	Performance of AI/ML assisted TOA estimation positioning degrades when the model is trained with dataset of one scenario and tested with dataset of another scenario, especially for different hall size scenario.
Proposal 5	: Further study the monitor mechanism of different hall size scenario for AI/ML positioning.


	· CATT (R1-2304726)
Observation 20: For AI/ML-assisted positioning, by employing the mix-train method and combining the dataset of InF-DH {60%, 6m, 2m} with a small dataset of InF-SH {20%, 2m, 10m}, the AI/ML model achieved a horizontal positioning accuracy of 1.467m, which represents a significant improvement compared to the performance achieved without mix-training and with a positioning accuracy of 6.894m.
Observation 23: For AI/ML-assisted positioning, by training the AI/ML model using the dataset with perfect network synchronization, and subsequently fine-tuning it using a small dataset with network synchronization error, the horizontal positioning accuracy is significantly improved compared to the performance achieved without fine-tuning. The degree of improvement in the positioning accuracy is greater when the size of the fine-tuning dataset is larger.




Channel estimation error
	· MediaTek Inc. (R1-2305659)
Observation 15:	Performance of AI/ML assisted TOA estimation positioning significantly degrades when the model is trained with small channel estimation error and tested with large channel estimation error.  
Observation 16:	AI/ML model in AI/ML assisted TOA estimation positioning has robust generalization capability when the model is trained with large channel estimation error and tested with small channel estimation error.




High-level summary of methods to address generalization problem
	· MediaTek Inc. (R1-2305659)
Observation 19:	Fine-tuning the model with samples from a scenario can achieve positioning accuracy improvement when the pre-trained model is transferred to a new scenario for AI/ML assisted TOA estimation positioning (the more fine-tuning data the better performance), but performance degrades for pre-trained scenario.



	· vivo (R1-2304475)
Table 61	Evaluation of model fine-tuning for different cases
	Cases
	Training
	Fine-tuning
	Testing
	Positioning accuracy @90%

	Direct AI/ML positioning
	{0.6, 6, 2} 
	{0.4, 2, 2} 
	{0.4, 2, 2} 
	4.40 

	
	{0.4, 2, 2} 
	{0.6, 6, 2} 
	{0.6, 6, 2} 
	3.23 

	
	Drop1
	Drop2
	Drop2
	3.97

	
	InF-DH
	InF-HH
	InF-HH
	8.78

	
	Sync 0ns
	50ns
	50ns
	2.39

	
	Sync 0ns
	10ns
	10ns
	1.28

	
	Sync 0ns
	2ns
	2ns
	1.11

	AI/ML assisted positioning
	{0.6, 6, 2} 
	{0.4, 2, 2} 
	{0.4, 2, 2} 
	0.63

	
	Drop1
	Drop2
	Drop2
	5.50

	
	InF-DH
	InF-HH
	InF-HH
	0.17

	
	InF-DH
	InF-SH
	InF-SH
	0.17

	
	Sync 0ns
	50ns
	50ns
	3.40

	
	Sync 0ns
	10ns
	10ns
	1.78

	
	Sync 0ns
	2ns
	2ns
	1.30







(Closed) Observations on generalization
High-level observation
1st round discussion
In RAN1#112, the following observation was made:
	Observation (RAN1#112)
Evaluation of the following generalization aspects show that the positioning accuracy of direct AI/ML positioning deteriorates when the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario. 
· The generalization aspects include:
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· [bookmark: _Hlk135469474]Network synchronization error 
· Companies have provided evaluation results which show that the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning/re-training.
· Better training dataset construction: The training dataset is composed of data from multiple deployment scenarios, which include data from the same deployment scenario as the test dataset. 
· Model fine-tuning/re-training: the model is re-trained/fine-tuned with a dataset from the same deployment scenario as the test dataset.
Note: ideal model training and switching may provide the upper bound of achievable performance when the AI/ML model needs to handle different deployment scenarios.



Correspondingly, similar observation can be made for AI/ML assisted positioning. 
· For Observation 8.5.1-1, " Network synchronization error" is not included here. Observation in section 8.5.2 address it in details.
· For Observation 8.5.1-2: based on evaluation results submitted thus far, regarding fine-tuning and mixed dataset, all generalization aspects are included except "time varying changes". See also discussion in section 5.4 for direct AI/ML positioning.

Observation 8.5.1.1-1:
Evaluation of the following generalization aspects show that the positioning accuracy of AI/ML assisted positioning with ToA as model output deteriorates when the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario. 
· Different drops 
· Different clutter parameters 
· Different InF scenarios

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	HW/HiSI
	Not support.
For assisted positioning, it would be better to look at the intermediate KPI, and not at the final KPI. 
For LOS identification, for example, it depends on in which scenarios the model has been trained and tested. We have e.g. Observation 30 which indicates that there can be a great generalization performance. 
Observation 30: When the model is trained under the InF-DH scenario but inferred under the InF-SH scenario, the performance deteriorates significantly. But when trained under the InF-SH scenario and inferred under the InF-DH scenario, the AI/ML-based LOS/NLOS identification model provides great generalization performance of the intermediate LOS/NLOS identification rate.





Observation 8.5.1.1-2:
For AI/ML assisted positioning, evaluation results demonstrate that for the generalization aspects of:
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· Network synchronization error 
· UE/gNB RX and TX timing error
· SNR mismatch 
· channel estimation error
the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning/re-training.
· Better training dataset construction: The training dataset is composed of data from multiple deployment scenarios, which include data from the same deployment scenario as the test dataset. 
· Model fine-tuning/re-training: the model is re-trained/fine-tuned with a dataset from the same deployment scenario as the test dataset.

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	HW/HiSi
	Support



2nd round discussion
Observation 8.5.1.1-1 is updated to include the other four generalization aspects.
Observation 8.5.1.2-1:
For AI/ML assisted positioning with ToA as model output, evaluation of the following generalization aspects show that: 
· the positioning accuracy deteriorates when the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario. 
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· the positioning accuracy deteriorates may or may not deteriorate when the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario.
· Network synchronization error 
· UE/gNB RX and TX timing error
· SNR mismatch 
· Channel estimation error

	Company
	Comments

	Qualcomm
	The model output needs to be inclusive for evaluated model output. ToA needs to be replaced by timing.




Observation 8.5.1.1-2 is updated to the following.

Observation 8.5.1.2-2:
For AI/ML assisted positioning, evaluation results demonstrate that for the generalization aspects of:
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· Network synchronization error 
· UE/gNB RX and TX timing error
· SNR mismatch 
· Channel estimation error
if the positioning accuracy would deteriorate when the AI/ML model is trained with dataset of one deployment scenario and tested with dataset of a different deployment scenario, the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning/re-training.
· Better training dataset construction: The training dataset is composed of data from multiple deployment scenarios, which include data from the same deployment scenario as the test dataset. 
· Model fine-tuning/re-training: the model is re-trained/fine-tuned with a dataset from the same deployment scenario as the test dataset.

	Company
	Comments

	Qualcomm
	The Note from previous agreement in RAN1-112 needs to be included.
“Note: ideal model training and switching may provide the upper bound of achievable performance when the AI/ML model needs to handle different deployment scenarios.“




Observation on network synchronization error
1st round discussion
For the generalization aspect of network synchronization error, evaluation results from companies' contributions are collected in Table 6 and Table 7 below. Please add/correct if anything in Table 6 and Table 7 is missing or wrong. 
Analysis in Table 6 and Table 7 are used to derive the observation on network synchronization error. 

[bookmark: _Ref135433567]Table 6. Network synchronization error: evaluation results when t2 (test) <= t1 (train).
	Source
	Selected simulation parameter
	E1= positioning error (meters) @90% CDF with (train, test) = (50ns, 50ns)
	E2= positioning error (meters) @90% CDF with (train, test) = (50ns, 20-25 ns)
	E3= positioning error (meters) @90% CDF with (train, test) = (50ns, 0ns)
	E2/E1
	E3/E1

	MediaTek R1-2305659
	PDP, {40%, 2m, 2m}
	6.78
	(t2=20ns)
5.11
	5.14
	0.75
	0.76

	MediaTek R1-2305659
	PDP, {60%, 6m, 2m}
	4.09
	(t2=20ns)
3.06
	3.28
	0.75
	0.80

	Ericsson R1-2304339
	CIR
	0.522
	(t2=25ns)
0.436
	0.410
	0.84
	0.79

	Ericsson R1-2304339
	PDP
	0.675
	(t2=25ns)
0.574
	0.541
	0.85
	0.80

	Ericsson R1-2304339
	DP
	1.023
	(t2=25ns)
0.851
	0.778
	0.83
	0.76

	
	
	
	
	max
	0.85
	0.80

	
	
	
	
	min
	0.75
	0.76



[bookmark: _Ref135433661]Table 7. Network synchronization error: evaluation results when t2 (test) > t1 (train). 
	Source
	Selected simulation parameter
	E1= positioning error (meters) @90% CDF with (train, test) = (0ns, 0ns)
	E2= positioning error (meters) @90% CDF with (train, test) = (0ns, 10ns)
	E3= positioning error (meters) @90% CDF with (train, test) = (0ns, 20-25 ns)
	E4= positioning error (meters) @90% CDF with (train, test) = (0ns, 50ns)
	E2/E1
	E3/E1
	E4/E1

	vivo R1-2304475
	CIR
	0.73
	2.05
	
	8.45
	2.07
	
	13.95

	MediaTek R1-2305659
	PDP, {40%, 2m, 2m}
	1.56
	
	(t2=20ns)
10.9
	16.57
	
	6.99
	10.62

	MediaTek R1-2305659
	PDP, {60%, 6m, 2m}
	1.05
	
	(t2=20ns)
10.62
	16.59
	
	10.11
	15.80

	Apple-R12305238
	CIR
	1.138
	
	
	11.0172
	
	
	51.52

	Xiaomi R1-2304897
	CIR,
{0.6,6,2}
	0.6778
	
	
	12.7748
	
	
	38.57

	Xiaomi R1-2304897
	CIR,
{0.4,2,2}
	0.8533
	
	
	15.4699
	2.30
	13.00
	43.03

	Ericsson R1-2304339
	CIR
	0.423
	0.77
	(t2=25ns)
2.553
	13.514
	2.19
	11.54
	34.27

	Ericsson R1-2304339
	PDP
	0.589
	0.876
	(t2=25ns)
2.942
	16.501
	1.34
	5.66
	26.25

	Ericsson R1-2304339
	DP
	0.740
	0.860
	(t2=25ns)
1.622
	10.301
	2.07
	
	13.95

	CATT R1-2304726
	CIR
	0.655
	
	
	12.8
	
	
	19.54

	
	
	
	
	
	max
	2.81
	10.11
	31.95

	
	
	
	
	
	min
	1.16
	2.19
	9.68




Observation 8.5.2.1-1
For AI/ML assisted positioning with TOA as model output, based on evaluation results of network synchronization error in the range of 0-50 ns, when the model is trained by a dataset with network synchronization error t1 (ns) and tested in a deployment scenario with network synchronization error t2 (ns), for a given t1,
· For a case evaluated by a given source, the positioning accuracy of cases with t2 smaller than t1 is better than the cases with t2 equal to t1. For example,
· For the case of (t1, t2)=(50ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 20~25ns) is 0.75~0.85 times that of (t1, t2)=(50ns, 50ns).
· For the case of (t1, t2)=(50ns, 0ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 0ns) is 0.76~0.80 times that of (t1, t2)=(50ns, 50ns).
· For a case evaluated by a given source, the positioning accuracy of cases with t2 greater than t1 is worse than the cases with t2 equal to t1. The larger the difference between t1 and t2, the more the degradation. For example,
· For the case of (t1, t2)=(0ns, 10ns), evaluation results submitted to RAN1#113 show the positioning error of (0ns, 10ns) is 1.16~2.81 times that of (0ns, 0ns).
· For the case of (t1, t2)=(0ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (0ns, 50ns) is 2.19~10.11 times that of (0ns, 0ns).
· For the case of (t1, t2)=(0ns, 50ns), evaluation results submitted to RAN1#113 show the positioning error of (0ns, 50ns) is 9.68~31.95 times that of (0ns, 0ns).
Note: here the positioning error is the horizonal positioning error (meters) at CDF=90%.

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	HW/HiSi
	For assisted positioning, we should distinguish whether the output is TOA or LOS, which can have different performance. For LOS, both the NW and RX/TX timing errors should not matter.

	CATT
	Seems CATT‘s E4/E1 is missing. Calculate it to the table. Though the min and max is not changed.



2nd round discussion
The observation is updated to include " with TOA as model output " to reflect Huawei comment.
Observation 8.5.2.1-1
For AI/ML assisted positioning with TOA as model output, based on evaluation results of network synchronization error in the range of 0-50 ns, when the model is trained by a dataset with network synchronization error t1 (ns) and tested in a deployment scenario with network synchronization error t2 (ns), for a given t1,
· For a case evaluated by a given source, the positioning accuracy of cases with t2 smaller than t1 is better than the cases with t2 equal to t1. For example,
· For the case of (t1, t2)=(50ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 20~25ns) is 0.75~0.85 times that of (t1, t2)=(50ns, 50ns).
· For the case of (t1, t2)=(50ns, 0ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 0ns) is 0.76~0.80 times that of (t1, t2)=(50ns, 50ns).
· For a case evaluated by a given source, the positioning accuracy of cases with t2 greater than t1 is worse than the cases with t2 equal to t1. The larger the difference between t1 and t2, the more the degradation. For example,
· For the case of (t1, t2)=(0ns, 10ns), evaluation results submitted to RAN1#113 show the positioning error of (0ns, 10ns) is 1.16~2.81 times that of (0ns, 0ns).
· For the case of (t1, t2)=(0ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (0ns, 50ns) is 2.19~10.11 times that of (0ns, 0ns).
· For the case of (t1, t2)=(0ns, 50ns), evaluation results submitted to RAN1#113 show the positioning error of (0ns, 50ns) is 9.68~31.95 times that of (0ns, 0ns).
Note: here the positioning error is the horizonal positioning error (meters) at CDF=90%.

	Company
	Comments

	ZTE
	Prefer to use " with timing inforamtion as model output " 

	Qualcomm
	The observation needs to include timing instead of ToA. Replace ToA by timing.




Observation on UE/gNB RX and TX timing error
1st round discussion
For the generalization aspect of UE/gNB RX and TX timing error, evaluation results from companies' contributions are collected in Table 8 and Table 9 below. Please add/correct if anything in Table 8 and Table 9 is missing or wrong. 
Analysis in Table 8 and Table 9 are used to derive the observation on UE/gNB RX and TX timing error. 
[bookmark: _Ref135433905]Table 8. UE/gNB RX and TX timing error: evaluation results when t2 (test) <= t1 (train).
	Source
	Selected simulation parameter
	E1= positioning error (meters) @90% CDF with (train, test) = (50ns, 50ns)
	E2= positioning error (meters) @90% CDF with (train, test) = (50ns, 20-25 ns)
	E3= positioning error (meters) @90% CDF with (train, test) = (50ns, 0ns)
	E2/E1
	E3/E1

	MediaTek R1-2305659
	PDP, {40%, 2m, 2m}
	6.78
	(t2=20ns)
5.11
	5.14
	0.75
	0.76

	MediaTek R1-2305659
	PDP, {60%, 6m, 2m}
	4.09
	(t2=20ns)
3.06
	3.28
	0.75
	0.80

	Ericsson R1-2304339
	CIR
	0.581
	(t2=25ns)
0.557
	0.544
	0.96
	0.94

	Ericsson R1-2304339
	PDP
	0.810
	(t2=25ns)
0.776
	0.762
	0.96
	0.94

	Ericsson R1-2304339
	DP
	0.503
	(t2=25ns)
0.483
	0.477
	0.96
	0.95

	
	
	
	
	max
	0.96
	0.95

	
	
	
	
	min
	0.75
	0.76



[bookmark: _Ref135433907]Table 9. UE/gNB RX and TX timing error: evaluation results when t2 (test) > t1 (train).
	Source
	Selected simulation parameter
	E1= positioning error (meters) @90% CDF with (train, test) = (0ns, 0ns)
	E2= positioning error (meters) @90% CDF with (train, test) = (0ns, 10ns)
	E3= positioning error (meters) @90% CDF with (train, test) = (0ns, 20~25ns)
	E4= positioning error (meters) @90% CDF with (train, test) = (0ns, 50ns)
	E2/E1
	E3/E1
	E4/E1

	vivo R1-2304475
	CIR
	0.73
	1.51
	
	10.18
	2.07
	
	13.95

	MediaTek R1-2305659
	CIR
	1.56
	
	(t2=20ns)
10.9
	16.57
	
	6.99
	10.62

	MediaTek R1-2305659
	PDP
	1.05
	
	(t2=20ns)
10.62
	16.59
	
	10.11
	15.80

	OPPO R1-2305463
	CIR, 1 drop
	0.52
	
	
	26.79
	
	
	51.52

	OPPO R1-2305463
	CIR, 10 drops
	1.03
	
	
	39.73
	
	
	38.57

	Ericsson R1-2304339
	CIR
	0.427
	0.98
	(t2=25ns)
5.553
	18.375
	2.30
	13.00
	43.03

	Ericsson R1-2304339
	PDP
	0.586
	1.281
	(t2=25ns)
6.76
	20.081
	2.19
	11.54
	34.27

	Ericsson R1-2304339
	DP
	0.732
	0.981
	(t2=25ns)
4.142
	19.213
	1.34
	5.66
	26.25

	
	
	
	
	
	max
	2.30
	13.00
	51.52

	
	
	
	
	
	min
	1.34
	5.66
	10.62



Observation 8.5.3.1-1
For AI/ML assisted positioning with TOA as model output, based on evaluation results of timing error in the range of 0-50 ns, when the model is trained by a dataset with UE/gNB RX and TX timing error t1 (ns) and tested in a deployment scenario with UE/gNB RX and TX timing error t2 (ns), for a given t1,
· For a case evaluated by a given source, the positioning accuracy of cases with t2 smaller than t1 is better than the cases with t2 equal to t1. For example,
· For the case of (t1, t2)=(50ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 20~25ns) is 0.75~0.96 times that of (t1, t2)=(50ns, 50ns).
· For the case of (t1, t2)=(50ns, 0ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 0ns) is 0.76~0.95 times that of (t1, t2)=(50ns, 50ns).
· For a case evaluated by a given source, the positioning accuracy of cases with t2 greater than t1 is worse than the cases with t2 equal to t1. The larger the difference between t1 and t2, the more the degradation. For example,
· For the case of (t1, t2)=(0ns, 10ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(0ns, 10ns) is 1.34~2.30 times that of (t1, t2)=(0ns, 0ns).
· For the case of (t1, t2)=(0ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(0ns, 20~25ns) is 5.66~13.0 times that of (t1, t2)=(0ns, 0ns).
· For the case of (t1, t2)=(0ns, 50ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(0ns, 50ns) is 10.62~51.52 times that of (t1, t2)=(0ns, 0ns).
Note: here the positioning error is the horizonal positioning error (meters) at CDF=90%.


	
	Company

	Support
	

	Not support
	



	Company
	Comments

	HW/HiSi
	Same comment as above, we should specify whether it is TOA or LOS.



2nd round discussion
The observation is updated to include " with TOA as model output " to reflect Huawei comment.

Observation 8.5.3.2-1
For AI/ML assisted positioning with TOA as model output, based on evaluation results of timing error in the range of 0-50 ns, when the model is trained by a dataset with UE/gNB RX and TX timing error t1 (ns) and tested in a deployment scenario with UE/gNB RX and TX timing error t2 (ns), for a given t1,
· For a case evaluated by a given source, the positioning accuracy of cases with t2 smaller than t1 is better than the cases with t2 equal to t1. For example,
· For the case of (t1, t2)=(50ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 20~25ns) is 0.75~0.96 times that of (t1, t2)=(50ns, 50ns).
· For the case of (t1, t2)=(50ns, 0ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 0ns) is 0.76~0.95 times that of (t1, t2)=(50ns, 50ns).
· For a case evaluated by a given source, the positioning accuracy of cases with t2 greater than t1 is worse than the cases with t2 equal to t1. The larger the difference between t1 and t2, the more the degradation. For example,
· For the case of (t1, t2)=(0ns, 10ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(0ns, 10ns) is 1.34~2.30 times that of (t1, t2)=(0ns, 0ns).
· For the case of (t1, t2)=(0ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(0ns, 20~25ns) is 5.66~13.0 times that of (t1, t2)=(0ns, 0ns).
· For the case of (t1, t2)=(0ns, 50ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(0ns, 50ns) is 10.62~51.52 times that of (t1, t2)=(0ns, 0ns).
Note: here the positioning error is the horizonal positioning error (meters) at CDF=90%.

	Company
	Comments

	Qualcomm
	Same to our previous comments. “ToA“ needs to be replaced by “timing“.



Impact of AI/ML assisted positioning performance by model input type and size
Evaluation of input size reduction
Different type of model input
	· Ericsson (R1-2304339)
[image: ]
[image: ]
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3rd round discussion
Evaluation results submitted by companies are summarized below in Table 10 for different types of model input for AI/ML assisted positioning. Please add/correct if anything in Table 10 is missing or wrong.

[bookmark: _Ref135682449]Table 10. Positioning error of different types of model input
	 
	E_CIR
	E_PDP
	E_DP
	E_PDP/E_CIR
	E_DP/E_CIR

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.306
	0.426
	0.571
	1.39
	1.87

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.371
	0.524
	0.653
	1.41
	1.76

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.512
	0.658
	0.798
	1.29
	1.56

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.72
	0.873
	0.989
	1.21
	1.37

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.194
	0.282
	0.39
	1.45
	2.01

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.26
	0.36
	0.477
	1.38
	1.83

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.378
	0.474
	0.6
	1.25
	1.59

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.583
	0.707
	0.834
	1.21
	1.43

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.156
	0.202
	0.294
	1.29
	1.88

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.223
	0.271
	0.371
	1.22
	1.66

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.33
	0.397
	0.502
	1.20
	1.52

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.539
	0.629
	0.715
	1.17
	1.33

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.366
	0.531
	 
	1.45
	 

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.453
	0.68
	 
	1.50
	 

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.665
	0.902
	 
	1.36
	 

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.954
	1.249
	 
	1.31
	 

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.215
	0.351
	 
	1.63
	 

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.31
	0.476
	 
	1.54
	 

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.483
	0.675
	 
	1.40
	 

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.795
	1.004
	 
	1.26
	 

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.171
	0.273
	 
	1.60
	 

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.258
	0.403
	 
	1.56
	 

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.417
	0.596
	 
	1.43
	 

	Ericsson R1-2304339, Table 4 & 7 & 9
	0.762
	0.933
	 
	1.22
	 

	 
	 
	 
	max
	1.63
	2.01

	 
	 
	 
	min
	1.17
	1.33



Based on the summary table above, the following observation is drawn.

Observation 9.1.1.1-1 (CIR vs PDP vs DP)
For AI/ML assisted positioning, the positioning accuracy at model inference is affected by the type of model input.  Evaluation results submitted to RAN1#113 show that if changing model input type while holding other parameters (e.g., Nt, N't, Nport, N'TRP) the same, 
· The positioning error of PDP as model input is 1.17 ~ 1.63 times the positioning error of CIR as model input.
· The positioning error of DP as model input is 1.33 ~ 2.01 times the positioning error of CIR as model input.
· Note: DP uses Nport=1 only. 

	Company
	Comments

	
	





Model input truncated in time domain
	· Apple (R1-2305973)
Table 10: AI/ML-assisted Positioning: Evaluation results for AI/ML model deployed on UE or Network side, using a different # of consecutive taps , with a CNN, UE distribution area = 100x40 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 1
	47500
	2500
	1.6 M
	3.1 G
	1.138m

	CIR
[128,1,128,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 1
	23750
	1250
	1.6 M
	3.1 G
	1.1362m

	CIR
[18,1,64,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 1
	9500
	500
	1.6 M
	3.1 G
	1.2410m


Observation 10: For AI/ML assisted positioning, when optimizing the data size by reducing the number of consecutive taps into the model
· Reducing the number of taps even to 54 does not does not affect the performance materially
· This seems to be more robust than direct AI-ML based positioning. 
· Reducing the number of taps ultimately reduces the overhead by the same factor



	· vivo (R1-2304475)
Table 72	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Truncated CIR 
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	TOA
	1-256
	DH
	DH
	25k
	1k
	4.26M*18
	8.50M*18
	0.73

	CIR
	TOA
	1-30
	DH
	DH
	25k
	1k
	4.26M*18
	8.50M*18
	3.72

	CIR
	TOA
	1-100
	DH
	DH
	25k
	1k
	4.26M*18
	8.50M*18
	1.04

	CIR
	TOA
	30-100
	DH
	DH
	25k
	1k
	4.26M*18
	8.50M*18
	4.17





	· CATT (R1-2304726)
Observation 28: For AI/ML-assisted positioning, reducing the number of CIR taps can reduce the computation complexity of a model while keeping similar inference accuracy.


	· Ericsson (R1-2304339)
Table 13 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of time domain window size Nt (training dataset size = 40,000 samples, Nt=Nt').
	Input type
	Time domain window size Nt
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m] in {60%, 6m, 2m} InF-DH

	
	
	
	
	Cent. Assist.
	Cent. Direct

	CIR
	256
	0.73 M
	32 M
	0.371
	0.373

	CIR
	128
	0.73 M
	15 M
	0.463
	0.443

	CIR
	64
	0.73 M
	7 M
	0.704
	0.668

	CIR
	32
	0.73 M
	3 M
	1.627
	1.602

	PDP
	256
	0.36 M
	9 M
	0.520
	0.510

	PDP
	128
	0.36 M
	4 M
	0.596
	0.563

	PDP
	64
	0.36 M
	2 M
	0.713
	0.711

	PDP
	32
	0.36 M
	0.8 M
	1.261
	1.165

	DP
	256
	0.36 M
	9 M
	0.653
	0.658

	DP
	128
	0.36 M
	4 M
	0.679
	0.658

	DP
	64
	0.36 M
	2 M
	1.970
	1.976






3rd round discussion
For AI/ML assisted positioning, evaluation results submitted by companies are summarized in Table 12 below for truncation in time domain (i.e. vary Nt; no sub-sampling). Model input CIR and PDP are considered. DP is not included since DP always select a subset of taps from timing window Nt.
Please add/correct if anything in Table 12 is missing or wrong.

[bookmark: _Ref135682453]Table 12. Positioning error E_* (meter) when time window size Nt varies. Model input is CIR or PDP. Full set of Nt samples are used as model input (i.e., N't=Nt)
	
	Nt=256
	Nt=128
	Nt=64
	Nt=32
	
	
	

	
	E_256
	E_128
	E_64
	E_32
	E_128/E_256
	E_64/E_256
	E_32/E_256

	Apple R1-2305973, Table 10
	1.138
	1.1362
	1.241
	
	1.00
	1.09
	

	vivo R1-2304475, Table 72
	0.73
	1.04
	
	3.72
	1.42
	
	5.10

	Ericsson R1-2304339, Table 13
	0.371
	0.463
	0.704
	1.627
	1.25
	1.90
	4.39

	Ericsson R1-2304339, Table 13
	0.52
	0.596
	0.713
	1.261
	1.15
	1.37
	2.43

	Ericsson R1-2304339, Table 13
	0.653
	0.679
	1.97
	
	1.04
	3.02
	

	
	
	
	
	max
	1.42
	3.02
	5.10

	
	
	
	
	min
	1.00
	1.09
	2.43



Observation 9.1.2.1-1 (time domain truncation of Nt)
For AI/ML assisted positioning, with Nt consecutive time domain samples used as model input, evaluation results submitted to RAN1#113 show that show that when CIR or PDP are used as model input, using different Nt while holding other parameters the same,  
· Reducing Nt from 256 to 128 does not appreciably degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/2 that of Nt=256.
· Positioning error of Nt=128 is 1.00 ~ 1.42 times the positioning error of Nt=256;
· Reducing Nt from 256 to 64~32 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/4 ~1/8 that of Nt=256, respectively. 
· Positioning error of Nt=64 is 1.09 ~ 3.02 times the positioning error of Nt=256;
· Positioning error of Nt=32 is 2.43 ~ 5.10 times the positioning error of Nt=256;

	Company
	Comments

	
	




Reduced number of taps as model input
	· MediaTek Inc. (R1-2305659)
Table 6. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	LOS/NLOS identification accuracy

	
	
	
	Nt
	N’t
	Train
	AI/ML
	Model complexity
	Computation complexity
	AI/ML

	non-normalized CIR (8*Nt*2)
	LOS/NLOS
	Ideal
	256
	256
	32400
	3600
	185.7k
	29.4M*18
	95.2%

	
	
	
	
	25
	
	
	
	
	95.3%

	
	
	
	
	15
	
	
	
	
	95.0%

	
	
	
	64
	64
	32400
	3600
	173.4k
	7.39M*18
	94.7%

	
	
	
	
	25
	
	
	
	
	94.6%

	
	
	
	
	15
	
	
	
	
	94.8%


Observation 8:	For AI/ML assisted LOS/NLOS identification positioning, by selecting appropriate Nt and N’t, the computational complexity, model complexity and signaling overhead can be reduced without significant performance loss.
Table 18. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
{40%, 2m, 2m}
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Nt
	N’t
	Train
	AI/ML
	Model complexity
	Computation complexity
	AI/ML

	non-normalized PDP (18* Nt*8)
	18TOA
	Ideal
	256
	256
	32400
	3600
	205k
	77M
	1.56

	
	
	
	
	25
	
	
	
	
	1.65

	
	
	
	
	15
	
	
	
	
	1.63

	
	
	
	64
	64
	32400
	3600
	181.3k
	19.3M
	1.7

	
	
	
	
	25
	
	
	
	
	1.73

	
	
	
	
	15
	
	
	
	
	1.74


Observation 21:	For AI/ML assisted TOA estimation positioning, by selecting appropriate Nt and N’t, the computational complexity, model complexity and signaling overhead can be reduced without significant performance loss.



	· ZTE (R1-2304538)
Observation 21. The AI/ML assisted positioning has an excellent accuracy on the estimation of DL PRS RSTD values even in heavy NLOS conditions (e.g., InF-DH {60%, 6m, 2m}). Exemplary results are:
· When the width of square grid is 0.5 m in grid distribution used for training dataset generation, positioning error of CIR based positioning is about 0.28 m at N_t^'=256;


	· xiaomi (R1-2304897)
Observation 14: 
-	Reducing the number of CIR taps per TRP to 24 could reduce the computation complexity and signaling overhead  significantly while still maintain less 1m positioning error  


	· Ericsson (R1-2304339)
Table 11 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps (training dataset size = 40,000 samples, Nt=256).
	Model class
	Positioning approach
	Model complexity
[# paras]
	90%tile 2D positioning error [m] with numbers of down sampled taps in {60%, 6m, 2m} InF-DH

	
	
	
	Nt'=256
	Nt'=128
	Nt'=64
	Nt'=32
	Nt'=16
	Nt'=9

	Small models CIR
	Dist. Assist.
	0.86 M
	0.453
	0.478
	0.558
	0.764
	1.208
	1.995

	
	Cent. Assist.
	0.73 M
	0.371
	0.372
	0.434
	0.545
	0.678
	0.805

	
	Cent. Direct
	0.73 M
	0.373
	0.382
	0.425
	0.540
	0.678
	0.824

	Small models PDP
	Dist. Assist.
	0.43 M
	0.680
	0.687
	0.732
	0.856
	1.001
	1.452

	
	Cent. Assist.
	0.36 M
	0.524
	0.534
	0.514
	0.604
	0.698
	0.868

	
	Cent. Direct
	0.36 M
	0.510
	0.522
	0.522
	0.580
	0.689
	0.824






3rd round discussion
Evaluation results submitted by companies are summarized in Table 13 below for reduced number of taps (N't), where the full set of taps is Nt = 256. Please add/correct if anything in Table 13  is missing or wrong.
[bookmark: _Ref135683132]Table 13. Positioning error when Nt = 256 and N't varies
	 N't
	256
	128
	64
	32
	25
	16
	15
	9

	MediaTek R1-2305659, Table 18
	1.56
	 
	 
	 
	1.65
	 
	1.63
	 

	Ericsson R1-2304339, Table 11
	0.453
	0.478
	0.558
	0.764
	 
	1.208
	 
	1.995

	Ericsson R1-2304339, Table 11
	0.371
	0.372
	0.434
	0.545
	 
	0.678
	 
	0.805

	Ericsson R1-2304339, Table 12
	0.68
	0.687
	0.732
	0.856
	 
	1.001
	 
	1.452

	Ericsson R1-2304339, Table 13
	0.524
	0.534
	0.514
	0.604
	 
	0.698
	 
	0.868

	CATT R1-2304726, Excel
	0.6577
	0.8742
	0.7
	1.104
	 
	 
	 
	 


	
Based on Table 13, Table 14 calculates the positioning error with a reduced N't over the positioning error with the full set of 256 taps.
[bookmark: _Ref135683134]Table 14. Positioning error of N't over positioning error of Nt = 256
	 N't
	
	E_128
/E_256
	E_64
/E_256
	E_32
/E_256
	E_25
/E_256
	E_16(15)
/E_256
	E_9
/E_256

	MediaTek R1-2305659, Table 18
	 
	 
	 
	 
	1.06
	1.04
	 

	Ericsson R1-2304339, Table 11
	 
	1.06
	1.23
	1.69
	 
	2.67
	4.40

	Ericsson R1-2304339, Table 11
	 
	1.00
	1.17
	1.47
	 
	1.83
	2.17

	Ericsson R1-2304339, Table 12
	 
	1.01
	1.08
	1.26
	 
	1.47
	2.14

	Ericsson R1-2304339, Table 13
	 
	1.02
	0.98
	1.15
	 
	1.33
	1.66

	CATT R1-2304726, Excel
	 
	1.33
	1.06
	1.68
	 
	 
	 

	 
	max
	1.33
	1.23
	1.69
	1.06
	2.67
	4.40

	 
	min
	1.00
	0.98
	1.15
	1.06
	1.04
	1.66



Based on Table 13 and Table 14, the following observation is drawn.
Observation 9.1.3.1-1 (size of sub-sampled taps N't)
For AI/ML assisted positioning, when N't time domain samples (i.e., paths) with the strongest power are selected as model input, evaluation results submitted to RAN1#113 show that for model input of CIR or PDP and Nt=256, using different N't while holding other parameters the same,
· Reducing N't from 256 to 64 does not appreciably degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/4  that of Nt=N't=256.
· Positioning error of N't=128 is 1.00 ~ 1.33 times the positioning error of Nt=N't=256;
· Positioning error of N't=64 is 0.98 ~ 1.23 times the positioning error of Nt=N't=256;
· Reducing N't from 256 to 32~16 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/8 ~ 1/16 that of Nt=N't=256. 
· Positioning error of N't=32 is 1.15 ~ 1.69 times the positioning error of Nt=N't=256;
· Positioning error of N't=16 is 1.04 ~ 2.67 times the positioning error of Nt=N't=256;
· Reducing N't from 256 to 9 degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/32 that of Nt=N't=256. 
· Positioning error of N't=9 is 1.66 ~ 4.40 times the positioning error of Nt=N't=256;

	Company
	Comments

	
	




Reduced number of TRPs
	· MediaTek Inc. (R1-2305659)

Table 20. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m, N’TRP
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized PDP (18*8*256)
N’TRP =18
	18TOA
	ideal
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	1.05

	non-normalized PDP (18*8*256)
Approach 1-A
N’TRP =9
	18TOA
	ideal
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	1.45

	non-normalized PDP (18*8*256)
Approach 1-B
N’TRP =9
	18TOA
	ideal
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	7.92

	non-normalized PDP (9*8*256)
Approach 2
N’TRP =9
	18TOA
	ideal
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	188k
	45.9M
	1.50

	non-normalized PDP (18*8*256)
Approach 1-A
N’TRP =4
	18TOA
	ideal
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	5.0

	non-normalized PDP (18*8*256)
Approach 1-B
N’TRP =4
	18TOA
	ideal
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	44.9

	non-normalized PDP (4*8*256)
Approach 2
N’TRP =4
	18TOA
	ideal
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	188k
	18.2M
	7.3


Observation 23:	For reduced number of TRP evaluation approach 1-A and approach 2, performance of AI/ML assisted TOA estimation positioning will not significantly degrade when number of TRPs (N’TRP) is 9.
Observation 24:	For reduced number of TRP evaluation approach 1-B, performance of AI/ML assisted TOA estimation positioning degrade with the decrease of number of TRPs (N’TRP).
Observation 25:	For reduced number of TRP evaluation approach 2, computational complexity can be significantly reduced with the decrease of number of TRPs (N’TRP).


	· InterDigital (R1-2305123)
Observation 11: For direct AI/ML positioning, for different number of TRPs [N’TRP=12,9,6,4] when measurements are collected from fixed set of TRPs, horizontal positioning accuracy degrades as we reduce number of TRPs (N’TRP) for 90% UEs.  (Table 7)
Observation 12: For direct AI/ML positioning, for different number of TRPs [N’TRP=12,9,6,4] when measurements are collected from TRPs with top N’TRP RSRP values, horizontal positioning accuracy degrades as we reduce number of TRPs (N’TRP) for 90% UEs.  (Table 8)
Observation 13: For direct AI/ML positioning, for different number of TRPs [N’TRP=12,9,6,4] when measurements are collected from TRPs with top N’TRP RSRP values (Approach B) results better 90% horizontal positioning accuracy compared to fixed TRP selection approach (Approach A). 
Observation 14: For direct AI/ML positioning, for different number of CIR taps when model input is CIR measurements: 
•	For Nt= 128 and 64, we observe similar (~ < 1m) horizontal positioning accuracy as Nt=256.
•	For Nt =32 and 16, 90% horizontal accuracy degrades compared to Nt=256.  


	· xiaomi (R1-2304897)

Observation 14: 
· Reducing the number of CIR taps per TRP to 24 could reduce the computation complexity and signaling overhead  significantly while still maintain less 1m positioning error  
· Reducing the number of TRP to 9 could reduce the computation complexity and signaling overhead while maintain around 1m positioning error 



	· CATT (R1-2304726)
In this simulation, since NTRP = 9, the measurement size is NTRP*Nport*NT*2*64 = 147456bit per UE.

3.2.3.1.1.	One model covers entire area
The first case is to select 9 fixed TRPs and train a model to cover the entire simulation area.
In our first design, Approach 2 is applied, i.e. the TRP dimension of model input is equal to the number of TRPs (N’TRP) that provides measurements as model input.
In our second design, Approach 1-A is applied, i.e. 9 fixed TRPs provides the effective input value to the model and the input of the other 9 TRPs are zero-padded.
Observation 25: For AI/ML-assisted positioning, when the input dimension is reduced from 18 TRPs to 9 TRPs, the AI/ML model performance will not significantly degrade.
Observation 26: For AI/ML-assisted positioning, when the input dimension is reduced from 18 TRPs to 9 TRPs, the FLOPs can be significantly reduced.
3.2.3.1.2.	Two models each covers half the area
In this case, we divide the entire simulation area into two regions, named as region A and region B, by equal proportion. The TRP ID of region A is {0, 1, 2, 3, 4, 5, 6, 7, 8}, and the TRP ID of region B is {9, 10, 11, 12, 13, 14, 15, 16, 17}.
Approach 2 is applied,
Observation 27: For AI/ML-assisted positioning, when the input dimension is reduced from 18 TRPs to 9 TRPs and the total dataset size is unchanged, the horizontal position accuracy of using two models to cover the entire area is slightly degraded compared to the performance of using single model to cover the entire area. 



	· vivo (R1-2304475)
[image: ]
Observation 52:	AI//ML assisted positioning is more sensitive to the number of TRPs used for positioning than direct AI/ML positioning
Proposal 33:	The minimal number of TRPs used for positioning should be identified to reach the target positioning accuracy for AI/ML assisted positioning.
Observation 53:	Direct AI/ML positioning has greater potential for compressing the dimensions of the CIR/PDP compared to AI/ML assisted positioning.


	· Ericsson (R1-2304339)
[image: ]
Figure 13: Positioning accuracy vs number of active TRP (N'TRP) for centralized ML assisted positioning and centralized ML direct positioning.




Impact of AI/ML-assisted positioning performance by model output

Evaluation of noisy ground truth labels
	· MediaTek Inc. (R1-2305659)
Table 7. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m, labelling error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	LOS/NLOS identification accuracy

	
	
	
	Training
	test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	185.7k
	29.4M*18
	95.2%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	10% LOS labelling error
10% NLOS labelling error
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	185.7k
	29.4M*18
	93.1%

	non-normalized CIR (8*256*2)
	LOS/NLOS 
	20% LOS labelling error
20% NLOS labelling error
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	185.7k
	29.4M*18
	92.1%


Table 19. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m, labelling error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized PDP (18*8*256)
	18TOA
	L=0
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	205k
	77M
	1.56

	non-normalized PDP (18*8*256)
	18TOA
	L=0.5
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	205k
	77M
	2.20

	non-normalized PDP (18*8*256)
	18TOA
	L=1
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	205k
	77M
	2.37

	non-normalized PDP (18*8*256)
	18TOA
	L=2
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	205k
	77M
	3.32

	non-normalized PDP (18*8*256)
	18TOA
	L=0
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	1.05

	non-normalized PDP (18*8*256)
	18TOA
	L=0.5
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	1.86

	non-normalized PDP (18*8*256)
	18TOA
	L=1
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	2.21

	non-normalized PDP (18*8*256)
	18TOA
	L=2
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	3.06


Observation 22:	Performance of AI/ML assisted TOA estimation positioning degrades with increasement the of labelling error.


	· CMCC (R1-2305089)
Observation 7: Traditional positioning algorithms can not work properly in inF scenario.
Table X. Evaluation results for AI/ML assisted positioning with CHAN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
size：18*1*256
	TOA
	TOA
	{60%, 6m, 2m}, 10 Drops mixed 
	{60%, 6m, 2m}, 10 Drops mixed
	78400
	1600
	3.71M
	7.42M
	45.36

	
	TDOA
	TDOA
	
	
	
	
	
	
	39.58

	
	TOA
	Ideal-TOA
	
	
	
	
	
	
	0.307


Observation 8: AI/ML assisted positioning can not work properly in inF scenario due to the lack of LOS path.


	· Nokia (R1-2304685)
[image: ]
Figure 12 - ToA estimation performance evaluation using mean-square error (MSE) for different L and number of TRPs values.
Observation 13: The impact of labelling error on TOA accuracy (in MSE) is less than 1.5 for low/moderate standard deviation L=1, 2, and 3.
Observation 14: Using many TRPs do not enhance the performance of the TOA indication significantly in the presence of labelling error on TOA accuracy (in MSE), except for large L values (e.g., L=10).
Table 15 – [NTRP=18] Evaluation of ground truth labelling error with different m% LOS label error and n% NLOS label error. The scenario is InF-DH with clutter density of 40% (dataset 4). The UE distribution area is 120x60 m.
	m (%)
	0
	5
	10
	20
	30
	50
	0
	50
	100

	n (%)
	0
	10
	20
	30
	20
	0
	50
	50
	100

	Accuracy
	98.1%
	99.32%
	97.18%
	90.75%
	92.36%
	89.12%
	79.2%
	70.35%
	24.98%

	F1-score
	0.975
	0.9914
	0.9651
	0.8902
	0.9014
	0.8405
	0.5639
	0.6539
	0.2132


Observation 15: When the number of TRPs is more than one, adding a labelling error of less than 10% for LOS/NLOS indication the performance is not impacted, in some cases the performance is enhanced when compared to the benchmark (m%=0, and n%=0).
Observation 16: For AI/ML assisted positioning with LOS/NLOS indicator as model output, an acceptable LOS/NLOS indication is obtained until 20% of error for both, n% and m% error.
Observation 17: The impact of labeling error for LOS/NLOS indication is independent to the number of TRPs used in the model construction.
Table 21 - LOS/NLOS indication performance for assisted AI/ML positioning when a semi-supervised learning is applied on scenarios with low labeled samples.
	Training dataset
	Testing dataset
	Model complexity
	Computational complexity
	LOS/NLOS classification accuracy

	Labeled
	Unlabeled
	
	
	
	

	1k
	0
	3k
	129k
	141k
	82.40%

	2k
	0
	3k
	129k
	141k
	84.37%

	3k
	0
	3k
	129k
	141k
	85.93%

	1k
	100k
	3k
	129k
	141k
	83.83%

	2k
	100k
	3k
	129k
	141k
	85.07%

	3k
	100k
	3k
	129k
	141k
	86.37%


Observation 19: The semi-supervised learning enhances the performance of LOS/NLOS classification accuracy as compared to supervised learning when there is a small number of labeled samples are available.


	· Apple (R1-2305973)
Observation 11: AI-ML assisted positioning seems to be robust to label error derived from an error in the GT location.


	· CATT (R1-2304726)
Observation 24: When AI/ML model is trained with different value of label error, as value of L increases, AI/ML–assisted positioning error increases approximately in proportion to L.


	· vivo (R1-2304475)
Table 37	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	TOA
	0
	Std = 0
	0
	25k
	1k
	4.26M*18
	8.50M*18
	0.73

	CIR
	TOA
	0
	Std = 0.5
	0
	25k
	1k
	4.26M*18
	8.50M*18
	0.90

	CIR
	TOA
	0
	Std = 1
	0
	25k
	1k
	4.26M*18
	8.50M*18
	1.73

	CIR
	TOA
	0
	Std = 2
	0
	25k
	1k
	4.26M*18
	8.50M*18
	2.24


Observation 27:	Labeling error can slightly impair the positioning performance for AI/ML assisted positioning, and AI/ML assisted positioning is more robust to labeling error compared with direct AI/ML positioning.


	· Ericsson (R1-2304339)
[image: ]
Figure 14: Positioning accuracy vs label error standard deviation L (meters) for three positioning approaches and model input type of CIR, PDP, and DP.




Semi-supervised learning
	· MediaTek Inc. (R1-2305659)
Observation 20:	With less amount of labelled data, semi-supervised learning with more un-labelled data provides a more accurate position accuracy than supervised learning for AI/ML assisted TOA estimation positioning. 
Proposal 6	: Support semi-supervised learning for AI/ML positioning when limited labelled data are collected for training.


	· Ericsson (R1-2304339)
Table 16 90%tile 2D positioning accuracy using PDP inputs for centralized AI/ML assisted positioning approach and different unlabeled sample percentages in the {60%, 6m, 2m} InF-DH dataset.
	Input
	Unlabeled %
	Labeled
	Unlabeled
	Total
	M paras
	M FLOPs
	90%tile [m]

	PDP
	97.50%
	1,000
	39,000
	40,000
	1.4
	34
	2.985

	PDP
	97.50%
	2,000
	78,000
	80,000
	1.4
	34
	1.898

	PDP
	95.00%
	1,000
	19,000
	20,000
	1.4
	34
	3.081

	PDP
	95.00%
	2,000
	38,000
	40,000
	1.4
	34
	1.975

	PDP
	95.00%
	4,000
	76,000
	80,000
	1.4
	34
	1.188

	PDP
	90.00%
	1,000
	9,000
	10,000
	1.4
	34
	3.212

	PDP
	90.00%
	2,000
	18,000
	20,000
	1.4
	34
	2.040

	PDP
	90.00%
	4,000
	36,000
	40,000
	1.4
	34
	1.247

	PDP
	90.00%
	8,000
	72,000
	80,000
	1.4
	34
	0.823

	PDP
	80.00%
	4,000
	16,000
	20,000
	1.4
	34
	1.294

	PDP
	80.00%
	8,000
	32,000
	40,000
	1.4
	34
	0.872

	PDP
	80.00%
	16,000
	64,000
	80,000
	1.4
	34
	0.598







Other
	· MediaTek Inc. (R1-2305659)
Observation 12:	The soft-decision approach outperforms the hard-decision approach for AI/ML assisted TOA estimation positioning.
Proposal 3	: Support means and variance of TOA as model output to report for AI/ML assisted TOA estimation positioning.


	· Qualcomm (R1-2305332)
Observation 22: In AI/ML assisted positioning, evaluations show that ML-based soft information reporting method provides a significant improvement in positioning accuracy over the classical scheme. The 90th percentile of the horizontal positioning error reduces from >20 m for the classical scheme to 4.74 m.




1st round / 2nd round discussion
In RAN1#112bis, the following observation was made.
	Observation (RAN1#112bis)
For direct AI/ML positioning, for L in the range of 0.25m to 5m, the positioning error increases approximately in proportion to L, where L (in meters) is the standard deviation of truncated Gaussian Distribution of the ground truth label error.  



Based on the evaluation results submitted for AI/ML assisted positioning with TOA as model output, similar observation can be made for AI/ML assisted positioning as well.

Observation 10.4-1
For AI/ML assisted positioning with TOA as model output, for L in the range of 0.25m to 5m, the positioning error increases approximately in proportion to L, where L (in meters) is the standard deviation of truncated Gaussian distribution of the ground truth label error.  


	
	Company

	Support
	

	Not support
	



	Company
	Comments

	Qualcomm
	This needs to be reflected for timing evaluation not just ToA. 
E.g., 
“For In evaluation of AI/ML assisted positioning with TOA timing as model output, for …”

	Nokia/NSB
	We request some clarifications. First, the unit used for TOA is not clear, it looks that meters is the unit, however, TOA is measured in the time domain. The observation is based on the estimation of the UE position. However, some companies reported only the intermediate feature performance estimation. 

We sugges to add :

“… the TOA estimation and positioning error increases approximately…”



Observation 10.4-2
Evaluation shows that AI/ML assisted positioning with ToA as model output is robust to small label error. The exact range of label error that can be tolerated depends on the positioning accuracy requirement,  where tighter positioning accuracy requirement demands smaller label error.

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	Qualcomm
	Same to above comment. Replace “ToA“ by “timing“

	Nokia/NSB
	Same comment used in previous observation.



3rd round discussion
Observation 10.4-2 is updated below to reflect the comments received.

Observation 10.5-1
Evaluation shows that AI/ML assisted positioning with timing information (e.g., ToA) as model output is robust to small label error. The exact range of label error that can be tolerated depends on the positioning accuracy requirement,  where tighter positioning accuracy requirement demands smaller label error.

	Company
	Comments

	Nokia/NSB
	ok



Evaluation of model monitoring methods
	· Nokia (R1-2304685)
Observation 7: The performance monitoring based on the distribution comparison of different datasets is impacted by the feature that is selected to monitor. For instance, in evaluating the similarity between two distributions with Kolmogorov-Smirnov Test (Kstest) method, the RSRP measurement provides an accurate distribution comparison compared to CIR and PDP. 
Proposal 4: RAN1 further evaluate the impact of at least RSRP measurement as dominant feature for performance monitoring.
[image: ]
Figure 9 - ROC curve of Binary classification performance of two datasets with different statistical distribution of the RSRP with AUC score of 0.743.
Observation 8: For Performance monitoring purposes, using ML models as binary classification provides an easily discriminatory criteria between two different dataset distributions. However, in real scenarios it is expected to get a diversity set of distributions. Thus, an extension of a binary classification to a multi-class classification could be a potential alternative, in addition an extra expense of model and computational complexity could be expected. 
Proposal 5: To RAN1 further study and evaluate the monitoring performance based on AI/ML models considering the model and computational complexity of the AI/ML model used for monitoring.


	· vivo (R1-2304475)
Observation 41: Adopting SINR as a dominant feature of CIR is valid for model monitoring
Observation 42:  The proposed adversarial validation can achieve accurate model monitoring at the cost of acceptable hardware resource consumption for online training.
Observation 43: The proposed AI/ML based out-of-distribution detection can achieve accurate and flexible model monitoring without need of online training and large-scale data collection.
Observation 44: Motion state information can be used to assist model monitoring.
Observation 45: The proposed self-monitoring method can achieve model monitoring for AI/ML assisted positioning.
Observation 46: Ranging model assisted model monitoring is valid for direct AI/ML positioning without need of ground truth label.


	· Apple (R1-2305973)
Observation 12: For direct AI-positioning, any of the following is suitable for performance monitoring:
•	Model monitoring using statistics of measurement(s) without ground truth label
•	Model monitoring based on provided ground truth label (or its approximation) 
•	Model monitoring using statistics of output without ground truth  label.


	· MediaTek Inc. (R1-2305659)
Observation 49:	Soft information can be used to monitor the performance of the direct AI/ML positioning.
Observation 50:	Based on the soft information, the performance of the direct AI/ML model can be monitored whether the data is labeled or not.
Proposal 13	：For model monitoring of direct AI/ML positioning, support the soft information associated to the estimated location as model output.


	· Fujitsu (R1-2304768)
Proposal 1 Before evaluating the performance of the model monitoring, the evaluation methodology and the KPI have to be discussed and aligned among companies, especially for introducing new metrics for label-free model monitoring.
Proposal 2 Study the baseline method for model monitoring performance evaluation in order to achieve comparable results among companies. 
Proposal 3 For the label-free model monitoring for positioning method, study at least the following methods:
•	AI/ML model applicability condition information.
•	Historical model monitoring results.


	· LG (R1-2305300)
Proposal #2: Consider model monitoring metric based on model input depending on the amount of similarity for output distribution between full-set and sub-set of model input on MTRP construction.
Proposal #3: For model monitoring evaluation, consider to align the procedure (e.g. model fine-tuning/transfer) depending on model monitoring metric/performance among companies.
Proposal #4: Consider model monitoring metric based on model input depending on the amount of similarity between input and training data distribution.
Proposal #5: For LOS/NLOS classification of AI/ML assisted positioning, consider also to utilize a soft value of the ML output as a LOS classification accuracy and model monitoring metric.


	· CATT (R1-2304726)
Observation 31: For direct AI/ML positioning, the relative displacement method can monitor the model performance.
Observation 32: For AI/ML-assisted positioning, the relative displacement method can monitor the model performance.





Proposals for online sessions
Proposals for Monday online session
Proposal 3.2.1-1
The agreement made in RAN1#112bis is updated to the following.
Agreement
For the evaluation of AI/ML based positioning, the study of model input due to different number of TRPs include the following approaches. Proponent of each approach provide analysis for model performance, signaling overhead (including training data collection and model inference), model complexity and computational complexity.
· Approach 1: Model input size stays constant as NTRP=18. The number of TRPs (N’TRP) that provide measurements to model input varies. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs do not provide measurements to model input, i.e., measurement value is set to 0 such that the (NTRP  N’TRP) TRPs do not affect model output.
· Approach 1-A. The set of TRPs (N’TRP) that provide measurements is fixed.
· Approach 1-B. The set of TRPs (N’TRP) that provide measurements can change dynamically.
· Note: for Approach 1, one model is provided to cover the entire evaluation area.
· Approach 2: The TRP dimension of model input is equal to the number of TRPs (N’TRP) that provide measurements as model input. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs are ignored by the given model. For a given AI/ML model, the set of TRPs (N’TRP) that provide measurements is fixed. 
· Approach 2-A. The set of active TRPs (N’TRP) that provide measurements is fixed.
· For Approach 2-A: one model can be provided to cover the entire evaluation area, which is equivalent to deploying N’TRP TRPs in the evaluation area for positioning if ignoring the potential inference from the remaining (18  N’TRP) TRPs.
· Approach 2-B. The set of active TRPs (N’TRP) that provide measurements can change dynamically.
· For Approach 2-B, one model is developed to handle various patterns of active TRPs. 
· For Approach 2, if Nmodel (Nmodel >1) models are provided to cover the entire evaluation area, the total complexity (model complexity is the summation of the Nmodel models.


Observation 2.4-1 
For AI/ML based positioning, based on evaluation results using uniform or grid UE distribution in training data collection, the positioning accuracy is affected by the training dataset size for a given UE distribution area (or equivalently, sample density in #samples/m2), when the UE is distributed uniformly in training data collection. 
· There exists a tradeoff between the training dataset size and the achievable positioning accuracy. The larger the training dataset size (i.e., higher sample density), the smaller the positioning error (in meters), until a saturation point is reached where additional training data does not bring further improvement to the positioning accuracy.
· Note: here a sample refers to the training data collected of one UE at one location. Sample density is equivalent to the density of UEs with data collected in the training dataset.

AI/ML assisted positioning

Observation 8.5.1.1-1:
Evaluation of the following generalization aspects show that the positioning accuracy of AI/ML assisted positioning with ToA as model output deteriorates when the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario. 
· Different drops 
· Different clutter parameters 
· Different InF scenarios

Observation 8.5.1.1-2:
For AI/ML assisted positioning, evaluation results demonstrate that for the generalization aspects of:
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· Network synchronization error 
· UE/gNB RX and TX timing error
· SNR mismatch 
· channel estimation error
the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning/re-training.
· Better training dataset construction: The training dataset is composed of data from multiple deployment scenarios, which include data from the same deployment scenario as the test dataset. 
· Model fine-tuning/re-training: the model is re-trained/fine-tuned with a dataset from the same deployment scenario as the test dataset.

Observation 8.5.2.1-1
For AI/ML assisted positioning with TOA as model output, based on evaluation results of network synchronization error in the range of 0-50 ns, when the model is trained by a dataset with network synchronization error t1 (ns) and tested in a deployment scenario with network synchronization error t2 (ns), for a given t1,
· For a case evaluated by a given source, the positioning accuracy of cases with t2 smaller than t1 is better than the cases with t2 equal to t1. For example,
· For the case of (t1, t2)=(50ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 20~25ns) is 0.75~0.85 times that of (t1, t2)=(50ns, 50ns).
· For the case of (t1, t2)=(50ns, 0ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 0ns) is 0.76~0.80 times that of (t1, t2)=(50ns, 50ns).
· For a case evaluated by a given source, the positioning accuracy of cases with t2 greater than t1 is worse than the cases with t2 equal to t1. The larger the difference between t1 and t2, the more the degradation. For example,
· For the case of (t1, t2)=(0ns, 10ns), evaluation results submitted to RAN1#113 show the positioning error of (0ns, 10ns) is 1.16~2.81 times that of (0ns, 0ns).
· For the case of (t1, t2)=(0ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (0ns, 50ns) is 2.19~10.11 times that of (0ns, 0ns).
· For the case of (t1, t2)=(0ns, 50ns), evaluation results submitted to RAN1#113 show the positioning error of (0ns, 50ns) is 9.68~31.95 times that of (0ns, 0ns).
Note: here the positioning error is the horizonal positioning error (meters) at CDF=90%.

Observation 8.5.3.1-1
For AI/ML assisted positioning with TOA as model output, based on evaluation results of timing error in the range of 0-50 ns, when the model is trained by a dataset with UE/gNB RX and TX timing error t1 (ns) and tested in a deployment scenario with UE/gNB RX and TX timing error t2 (ns), for a given t1,
· For a case evaluated by a given source, the positioning accuracy of cases with t2 smaller than t1 is better than the cases with t2 equal to t1. For example,
· For the case of (t1, t2)=(50ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 20~25ns) is 0.75~0.96 times that of (t1, t2)=(50ns, 50ns).
· For the case of (t1, t2)=(50ns, 0ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 0ns) is 0.76~0.95 times that of (t1, t2)=(50ns, 50ns).
· For a case evaluated by a given source, the positioning accuracy of cases with t2 greater than t1 is worse than the cases with t2 equal to t1. The larger the difference between t1 and t2, the more the degradation. For example,
· For the case of (t1, t2)=(0ns, 10ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(0ns, 10ns) is 1.34~2.30 times that of (t1, t2)=(0ns, 0ns).
· For the case of (t1, t2)=(0ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(0ns, 20~25ns) is 5.66~13.0 times that of (t1, t2)=(0ns, 0ns).
· For the case of (t1, t2)=(0ns, 50ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(0ns, 50ns) is 10.62~51.52 times that of (t1, t2)=(0ns, 0ns).
Note: here the positioning error is the horizonal positioning error (meters) at CDF=90%.

Observation 10.4-1
For AI/ML assisted positioning with TOA as model output, for L in the range of 0.25m to 5m, the positioning error increases approximately in proportion to L, where L (in meters) is the standard deviation of truncated Gaussian distribution of the ground truth label error.  

Observation 10.4-2
Evaluation shows that AI/ML assisted positioning with ToA as model output is robust to small label error. The exact range of label error that can be tolerated depends on the positioning accuracy requirement,  where tighter positioning accuracy requirement demands smaller label error.

Direct AI/ML positioning


Observation 6.1.2.1-1 (time domain truncation of Nt)
For direct AI/ML positioning, the positioning accuracy at model inference tends to degrade as the time domain window size Nt decreases, where Nt consecutive time domain samples are used as model input. Evaluation results submitted to RAN1#113 show that show that when CIR or PDP are used as model input, using different Nt while holding other parameters constant,  
· Positioning error of Nt=128 is 0.81 ~ 1.19 times the positioning error of Nt=256;
· Thus: Reducing Nt from 256 to 128 does not appreciably degrade the positioning accuracy, while the measurement size and signaling overhead shrink to ½ of Nt=256.
· Positioning error of Nt=64 is 0.88 ~ 1.79 times the positioning error of Nt=256;
· Positioning error of Nt=32 is 1.05 ~ 4.29 times the positioning error of Nt=256;
· Thus: Reducing Nt from 256 to 64~32 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to 1/4 ~1/8 of Nt=256, respectively. 
· In terms of achievable positioning accuracy, Nt can be reduced to 64~32 while maintaining positioning accuracy around or below 1 meter.

Observation 6.1.3.1-1 (size of sub-sampled taps N't)
For direct AI/ML positioning, the positioning accuracy at model inference tends to degrade as N't decreases, where N't time domain samples (i.e., paths) with the strongest power are selected as model input. Evaluation results submitted to RAN1#113 show that for model input of CIR or PDP and Nt=256, using different N't while holding other parameters constant,
· Positioning error of N't=64 is 1.02 ~ 1.21 times the positioning error of Nt=N't=256;
· Thus: Reducing N't from 256 to 64 does not appreciably degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) ¼ of Nt=N't=256.
· Positioning error of N't=32 is 1.14 ~ 2.03 times the positioning error of Nt=N't=256;
· Positioning error of N't=16 is 1.35 ~ 2.54 times the positioning error of Nt=N't=256;
· Thus: Reducing N't from 256 to 32~16 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/8 ~ 1/16 of Nt=N't=256. 
· In terms of achievable positioning accuracy, N't can be reduced to 32~16 while maintaining positioning accuracy around or below 1 meter.
· Positioning error of N't=9~8 is 1.62 ~ 3.29 times the positioning error of Nt=N't=256;
· Thus: Reducing N't from 256 to 9~8 degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/32 of Nt=N't=256. 
· In terms of achievable positioning accuracy, N't can be reduced to 9~8 while maintaining positioning accuracy in the range of 1 to 2 meters.

Observation 3.1.1-1
For AI/ML based positioning with multipath measurement for model input, 
· For a given set of parameters (N'TRP, Nt, N't, Nport)
· CIR has the largest measurement size, where CIR is composed of a list of per-path measurements of (a) path delay, (b) path power and (c) path phase.
· PDP has smaller measurement size than CIR, where PDP is composed of a list of per-path measurements of (a) path delay and (b) path power.
· DP has the smallest measurement size, where DP is composed of a list of selected path delays.
· Note: for DP, Nport =1

Observation 3.1.1-2
For AI/ML based positioning with multipath measurement for model input, 
· For each model input type (CIR, PDP, DP)
· The measurement size increases (approximately) linearly as N'TRP increases, where N'TRP is the number of TRPs that provide measurements for the positioning.
· For model input type CIR and PDP,
· The measurement size increases (approximately) linearly as Nport increases, where Nport is the number of transmit/receive antenna port pairs that provide measurements for the positioning.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, measurement size for model input increases (approximately) linearly with N’t; 
· If full set of Nt samples in time domain is used as model input, measurement size for model input (approximately) increases linearly with Nt;
· Note: for Case 2b and 3b, measurement size of model input has impact to signaling overhead for model inference.

Observation 7.3-1
Evaluation shows that direct AI/ML positioning is robust to small label error. The exact range of label error that can be tolerated depends on the positioning accuracy requirement,  where tighter positioning accuracy requirement demands smaller label error.

Proposals for Tuesday online session
Direct AI/ML positioning
Observation 6.1.1.2-1 (CIR vs PDP vs DP)
For direct AI/ML positioning, the positioning accuracy at model inference is affected by the type of model input and model complexity.  Evaluation results submitted up to RAN1#113 show that if changing model input type while holding other parameters (e.g., Nt, N't, Nport, N'TRP) the same, 
· When comparing PDP and CIR as model input, 
· Five sources (MediaTek R1-2305659, vivo R1-2304475, ZTE R1-2302538, Ericsson R1-2304339, Apple R1-2306112) showed evaluation results where the positioning error of PDP as model input is 1.10 ~ 1.61 times the positioning error of CIR as model input.
· Four sources (MediaTek R1-2305659, Apple R1-2306112, Huawei R1-2305332, Nokia R1-2300608) showed evaluation results where the positioning error of PDP as model input is 0.61 ~ 0.96 times the positioning error of CIR as model input.
· When comparing DP and CIR as model input, 
· Three sources (vivo R1-2304475, Ericsson R1-2304339, Apple R1-2306112) showed evaluation results where the positioning error of DP as model input is 1.18 ~ 1.96 times the positioning error of CIR as model input.
· Two sources (Apple R1-2306112, Qaulcomm R1-2305332) showed evaluation results where the positioning error of DP as model input is 0.79~0.92 times the positioning error of CIR as model input.
· Note: DP uses Nport=1 only. 
· Note: For Apple R1-2306112, the difference in relative performance is based on the complexity of the AI/ML model. 

Observation 6.1.2.2-1 (time domain truncation of Nt)
For direct AI/ML positioning, with Nt consecutive time domain samples used as model input, evaluation results submitted to RAN1#113 show that show that when CIR or PDP are used as model input, using different Nt while holding other parameters the same,  
· Reducing Nt from 256 to 128 does not appreciably degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/2 that of Nt=256.
· Positioning error of Nt=128 is 0.81 ~ 1.19 times the positioning error of Nt=256;
· Reducing Nt from 256 to 64~32 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/4 ~1/8 that of Nt=256, respectively. In terms of achievable positioning accuracy, Nt can be reduced to 64~32 while maintaining positioning accuracy around or below 1 meter.
· Positioning error of Nt=64 is 0.88 ~ 1.79 times the positioning error of Nt=256;
· Positioning error of Nt=32 is 1.05 ~ 4.29 times the positioning error of Nt=256;

AI/ML assisted positioning

Observation 8.5.1.2-1:
For AI/ML assisted positioning with timing information (e.g., ToA) as model output, evaluation of the following generalization aspects show that: 
· the positioning accuracy deteriorates when the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario. 
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· the positioning accuracy deteriorates may or may not deteriorate when the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario.
· Network synchronization error 
· UE/gNB RX and TX timing error
· SNR mismatch 
· Channel estimation error

Observation 8.5.1.2-2:
For AI/ML assisted positioning, evaluation results demonstrate that for the generalization aspects of:
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· Network synchronization error 
· UE/gNB RX and TX timing error
· SNR mismatch 
· Channel estimation error
if the positioning accuracy would deteriorate when the AI/ML model is trained with dataset of one deployment scenario and tested with dataset of a different deployment scenario, the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning/re-training.
· Better training dataset construction: The training dataset is composed of data from multiple deployment scenarios, which include data from the same deployment scenario as the test dataset. 
· Model fine-tuning/re-training: the model is re-trained/fine-tuned with a dataset from the same deployment scenario as the test dataset.
Note: ideal model training and switching may provide the upper bound of achievable performance when the AI/ML model needs to handle different deployment scenarios.

Observation 8.5.2.1-1
For AI/ML assisted positioning with timing information (e.g., ToA) as model output, based on evaluation results of network synchronization error in the range of 0-50 ns, when the model is trained by a dataset with network synchronization error t1 (ns) and tested in a deployment scenario with network synchronization error t2 (ns), for a given t1,
· For a case evaluated by a given source, the positioning accuracy of cases with t2 smaller than t1 is better than the cases with t2 equal to t1. For example,
· For the case of (t1, t2)=(50ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 20~25ns) is 0.75~0.85 times that of (t1, t2)=(50ns, 50ns).
· For the case of (t1, t2)=(50ns, 0ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 0ns) is 0.76~0.80 times that of (t1, t2)=(50ns, 50ns).
· For a case evaluated by a given source, the positioning accuracy of cases with t2 greater than t1 is worse than the cases with t2 equal to t1. The larger the difference between t1 and t2, the more the degradation. For example,
· For the case of (t1, t2)=(0ns, 10ns), evaluation results submitted to RAN1#113 show the positioning error of (0ns, 10ns) is 1.16~2.81 times that of (0ns, 0ns).
· For the case of (t1, t2)=(0ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (0ns, 50ns) is 2.19~10.11 times that of (0ns, 0ns).
· For the case of (t1, t2)=(0ns, 50ns), evaluation results submitted to RAN1#113 show the positioning error of (0ns, 50ns) is 9.68~31.95 times that of (0ns, 0ns).
Note: here the positioning error is the horizonal positioning error (meters) at CDF=90%.

Observation 8.5.3.2-1
For AI/ML assisted positioning with timing information (e.g., ToA) as model output, based on evaluation results of timing error in the range of 0-50 ns, when the model is trained by a dataset with UE/gNB RX and TX timing error t1 (ns) and tested in a deployment scenario with UE/gNB RX and TX timing error t2 (ns), for a given t1,
· For a case evaluated by a given source, the positioning accuracy of cases with t2 smaller than t1 is better than the cases with t2 equal to t1. For example,
· For the case of (t1, t2)=(50ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 20~25ns) is 0.75~0.96 times that of (t1, t2)=(50ns, 50ns).
· For the case of (t1, t2)=(50ns, 0ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 0ns) is 0.76~0.95 times that of (t1, t2)=(50ns, 50ns).
· For a case evaluated by a given source, the positioning accuracy of cases with t2 greater than t1 is worse than the cases with t2 equal to t1. The larger the difference between t1 and t2, the more the degradation. For example,
· For the case of (t1, t2)=(0ns, 10ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(0ns, 10ns) is 1.34~2.30 times that of (t1, t2)=(0ns, 0ns).
· For the case of (t1, t2)=(0ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(0ns, 20~25ns) is 5.66~13.0 times that of (t1, t2)=(0ns, 0ns).
· For the case of (t1, t2)=(0ns, 50ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(0ns, 50ns) is 10.62~51.52 times that of (t1, t2)=(0ns, 0ns).
Note: here the positioning error is the horizonal positioning error (meters) at CDF=90%.
Observation 10.4-1
In evaluation of AI/ML assisted positioning with timing information (e.g., TOA) as model output, for L in the range of 0.25m to 5m, the timing (e.g., TOA) estimation error and positioning error increases approximately in proportion to L, where L (in meters) is the standard deviation of truncated Gaussian distribution of the ground truth label error.  

Proposals for Wednesday online session
AI/ML assisted positioning
Observation 9.1.1.1-1 (CIR vs PDP vs DP)
For AI/ML assisted positioning, the positioning accuracy at model inference is affected by the type of model input.  Evaluation results submitted to RAN1#113 show that if changing model input type while holding other parameters (e.g., Nt, N't, Nport, N'TRP) the same, 
· The positioning error of PDP as model input is 1.17 ~ 1.63 times the positioning error of CIR as model input.
· The positioning error of DP as model input is 1.33 ~ 2.01 times the positioning error of CIR as model input.

Observation 9.1.2.1-1 (time domain truncation of Nt)
For AI/ML assisted positioning, with Nt consecutive time domain samples used as model input, evaluation results submitted to RAN1#113 show that when CIR or PDP are used as model input, using different Nt while holding other parameters the same,  
· Reducing Nt from 256 to 128 does not appreciably degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/2 that of Nt=256.
· Positioning error of Nt=128 is 1.00 ~ 1.42 times the positioning error of Nt=256;
· Reducing Nt from 256 to 64~32 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/4 ~1/8 that of Nt=256, respectively. 
· Positioning error of Nt=64 is 1.09 ~ 3.02 times the positioning error of Nt=256;
· Positioning error of Nt=32 is 2.43 ~ 5.10 times the positioning error of Nt=256;

Observation 9.1.3.1-1 (size of sub-sampled taps N't)
For AI/ML assisted positioning, when N't time domain samples with the strongest power are selected as model input, evaluation results submitted to RAN1#113 show that for model input of CIR or PDP and Nt=256, using different N't while holding other parameters the same,
· Reducing N't from 256 to 64 does not appreciably degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/4  that of Nt=N't=256.
· Positioning error of N't=128 is 1.00 ~ 1.33 times the positioning error of Nt=N't=256;
· Positioning error of N't=64 is 0.98 ~ 1.23 times the positioning error of Nt=N't=256;
· Reducing N't from 256 to 32~16 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/8 ~ 1/16 that of Nt=N't=256. 
· Positioning error of N't=32 is 1.15 ~ 1.69 times the positioning error of Nt=N't=256;
· Positioning error of N't=16 is 1.04 ~ 2.67 times the positioning error of Nt=N't=256;
· Reducing N't from 256 to 9 degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/32 that of Nt=N't=256. 
· Positioning error of N't=9 is 1.66 ~ 4.40 times the positioning error of Nt=N't=256;

Observation 10.5-1
Evaluation shows that AI/ML assisted positioning with timing information (e.g., ToA) as model output is robust to small label error. The exact range of label error that can be tolerated depends on the positioning accuracy requirement, where tighter positioning accuracy requirement demands smaller label error.

Direct AI/ML positioning
Observation 7.5-1
Evaluation shows that direct AI/ML positioning is robust to small label error. The exact range of label error that can be tolerated depends on the positioning accuracy requirement, where tighter positioning accuracy requirement demands smaller label error.
Observation 7.5-2
For AI/ML based positioning, evaluation results show that semi-supervised learning is helpful for improving the positioning accuracy when the same amount of labelled data is used for supervised learning, and the number of labelled data is limited.
Observation 6.1.2.3-1 (time domain truncation of Nt)
For direct AI/ML positioning, with Nt consecutive time domain samples used as model input, evaluation results submitted to RAN1#113 show that when CIR or PDP are used as model input, using different Nt while holding other parameters the same,  
· Reducing Nt from 256 to 128 does not appreciably degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/2 that of Nt=256.
· Positioning error of Nt=128 is 0.81 ~ 1.19 times the positioning error of Nt=256;
· Reducing Nt from 256 to 64~32 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/4 ~1/8 that of Nt=256, respectively. 
· Positioning error of Nt=64 is 0.88 ~ 1.79 times the positioning error of Nt=256;
· Positioning error of Nt=32 is 1.05 ~ 4.29 times the positioning error of Nt=256;


Complexity, model input
Observation 2.5-1
For data collection of training dataset for AI/ML based positioning, for a given deployment scenario (e.g., InF-scenario, clutter parameter, drop) and with uniform UE distribution, the required sample density (e.g., #samples/m2) for achieving a given positioning accuracy target varies with AI/ML design choices including:
· different positioning approach (direct AI/ML, AI/ML-assisted), 
· different type of model input (e.g., CIR, PDP, DP), 
· the size of model input (e.g., Nt, N't, N'TRP),
· AI/ML complexity (model complexity and computational complexity).

Observation 3.1.3-2 
Evaluation results demonstrate that the performance of AI/ML positioning with the evaluation area as the convex hull of the horizontal BS deployment shows better performance than that with the whole hall area as evaluation area. This is due to: (a) convex hull has smaller UE distribution area; (b) for whole hall area, the UEs located outside the convex hull have diminished access to TRPs.
· For convex hull: UE distribution area = 100x40 m;
· For whole hall area: UE distribution area = 120x60 m



Observation 6.1.1.3-1 (CIR vs PDP vs DP)
For direct AI/ML positioning, the evaluation of positioning accuracy at model inference is affected by the type of model input and model complexity. For a given AI/ML model design, the model input can be selected based on tradeoffs such as AI/ML complexity (model complexity and computational complexity) and positioning accuracy requirement. Evaluation results submitted up to RAN1#113 show that if changing model input type while holding other parameters (e.g., Nt, N't, Nport, N'TRP) the same, 
· When comparing PDP and CIR as model input, 
· Five sources (MediaTek R1-2305659, vivo R1-2304475, ZTE R1-2302538, Ericsson R1-2304339, Apple R1-2306112) showed evaluation results where the positioning error of PDP as model input is 1.10 ~ 1.61 times the positioning error of CIR as model input.
· Four sources (MediaTek R1-2305659, Apple R1-2306112, Huawei R1-2305332, Nokia R1-2300608) showed evaluation results where the positioning error of PDP as model input is 0.61 ~ 0.96 times the positioning error of CIR as model input.
· When comparing DP and CIR as model input, 
· Three sources (vivo R1-2304475, Ericsson R1-2304339, Apple R1-2306112) showed evaluation results where the positioning error of DP as model input is 1.18 ~ 1.96 times the positioning error of CIR as model input.
· Two sources (Apple R1-2306112, Qualcomm R1-2305332) showed evaluation results where the positioning error of DP as model input is 0.79~0.92 times the positioning error of CIR as model input.
· Note: For Apple R1-2306112, the difference in relative performance is based on the complexity of the AI/ML model. 



Conclusion: Agreements achieved

Agreement
For the evaluation of AI/ML based positioning, the study of model input due to different number of TRPs include the following approaches. Proponent of each approach provide analysis for model performance, signaling overhead (including training data collection and model inference), model complexity and computational complexity.
· Approach 1: Model input size stays constant as NTRP=18. The number of TRPs (N’TRP) that provide measurements to model input varies. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs do not provide measurements to model input, i.e., measurement value is set to 0 such that the (NTRP  N’TRP) TRPs do not affect model output.
· Approach 1-A. The set of TRPs (N’TRP) that provide measurements is fixed.
· Approach 1-B. The set of TRPs (N’TRP) that provide measurements can change dynamically.
· Note: for Approach 1, one model is provided to cover the entire evaluation area.
· Approach 2: The TRP dimension of model input is equal to the number of TRPs (N’TRP) that provide measurements as model input. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs are ignored by the given model. For a given AI/ML model, the set of TRPs (N’TRP) that provide measurements is fixed. 
· Approach 2-A. The set of active TRPs (N’TRP) that provide measurements is fixed.
· For Approach 2-A: one model can be provided to cover the entire evaluation area, which is equivalent to deploying N’TRP TRPs in the evaluation area for positioning if ignoring the potential inference from the remaining (18  N’TRP) TRPs.
· Approach 2-B. The set of active TRPs (N’TRP) that provide measurements can change dynamically.
· For Approach 2-B, one model is developed to handle various patterns of active TRPs. 
· For Approach 2, if Nmodel (Nmodel >1) models are provided to cover the entire evaluation area, the total complexity (model complexity is the summation of the Nmodel models.
Note:  The agreement is updated from agreement made in RAN1#112bis.

Observation
For AI/ML based positioning, the positioning accuracy is affected by the training dataset size for a given UE distribution area (or equivalently, sample density in #samples/m2), when the UE is distributed uniformly in training data collection. 
· There exists a tradeoff between the training dataset size and the achievable positioning accuracy. The larger the training dataset size (i.e., higher sample density), the smaller the positioning error (in meters), until a saturation point is reached where additional training data does not bring further improvement to the positioning accuracy.
· Note: here a sample refers to the training data collected of one UE at one location. Sample density is equivalent to the density of UEs with data collected in the training dataset.

Observation
For AI/ML assisted positioning with timing information (e.g., ToA) as model output, evaluation of the following generalization aspects show that: 
· the positioning accuracy deteriorates when the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario. 
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· the positioning accuracy may or may not deteriorate when the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario.
· Network synchronization error 
· UE/gNB RX and TX timing error
· SNR mismatch 
· Channel estimation error

Observation
For AI/ML assisted positioning, evaluation results demonstrate that for the generalization aspects of:
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· Network synchronization error 
· UE/gNB RX and TX timing error
· SNR mismatch 
· Channel estimation error
if the positioning accuracy would deteriorate when the AI/ML model is trained with dataset of one deployment scenario and tested with dataset of a different deployment scenario, the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning/re-training.
· Better training dataset construction: The training dataset is composed of data from multiple deployment scenarios, which include data from the same deployment scenario as the test dataset. 
· Model fine-tuning/re-training: the model is re-trained/fine-tuned with a dataset from the same deployment scenario as the test dataset.
Note: ideal model training and switching may provide the upper bound of achievable performance when the AI/ML model needs to handle different deployment scenarios.

Observation
For AI/ML assisted positioning with timing information (e.g., ToA) as model output, based on evaluation results of network synchronization error in the range of 0-50 ns, when the model is trained by a dataset with network synchronization error t1 (ns) and tested in a deployment scenario with network synchronization error t2 (ns), for a given t1,
· For a case evaluated by a given source, the positioning accuracy of cases with t2 smaller than t1 is better than the cases with t2 equal to t1. For example,
· For the case of (t1, t2)=(50ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 20~25ns) is 0.75~0.85 times that of (t1, t2)=(50ns, 50ns).
· For the case of (t1, t2)=(50ns, 0ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 0ns) is 0.76~0.80 times that of (t1, t2)=(50ns, 50ns).
· For a case evaluated by a given source, the positioning accuracy of cases with t2 greater than t1 is worse than the cases with t2 equal to t1. The larger the difference between t1 and t2, the more the degradation. For example,
· For the case of (t1, t2)=(0ns, 10ns), evaluation results submitted to RAN1#113 show the positioning error of (0ns, 10ns) is 1.16~2.81 times that of (0ns, 0ns).
· For the case of (t1, t2)=(0ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (0ns, 50ns) is 2.19~10.11 times that of (0ns, 0ns).
· For the case of (t1, t2)=(0ns, 50ns), evaluation results submitted to RAN1#113 show the positioning error of (0ns, 50ns) is 9.68~31.95 times that of (0ns, 0ns).
Note: here the positioning error is the horizonal positioning error (meters) at CDF=90%.


Observation
For AI/ML assisted positioning with timing information (e.g., ToA) as model output, based on evaluation results of timing error in the range of 0-50 ns, when the model is trained by a dataset with UE/gNB RX and TX timing error t1 (ns) and tested in a deployment scenario with UE/gNB RX and TX timing error t2 (ns), for a given t1,
· For a case evaluated by a given source, the positioning accuracy of cases with t2 smaller than t1 is better than the cases with t2 equal to t1. For example,
· For the case of (t1, t2)=(50ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 20~25ns) is 0.75~0.96 times that of (t1, t2)=(50ns, 50ns).
· For the case of (t1, t2)=(50ns, 0ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 0ns) is 0.76~0.95 times that of (t1, t2)=(50ns, 50ns).
· For a case evaluated by a given source, the positioning accuracy of cases with t2 greater than t1 is worse than the cases with t2 equal to t1. The larger the difference between t1 and t2, the more the degradation. For example,
· For the case of (t1, t2)=(0ns, 10ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(0ns, 10ns) is 1.34~2.30 times that of (t1, t2)=(0ns, 0ns).
· For the case of (t1, t2)=(0ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(0ns, 20~25ns) is 5.66~13.0 times that of (t1, t2)=(0ns, 0ns).
· For the case of (t1, t2)=(0ns, 50ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(0ns, 50ns) is 10.62~51.52 times that of (t1, t2)=(0ns, 0ns).
Note: here the positioning error is the horizonal positioning error (meters) at CDF=90%.

Observation
In evaluation of AI/ML assisted positioning with timing information (e.g., TOA) as model output, for L in the range of 0.25m to 5m, the timing (e.g., TOA) estimation error and positioning error increases approximately in proportion to L, where L (in meters) is the standard deviation of truncated Gaussian distribution of the ground truth label error.  
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