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1. Introduction
Until RAN1 #112bis[1-5] meeting, the AI/ML framework was extensively discussed, and various key points were agreed upon from multiple perspectives, as depicted in the following tables. The specific details of the agreements not be presented here due to space constraints.
Table 1 Key agreements after several meeting
	Item
	Detail description

	General AI/ML framework
	data collection, monitoring, inference, training

	Deployment of AI/ML models
	One-side, two-side

	Description of AI/ML model
	Model ID, Functionality ID

	Signaling between gNB and UE for same understanding on AI/ML model behavior
	UE AI/ML-feature ability reporting
CSI-measurement enhancement for different use cases
General monitoring behavior to guarantee model working


Currently, the overall technical standard discussions are still quite scattered, such as in model transmission, model deployment, and signal design under the influence of these two factors, the main reason for the above problems is the impact of two factors as shown in following. Therefore, we need to quickly resolve a clear system architecture that can be deployed in the network in the near future. Based on this architecture, many RAN-side designs can be developed on a common basis. Otherwise, everyone is discussing their own architecture and thinking about the overall signal design under their own architecture
1) Defining the RAN network's computational capability clearly, we need to clarify whether the computational power of gNB and UE at this stage can support the full lifecycle management of AI/ML, otherwise all solutions would be possible for various scenarios. 
2) Utilizing the advantages of cloud-network convergence, which had been widely used in vertical industry and already validated by successful commercial applications, we need to consider how to integrate communication systems with cloud computing to solve the problem of supercomputing and optimize system configuration for AI/ML operation. 
In this contribution, we try to establish a unified technical standard framework that covers model transmission, model deployment, and signal design. In future, this framework should be designed based on the needs of the entire industry and the latest research and development trends, also considering the compatibility and interoperability of different systems and technologies.
2. General architecture for AI/ML in network
2.1 General consideration for system designing
[bookmark: OLE_LINK563][bookmark: OLE_LINK562]AI/ML architecture includes processes such as training, inference, monitoring, and data collection, as evidenced by existing standards. For high-precision, scenario-generalized AI/ML models training, such as RNN and LSTM, significant computing resources and time are required, up to tens to hundreds of GPUs and several days to weeks. In contrast, inference has lower hardware requirements and may only need one GPU or TPU for acceleration. Successful commercial AI/ML use cases adopt the following architecture for AI/ML full life cycle management, where the central cloud has the large-scale hardware and TB-level data for training, while the edge cloud meets the real-time processing requirements during application.
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Figure 1 General AI/ML structure for cloud-based applications
From a basic business logic standpoint, Edge cloud can be sold to enterprises through direct purchase or indirectly through applications with user payment, without adding extra construction costs to the operator, and can provide abundant profit space. However, adding sufficient computing power on the RAN side may not have a basic commercial realization path from the perspective of ordinary 2C applications. It will greatly increase the operator's investment cost. Terminal manufacturers will not pay for this, and also those users. From the perspective of 2B or 2G applications, 5G private network applications based on MEC have already been successfully commercialized, and MEC implementation of AI has basic commercialization paths. Furthermore, dispersing training computing power to RAN side base stations will bring serious energy consumption problems, computing power waste, and other related issues, which do not conform to the current trend of technology development of network and computing integration. Therefore, 
Observation 1: the assumption that the network has strong computing power for training presents significant challenges from both a business and technical perspective, and requires a reconsideration of the coupling relationship between the network and computing power.
The MEC technologies had been fully discussed in SA 23.501 and ETSI GS MEC 003, it’s a natural development in the evolution of mobile base stations and the convergence of IT and telecommunications networking, where the AF in 5G core had been taken as the key interface for network and edge cloud interaction, also the signaling between each other had been well defined, including MEAO/PCF rule/NEF etc., as shown in following figure. Multi-access Edge Computing will enable new vertical business segments and services for consumers and enterprise customers. Use cases include V2X/video analytics/location services/Internet-of-Things (IoT)/augmented reality/optimized local content distribution and data caching. Currently MEC focuses on its ‘Phase 3’ activities that consider a complex heterogeneous cloud ecosystem. This work embraces MEC security enhancements, expanded traditional cloud and NFV Life Cycle Management (LCM) approaches, and mobile or intermittently connected components and consumer-owned cloud resources. 
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Figure 2 Integrated MEC deployment in 5G network
From the progress of MEC standards mentioned above, it is evident that MEC has defined a complete process and method for interacting with the network and has the capability for full lifecycle management of applications, as well as management of multi-level heterogeneous cloud computing or computing power infrastructure. These capabilities can also be applied to AI/ML model management, distribution, and deployment, as well as the multi-level management process of computing power required by AI/ML. Only a small amount of modification is needed for full lifecycle management of AI/ML. From the RAN perspective, we only need to focus on ensuring the normal operation of AI/ML models after they have been deployed on UE or gNB, including necessary signalling interactions and process monitoring.
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Proposal 1: The MEC can be taken as the Starpoint for AI/MI model LCM, and RAN should focus on AI/ML model inference-relate processes designing, including configuration, active/deactivate/switching mechanism, monitoring and CSI enhancement etc.
2.2 System architecture for AI/ML framework
In the context of MEC-based AI/ML LCM solutions, the accompanying figure details the design that enables operators to train AI/ML models autonomously. Moreover, it facilitates the provision of AI/ML models from third parties under the operator's control. Through this approach, network-based AI/ML services can accommodate a broader range of partners, enabling the provisioning of services that align with market demands. The solution thus holds the potential to enhance service offerings and bolster market competitiveness.
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Figure 3 AI/ML system architecture with MEC
Based on the presented AL/ML system architecture, it can be observed that the architecture mainly consists of three parts, which including AI-MAO, agent of AI-MAO, and RAN-side AI. The functional descriptions of each part are as follows:
1) AI-MAO: Similar to MEAO used for MEC management, it realizes the full life-cycle management of AI/ML models, including model training, deployment, management, registration, storage and operational charging etc.
2) Agent for AI-MAO: The AI-MAO agent deployed on the UE or gNB side is responsible for implementing AI-MAO-related behaviours on the RAN side, including collecting data for model training, actual model deployment, and long-term monitoring of model runtime status (resource consumption, operational stability, and accuracy), etc.
3) RAN-side AI capability: After the AI model is deployed on the network entities through AI-MAO, it is responsible for the application inference of the model in network functions and real-time monitoring of the model's runtime status to ensure that the real-time performance of the AI model meets the requirements of the network system.
In order for the aforementioned architecture and its main components to function properly, AI-MAO and Agent of AI-MAO can follow the MEC's current design methodology for the full lifecycle of apps management. This requires detailed discussions on the core network side for further enhancement to support AI/ML in the network. Secondly, from an architectural perspective, it is necessary to address the consistency issue between AI-MAO and RAN-side in terms of their understanding of AI/ML models. Finally, it is necessary to address the consistency issue of the understanding of AI/ML models between base stations and UEs throughout the wireless communication system.
Observation 2: AI/ML model’s long-term LCM would be discussed on SA if enhancement needed.
Observation 3: How to address the consistency issue of the understanding of AI/ML models between AI-MAO and RAN, also UE and gNB in RAN should be solved firstly.
2.2.1 Information mapping between AI-MAO and RAN-AI 
When the UE retrieves AI-related models from AI-MAO, a RESTful API based on traditional IP can be used. The information exchanged between Agent of AI-MAO and AI-MAO includes request and response signals. The request signal includes but not limited to AI scenarios, AI functionalities, power consumption requirements, computing power requirements, precision requirements, model parameter size, and model deployment requirements. The response signal includes but not limited to Vendor ID, AI model parameter size, AI model precision, AI model input-output distribution, AI accuracy detection method, and computing resource operating parameter requirements. The implementation of this protocol is outside the scope of the current 3GPP discussions. After the UE get the AI/ML model and deployed in network unity, model ID would be used to make the mapping between AI-MAO and RAN-side AI, as shown in following picture.
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Figure 4 Information mapping principle between AI-MAO and RAN
The Model ID in RAN consists of four parts: scenario, feature, function, and local ID. Scenario, feature, and function come from AI-MAO and their indicating information is predefined to reduce system overhead and bit uncertainty. Regarding both UE and gNB network entities have already stored AI/ML models attribute information from AI-MAO, a local logical ID can be used to ensure consistent understanding of the required information for AI/ML used by gNB and UE over the wireless air interface, as shown in the following figure. The local ID can represent different resource configuration/different input or output/different implementation for one function. 
Proposal 2: The logical model ID, which consists of scenario, feature, function, and local ID, will be used for air interface signalling. Other auxiliary information will be obtained through a model-ID based lookup inside UE or gNB entity. 
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[bookmark: _Ref132835566]Figure 5 Example of the Model ID designing and usage
For gNB serves multiple UEs, which can be facilitated by the UE's transmission of its terminal identifier, such as the IMEI and IMSI, to the gNB during capability reporting. Additionally, AI-MAO provides the gNB with the AI/ML model information corresponding to the UE's IMEI. These steps equip both the UE and the base station with comprehensive global information of the AI/ML, encompassing globally unique or operator-specific IDs. Consequently, only the Logical Model ID is required to specify the AI/ML model, as depicted in the following figure,
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Figure 6 Example for multiple UEs, but models are UE-specific
Furthermore, if the AI/ML model on the base station side has adequate generalization capabilities to cater to the diverse demands of various UEs, and in the two-side mode, the UE has a degree of autonomy within the constraints of the base station model. In such cases, AI-MAO must interact with model information based on the gNB's unique ID, while ensuring that the air interface solution remains unchanged.
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Figure 7 Example for multiple UEs with adequate generalization on Model
Proposal 3: The network’s unique ID (including UE IEMI, and gNB’s unique ID(Cell ID)) together with AI/ML model’s global unique ID should be used in AI-MAO for management. 
2.2.2 AI/ML-related procedures overview in RAN 
From the perspective of enabling the deployment of AI/ML frameworks, we primarily focus on several deployment scenarios that have already been agreed upon in the standardization process, including One-side AI model and Two-side AI model, where the One-side AI model can be further categorized into UE-side AI model and gNB-side AI model, which will be described in detail below. Furthermore, different procedures are also considered, including monitoring and inference.
[bookmark: _Toc117689041][bookmark: _Hlk132924102]2.2.2.1 UE-side AI model (One-side) related procedure
Here, we consider four types of UE-side only AI models, each with distinct requirements from gNB and contributions to gNB, and thus requiring different types of signaling exchanges.
· Type A: Both inference and monitoring are dealt by UE-self, no additional requirement from gNB, and also non-contribution on gNB’s signaling designing.
· Type B: Both inference and monitoring are dealt by UE-self, additional requirement from gNB(e.g., CSI-RS enhancement for monitoring or inference), but non-contribution on gNB’s signaling designing.
· Type C: Both inference and monitoring are dealt by UE-self, additional requirement from gNB(e.g., CSI-RS enhancement for monitoring or inference), also contribution on gNB’s signaling designing(e.g., decreasing the CSI-RS density on time and/or frequency domain).
· Type D: Inference in UE-side but monitoring in gNB side, CSI reporting also should be enhanced. 
For Type A, no specification needed. From Type B to Type D, the system architecture and protocol design are shown in the following picture. The request signal from UE to gNB is used to transmit additional requirements to gNB, while the configuration signal from gNB to UE is used to confirm the AI/ML model-specific signal transmission opportunity and time occasion. Additionally, on the downlink configuration, the CSI reporting would be included which is associated with monitoring whether Type ID is deployed and active in the network. 
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Figure 8 Signalling to support UE-side AI model(One-side only)
Benefit from the capabilities of AI-MAO, UE and gNB can obtain sufficient information for AI-models through Model ID lookup, including reference signal requirements and the active time needed by UE, as depicted in Figure 1. As a result, only a minimal amount of signalling is required on the air interface. This reduces overhead and improves efficiency.
Observation 4: The use of logical model ID together with the AI-MAO architecture can significantly reduce the signalling overhead required for UE-side only AI/ML models work properly.
2.2.2.1 gNB-side AI model (One-side) related procedure
For the gNB-side AI/ML model, also two type of implementation are considered here, which is categorized by  the monitoring function’s deployment location, as shown in following,
· Type A: Both inference and monitoring are deployed in gNB.
· Type B: The inference deployed in gNB, while the monitoring located in UE-side.
For the type A and type B, the CSI measurement would be needed here, including the CSI-RS enhancement (AI-specific, have higher density both in time&frequency domain or others), CSI measurement and reporting enhancement to support AI-specific information feedback for inference and/or monitoring.
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Figure 9 Signalling to support gNB-side AI model
Observation 5: Only logical Model ID would be needed to distinguish the AI-specific CSI processing from normal CSI measurement, also different scenario/features/functions when gNB-side only AI/ML model used.
2.2.2.1 Two-side AI/ML model related procedure
If two-side AI.ML model used in network, the most distinguish is the AI/ML model should have the common understanding between UE and gNB. As shown in following figure, we can also benefit from the ability of AI-MAO, only the logical model ID would be needed, and other AI-model related assistant information can be obtained through model ID lookup. 
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Figure 10 Signalling to support two-side AI model
Observation 6: The use of logical model ID together with the AI-MAO architecture can significantly reduce the signalling overhead required for two-side AI/ML models work properly.

3. AI/ML framework designing under the given architecture
3.1 Data collection
3GPP have dedicated our efforts to the critical task of data collection within the field of AI. This encompassed the gathering of data for training, monitoring, and inference purposes. With keen attention paid to the AI-MAO implementation architecture, considerations are given under the AI-MAO implementation architecture,  as shown in following,
· Data collection for training: considering the training is outside of 3GPP scope under the AI-MAO, also both UE and gNB have the API interface (Restful etc.) which allows the network entity transmit collected data to AI-MAO for training. Thus, regarding the Radio Access Network (RAN), only the Channel State Information-Reference Signal (CSI-RS) transmission linked with the model ID would experience augmentation to enable highly accurate AI/ML model training, while omitting CSI reporting when contrasted with conventional CSI processing. Additionally, to enable uplink AI/ML models, enhancement of Sounding Reference Signal (SRS) transmission would be necessary. 
· Data collection for monitoring: Monitoring is critical to ensuring the proper functioning of AI/ML models. The monitoring KPIs would including input/output distributing probability, system-level/link-level performance loss, generalized cosine similarity etc., also some new CSI information would be needed to verify the model’s performance or one-line AI/ML model refining, such as ground-truth CSI (eg., channel matrix, eigen vector etc.). Regarding the monitoring is real-time behavior, no matter real-time KPI based or event-based, the CSI-RS transmission and the CSI report both needed to be enhanced. Furthermore, the SRS transmission also would be enhanced and new data transmission from NW to UE would be considered if the AI/ML model is used for uplink. 
· Data collection for inference: AI/ML model’s input/output is the key components for data collection for inference, dedicated reference signal and CSI reporting enhancement would be needed to facilitate the inference processing both for uplink and downlink transmission. 
3.1.1 AI-specific reference signal framework 
Summarized from the discussion on data collection for training/monitoring/inference, it can be observed that the transmission of reference signals requires further enhancement, including the time-frequency configuration of pilot signals and antenna ports. In addition to training, both monitoring and inference need to be reinforced in terms of feedback. At our document, the AI-specific measurement framework had been proposed to support AI/ML procedures, and as shown in following,
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[bookmark: _Ref131537848]Figure 11 AI-based CSI measurement framework for wireless communication
The new CSI measurement framework includes specific CSI measurement methods for AI models or AI functionalities which associated with dedicated logical AI model ID. Also, these methods involve CSI-RS configuration for AI measurements, as well as feedback of CSI measurement content for AI measurement purposes. These enhancements enable the support of AI-enabled CSI measurements, and by following these guidelines and incorporating the aforementioned enhancements, communication systems can achieve accurate and reliable CSI measurements for both conventional and AI-based applications, improving system performance and delivering high-quality communication services to users.
Proposal 4: AI-specific CSI measurement framework should be introduced, to support various CSI measurement scenarios, which would be used for different AI functions, or different AI procedure that associated with the logical model ID.
3.1.2 AI-specific data collection payload transmission 
In order to facilitate the periodic, semi-static, or aperiodic collection of AI data from the User Equipment (UE) side, various signaling methods can be employed at the Layer 1/2/3 level, including the UCI signaling, RRC signaling, and data plane signaling. While RRC signaling and data plane signaling offer a greater capacity for transmitting larger amounts of data, the UCI exhibits lower latency and greater accuracy, making it particularly suitable for use in wireless communication scenarios, particularly in conjunction with AI models. However, regarding UCI format only can affod up to 4608 bits, enhancement would be needed to carry more data transmission which is specified for AI/ML model.
Proposal 5: Data collection payload can be conveyed through UCI, RRC or data plane signaling, and UCI format would be enhanced to support real-time AI/ML-specific data transmission.
From the perspective of AI design in the network, the current use cases under discussion include CSI compression, prediction, beam management, and positioning in RAN1, as well as mobility, handover in RAN2, and RRM algorithms in RAN3. Before AI is applied to RAN, 3GPP has already designed many data collection or analysis systems, such as NWDAF and MDT. Anticipated trends suggest that there will be an increasing demand for data collection in the future, with more complex data types. However, using UCI or RRC to carry data poses several issues, such as the need to split data into different types and carefully consider where to carry them, resulting in complex protocol design and system implementation. Additionally, data currently does not support cross-layer sharing, making it difficult to implement cross-layer optimization on the base station side. Therefore, we suggest using the user data plane to carry data collection payloads, which can adapt to future designs and have flexible scalability. The data plane design is as follows，
[image: ]
Proposal 6: Data plane would be introduced in the network system, which dedicated for data collection, including AI-based data collection, also other data collections would be involved in future, e.g., NWADF, MDT, BOSS etc.
3.2 Model monitoring
In the previous sections, we discussed the system implementation architecture of the AI/ML model framework, as well as how to collect monitoring data and its implementation methods. Based on the AI-MAO implementation architecture mentioned in this article and the monitoring data obtained, together with the discussions and agreements at several 3GPP meetings, the output of the monitoring function module is mainly used for model inference controlling and model training controlling. The model inference controlling includes processes such as model activation, model deactivation, model switching, and model fallback, while the model training controlling includes processes such as model optimization and model updating, as shown in the figure below，
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Figure 12 Model monitoring structure under AI-MAO
The general procedure for model monitoring around model inference controlling, which had been discussed in chapter 2.2, in following chapter, the event-based model monitoring are fully discussed here. Comparing with real-time CSI feedback monitoring, event-based mechanism can decrease the overhead significantly but also keep almost the same performance for amount scenarios. 
3.2.1  Model monitoring events definition 
To enable event-based AI/ML models monitoring, and refer to the existed event types definition by 3GPP standards, at least the event conditions and the methods for measuring these conditions should be included for one event. Based on discussions in recent meetings, various monitoring metrics for AI inference models have been proposed, including those based on model inference accuracy, system performance (loss and gain), probability distribution of model input or output data, and applicable conditions, among others. The advantages and disadvantages of different methods are shown in the figure below.
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Figure 13 Various monitoring method demonstration
[bookmark: _Hlk132918457]Based on the discussions in section 3.2.1 regarding the usage of model inference monitoring, it is necessary to select appropriate monitoring events based on the operational status of the network or UE, four operational states would be included: initial use of AI/ML models, switching between multiple AI/ML models, fallback of AI/ML models to the baseline, and deactivate. The figure below illustrates this concept.
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Figure 14 AI/ML inference model LCM
1) [bookmark: _Hlk132918297]Initial use of AI/ML models: the system will start the monitoring firstly, and determining what AI/ML models would be active. The new AI/ML model should exhibit significant performance or accuracy improvements when compared to non-AI/ML models in specific scenarios.
2) Switching between multiple AI/ML models: If the channel condition between UE and gNB or scenarios change, the system may experience significant performance loss, and new models should be used if multiple candidate AI/ML models are available. Ideally, the determination metric should be the system performance or accuracy loss, but this may result in significant overhead on the air interface. To minimize the overhead, the input distribution metric can be used in this case.
3) Fallback of AI/ML models to the baseline: If the system performance degrades significantly, the AI/ML models in use need to fallback to the baseline, which could either be non-AI-based or some AI/ML models with stable performance in previous scenarios.
4) Deactivate: The decision to terminate the use of AI/ML models and switch back to non-AI methods is dependent on multiple factors, including performance loss, power consumption, and other relevant considerations.
Based on the discussions in 1) to 4), various model monitoring event types should be defined to meet the wireless network's requirements during different operational states. Including event A and event B which dedicated for AI/ML operation, the detail description as shown in following,
1) Event A (Serving become better than threshold): Different model monitoring event conditions are used for the step of initial use of AI/ML models and switching between multiple AI/ML models. The performance gain is used for the initial stage; while the input distribution for switching.
2) Event B (Serving become worse than threshold): This is used during the stage of fallback of AI/ML models to the baseline and deactivation, with performance loss used as the criterion.
Proposal 7: Monitoring event types include serving become better and serving become worse would be defined on the network, also the associated signaling would be future researched.
3.2.2 Behavior determination with the defined events 
The monitoring is target for new AI/ML models or non-AI/ML models used in wireless network, how to designing the switching mechanism among multiple candidate AI/ML models become crucial, which need for further studying in future. The following given an example how the event definition help the switching under different AI/ML architecture, one-side and two-side are introduced here, 
1) For one-side AI/ML architecture
As discussed in chapter 2.2.2.1 and chapter 2.2.2.2, four deployment scenarios are considered here which categorized by the location of inference and monitoring entity, as shown in following. 
[image: ] 
Figure 15 Procedure for monitoring on one-side AI/ML model
The monitoring events definition and sharing between UE and gNB are not needed when both inference and monitoring entities are located in one side. But for the inference’s location differ from monitoring, monitoring events definition to keep the common understanding, also synchronizing the monitoring results between UE and gNB is needed. Where the monitoring results can be the finally decision of the AI/ML models, such as new AI/ML model would be used or deactivate. 
2) For two-side AI/ML architecture
The inference model is split into two parts, one for gNB and another for UE. Here, four deployment scenarios are considered, which is only categorized by the location of monitoring, as shown in following,
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Figure 16 Procedure for monitoring on two-side AI/ML model
Illustrated by the above figure, the monitoring events definition and sharing between UE and gNB are not needed only when the monitoring is located in gNB side. As analysed in previous chapters, AI/ML models require specific reference signal transmission and/or CSI reporting, which vary depending on the model. However, switching models based on defined events will result in significant overhead on the OTA, as it requires more reference signals to be transmitted from the gNB or UE, and specific CSI reporting requires additional uplink time/frequency resources, therefore we have the following proposals,
Proposal 8: The CSI framework should be enhanced to support monitoring event-based mechanism.
Proposal 9: To minimize the overhead of switching between AI/ML models, it is important to ensure that the models can be switched which sharing the same reference signal configuration.
3.3 Other AI/ML designing considerations
3.3.1 Model generalization
The generalization of an ML model is a problem that is needed to be discussed. It relates to various actions, such as model deployment, and model switching. Besides, the state of a generalized model is needed to be aligned between a UE and a gNB for them to have a consensus of the generalized model. For model deployment, a generalized model has to decide its working scenario/setting. 
Another aspect is model switching. How to choose a model between a set of specific models/non-generalized models and a few generalized models is a problem that is needed to be studied. The specific model is usually with low complexity. It works well only in a specific setting. Whereas a unified model or a generalized model is more complicated. It can work in multiple settings with a balanced performance. Thus, the following factors are involved for model switching. 
· Performance requirement. If strict performance is required, the specific model is recommended, since specific model is usually with better performance in a specific setting.
· Model complexity. A unified model/generalized model is usually more complex than a specific model. That means more processing time latency and higher power consumption for a unified model/generalized model. If there are strict performance requirements on processing latency and power consumptions, the specific model is preferred.
· UE capability. As mentioned above, a unified model is usually more complicated, a UE should be capable of supporting it.
· The dynamics of wireless environments. If the wireless environment is much complicated and dynamic, the deployment of a specific model will trigger frequency model switching and model monitoring. That would waste lots of resources. In this case, a unified model/generalized model is preferred.
The model monitoring will determine whether an ML model works properly in a setting. Consider a generalized model works in both setting A and setting B. If in setting A, a generalized model is reported malfunction by model monitoring, it has to be replaced by another AI/ML model or fall back to non-AI method. Thus, if this outcome is produced by a gNB, it has to align this result to a UE. Such that, in setting A, this UE will adjust its behavior for another AI/ML model or works in non-AI method. In setting B, the UE still follows the configuration for the generalized model. When there are multiple applicable settings for a generalized model, the merits of alignment will become notable, especially, when a UE works adaptively across these settings.
Proposal 10: The generalization of an ML model is needed to be discussed, according to model deployment, model switching, and alignment of applicable settings.
3.3.2 Model Complexity
The AI/ML model complexity can be described by various factors, such as the FLOPs, the number of parameters of the AI/ML model, the AI/ML model size, the memory size etc. They are related to either AI/ML attributes, or the UE hardware, even both. An AI/ML model can be very complex or less complex, since the AI/ML models are with diverse structure and parameter size. To describe an AI/ML model complexity, several factors can be considered, such as FLOPs and model size. A rule is need to roughly classify the model complexities, so that UE or the gNB does not have to deal the low level parameters, such as the bus bandwidth. Deciding how the model with different complexities is supported by either a UE or a gNB becomes simple. The signallings between the gNB and UE is thereby simplified.
Proposal 11: To reduce the signaling overhead between the UE and the gNB, a rule is needed to roughly classify the model complexity.
Besides, the complexity of an AI/ML model is not fixed and unchanged. The AI/ML model can be post-processed after model training, or before model deployment. That would decide various aspects of the model, such as the model size, the number of parameters, model performance, and finally lead to complexity change. Thus the model complexity is related to post-processing. In a way, the post-processing can reshape the ML model. The complexity of the AI/ML model can be controlled within the supporting range of the UE capability by post-processing. 
One problem about the post-processing of an AI/ML model is that an oversimplified model may be obtained from the post-processing, such that the AI/ML model performance is excessively degraded. The rise of this problem is due to that the post-processing is tackling the balance between the model complexity and ML model performance. If one end is emphasized too much without considering the other, problem occurs. Some constraints have to be added on the post-processing. As an example, some AI/ML models is not allowed to be post-processed after training.
Proposal 11: Some constraints shall be added on the post-processing, in order to avoid obtaining an oversimplified low-performance model from post-processing.
4. Conclusions
In this contribution the following proposals and observation been proposed:
Observation 1: the assumption that the network has strong computing power for training presents significant challenges from both a business and technical perspective, and requires a reconsideration of the coupling relationship between the network and computing power.
Proposal 1: The MEC can be taken as the Starpoint for AI/MI model LCM, and RAN should focus on AI/ML model inference-relate processes designing, including configuration, active/deactivate/switching mechanism, monitoring and CSI enhancement etc.
Observation 2: AI/ML model’s long-term LCM would be discussed on SA if enhancement needed.
Observation 3: How to address the consistency issue of the understanding of AI/ML models between AI-MAO and RAN, also UE and gNB in RAN should be solved firstly.
Proposal 2: The logical model ID, which consists of scenario, feature, function, and local ID, will be used for air interface signalling. Other auxiliary information will be obtained through a model-ID based lookup inside UE or gNB entity. 
Proposal 3: The network’s unique ID (including UE IEMI, and gNB’s unique ID(Cell ID)) together with AI/ML model’s global unique ID should be used in AI-MAO for management. 
Observation 4: The use of logical model ID together with the AI-MAO architecture can significantly reduce the signalling overhead required for UE-side only AI/ML models work properly.
Observation 5: Only logical Model ID would be needed to distinguish the AI-specific CSI processing from normal CSI measurement, also different scenario/features/functions when gNB-side only AI/ML model used.
Observation 6: The use of logical model ID together with the AI-MAO architecture can significantly reduce the signalling overhead required for two-side AI/ML models work properly.
Proposal 4: AI-specific CSI measurement framework should be introduced, to support various CSI measurement scenarios, which would be used for different AI functions, or different AI procedure that associated with the logical model ID.
Proposal 5: Data collection payload can be conveyed through UCI, RRC or data plane signaling, and UCI format would be enhanced to support real-time AI/ML-specific data transmission.
Proposal 6: Data plane would be introduced in the network system, which dedicated for data collection, including AI-based data collection, also other data collections would be involved in future, e.g., NWADF, MDT, BOSS etc.
Proposal 7: Monitoring event types include serving become better and serving become worse would be defined on the network, also the associated signaling would be future researched.
Proposal 8: The CSI framework should be enhanced to support monitoring event-based mechanism.
Proposal 9: To minimize the overhead of switching between AI/ML models, it is important to ensure that the models can be switched which sharing the same reference signal configuration.
Proposal 10: The generalization of an ML model is needed to be discussed, according to model deployment, model switching, and alignment of applicable settings.
Proposal 11: To reduce the signaling overhead between the UE and the gNB, a rule is needed to roughly classify the model complexity.
Proposal 12: Some constraints shall be added on the post-processing, in order to avoid obtaining an oversimplified low-performance model from post-processing.
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