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Introduction

In RAN#94-e, Rel-18 new study item on “Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface” is endorsed. One of the objectives of the study item [1] is the following:

	*** text omitted***
Use cases to focus on: 
· Initial set of use cases includes:
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
*** text omitted***
For the use cases under consideration:
1) Assess potential specification impact, specifically for the agreed use cases in the final representative set and for a common framework:
· PHY layer aspects, e.g., (RAN1)
· Consider aspects related to, e.g., the potential specification of the AI Model lifecycle management, and dataset construction for training, validation and test for the selected use cases
· Use case and collaboration level specific specification impact, such as new signalling, means for training and validation data assistance, assistance information, measurement, and feedback



Moreover, in RAN1#110-bis-e, the following agreements and conclusions were made regarding the selection of sub-use cases and the potential specification impact of the CSI feedback enhancement use case.

	Conclusion 
Joint CSI prediction and CSI compression is NOT selected as one representative sub-use case for CSI feedback enhancement use case.

Conclusion
CSI accuracy enhancement based on traditional codebook design is NOT selected as one representative sub-use case for CSI feedback enhancement use case.

Conclusion
Temporal-spatial-frequency domain CSI compression using two-sided model is NOT selected as one representative sub-use case for CSI enhancement use case. 

• 	Up to each company to report whether past CSI is used as model input for spatial-frequency domain CSI compression

Agreement

In CSI compression using two-sided model use case, study potential specification impact for performance monitoring including: 
· NW-side performance monitoring:  NW monitors the performance and make decisions of model activation/ deactivation/updating/switching    
· UE-side performance monitoring: UE monitors the performance and reports to Network, NW makes decisions of model activation/ deactivation/updating/switching    

Agreement
In CSI compression using two-sided model use case, further study potential specification impact related to assistance signaling and procedure for model performance monitoring. 

Agreement
In CSI compression using two-sided model use case, further study potential specification impact related to potential co-existence and fallback mechanisms between AI/ML-based CSI feedback mode and legacy non-AI/ML-based CSI feedback mode.

Agreement
In CSI compression using two-sided model use case, further study at least the following options for performance monitoring metrics/methods:
· Intermediate KPIs as monitoring metrics (e.g., SGCS)
· Eventual KPIs (e.g., Throughput, hypothetical BLER, BLER, NACK/ACK).
· Legacy CSI based monitoring: schemes using additional legacy CSI reporting
· Other monitoring solutions, at least including the following option:
· Input or Output data based monitoring: such as data drift between training dataset and observed dataset and out-of-distribution detection

Agreement
In CSI compression using two-sided model use case, further study at least use cases of the following potential specification impact on quantization method alignment between CSI generation part at UE and CSI reconstruction part at gNB: 
· Alignment of the quantization/dequantization method and the feedback message size between Network and UE


 
In this contribution, we will provide our views on the potential specification impact of the CSI feedback enhancement use case and finalization of its sub-use cases.


CSI Prediction/Extrapolation

1 
2 
2.1 
2.2 
2.1 Motivation

A massive MIMO system relies on high-resolution CSI feedback from UEs to the gNB to facilitate multi-user MIMO (MU-MIMO) transmission. This can yield significant gains in terms of system throughput, where multiple users can be simultaneously supported.

Massive MIMO systems are affected by channel aging, where the channel varies between the time that 1) a UE measures/computes CSI feedback and the time that 2) a gNB uses that CSI feedback to transmit to the UE.  For example, channel aging can create a significant mismatch between a DL precoder that a UE recommends for transmission at time t and the optimal DL precoder at time .  Channel aging can be especially problematic in high-mobility scenarios, leading to significant degradation in MU-MIMO performance (e.g. user-perceived throughput).

Recent research results from both academia and industry indicate that AI-based CSI prediction (where “prediction” refers to the time domain) can significantly reduce prediction error beyond that achieved by non-predictive CSI reporting supported in Rel. 15-17.  Many of these results utilize deep learning techniques to learn the temporal channel correlations (and, in some instances, spatial-frequency channel correlations).

As shown below, RAN1#111 has selected time-domain CSI prediction as one of the representative sub-use case to be studied in Rel-18 SI for AI/ML. Agreement
Time domain CSI prediction using UE sided model is selected as a representative sub-use case for CSI enhancement.   
Note: Continue evaluation discussion in 9.2.2.1.
Note: RAN1 Defer potential specification impact discussion at 9.2.2.2 until the RAN1#112b-e, and RAN1 will revisit at RAN1#112b-e whether to defer further till the end of R18 AI/ML SI.
Note: LCM related potential specification impact follow the high level principle of other one-sided model sub-cases.  



2.2 Description
As it is indicated in the above agreement UE sided CSI prediction is selected as a representative sub use case for CSI enhancement. Fig. 1 shows one approach for the prediction aspect of this sub-use case which relies on a three-dimensional convolutional neural network (3D-CNN) and entails the following steps:
· The UE  stores its channel observation H(tk) at each time instant tk in a buffer, where this buffer can hold three channel observations.
· At time instant t3, the UE passes all of the channel observations in its buffer (i.e. H(t3), H(t2), and H(t1)) to a 3D-CNN, which predicts the channel at the next time instant H(t4) as 4).
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Figure 1: AI-based CSI prediction

2.3 Spec impact
In RAN1#109-e, under 9.2.1, the following agreement was made:

	Agreement (RAN1#109-e  AI 9.2.1)   
Take the following network-UE collaboration levels as one aspect for defining collaboration levels
1. Level x: No collaboration
2. Level y: Signaling-based collaboration without model transfer
3. Level z: Signaling-based collaboration with model transfer
Note: Other aspect(s), for defining collaboration levels is not precluded and will be discussed in later meetings, e.g., with/without model updating, to support training/inference, for defining collaboration levels will be discussed in later meetings
FFS: Clarification is needed for Level x-y boundary



Moreover, RAN1#111, under agenda 9.2.2.1, made the following working assumption: Working Assumption (RAN1#111 under 9.2.21)
For the AI/ML based CSI prediction sub use case, the nearest historical CSI w/o prediction as well as non-AI/ML/collaboration level x AI/ML based CSI prediction approach are both taken as baselines for the benchmark of performance comparison, and the specific non-AI/ML/collaboration level x AI/ML based CSI prediction is reported by companies.
· Note: the specific non-AI/ML based CSI prediction is compatible with R18 MIMO; collaboration level x AI/ML based CSI prediction could be implementation based AI/ML compatible with R18 MIMO as an example
· It does not imply any restriction on future specification for CSI prediction
· FFS how to model the simulation cases for collaboration level x CSI prediction and LCM for collaboration level y/z CSI predictio


As one of the baseline for this sub-use case is level x AI/ML based CSI prediction, naturally, this sub-use case falls under either Level y or Level z network-UE collaboration. However, the feasibility of collaboration Level Z is under investigation. Thus, we propose to study this sub use case under collaboration Level y. 
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Figure 3: UE-side CSI prediction with AI/ML-based CSI compression

A scenario where the UE performs CSI prediction/extrapolation (as shown in Fig. 3) is expected to map to collaboration level y (as an alternative to the system model in Fig. 3, the predicted CSI can be reported via Rel-18 Type II CSI).  For example, when UL-to-DL channel reciprocity cannot be assumed (e.g. FDD systems), DL CSI prediction/extrapolation at the UE can yield improved performance, as the UE can perform training and inference while relying on limited information exchanges with the gNB:
· The gNB may enable or disable channel prediction/extrapolation at the UE.
· The gNB may configure the UE to apply a particular channel prediction/extrapolation method.
· The gNB may configure the UE to perform channel prediction/extrapolation at given time/frequency offset (s), which may also be indicated as a time window and/or frequency range for prediction/extrapolation.
· The gNB may configure the UE to report its channel prediction/extrapolation.
· The gNB may provide information to the UE related to CSI prediction/extrapolation model monitoring including a monitoring metric/method, event triggering for reporting and/or transmission of any assistance information to the network, etc.
· The gNB may configure CSI-RS at future instances and/or frequency ranges that had been configured for prediction/extrapolation, enabling the UE to compare its measured ground-truth CSI at those future instances and/or frequency ranges with its predictions.

In particular, this scenario only requires AI/ML model training/storage/inference at the UE; AI/ML model exchanges with the gNB is not required.

Proposal 1-1: Study the specification impacts of UE-side time-domain CSI prediction under network-UE collaboration level y. 
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Fig. 4 CSI measurement and reporting based on Rel-18 DD CSI enhancement for medium/high mobility 

One issue that can be discussed under this sub use case is how the UE measures CSI and reports the predicted CSI. There are two approaches for this. In one hand, as shown by Fig. 3 the predicted CSI can be compressed by a two-sided model and reported. Similarly, on the other hand, the UE may apply the Rel-18 Type II CSI enhancement based CSI measurement and reporting. In particular, the UE employs Doppler domain compression over the multiple W2 matrices. Obviously, the second option is a good starting point and can be considered as a baseline. 

Proposal 1-2: For the AI/ML based CSI prediction sub-use case, study the necessity and specification impact of
· CSI measurement and reporting framework.
· LCM assistance from gNB including,  monitoring, dataset collection, model/functionality activation, model/functionality deactivation, model/functionality switching, etc. 
Note: The CSI measurement and reporting framework in Rel-18 Type II CSI enhancement for medium/high velocity is considered as a baseline. 

One specific example here is that the network can assist/control the CSI measurement and reporting configuration by directly or indirectly identifying the current scenario of the UE. As we have detailed it in our contribution for [4] the performance of UE-side prediction may not work well over a large range of UE velocities. Thus, it may be require for the UE to support multiple models or AI/ML-based CSI prediction functionalities. Particularly, the specification may define AI/ML based CSI prediction for a certain range of UE velocity as one AI/ML functionalities. 

If UE supports CSI prediction for multiple specified functionalities (ranges of UE velocity), it can indicate such capability in its capability report. Then, gNB can perform functionality selection based on direct or indirect measurement inputs, e.g., gNB may utilize (time domain correlation property)  TDCP report to select one of the functionalities and configure the appropriate CSI measurement and reporting configurations. 
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Fig. 5 Different aspect of  CSI prediction with respect to UE mobility. 






CSI Compression

3.1 Spec impact

In RAN1#109-e, the following agreement was made:
Agreement
Spatial-frequency domain CSI compression using two-sided AI model is selected as one representative sub use case.
· Note: Study of other sub use cases is not precluded.
· Note: All pre-processing/post-processing, quantization/de-quantization are within the scope of the sub use case.

Fig. 5 shows one approach for this sub-use case which relies on an autoencoder (AE) and entails the following steps:
· The UE pre-processes its channel estimate  (e.g. by performing an SVD for each sub-band) to obtain a precoder , which is passed to the encoder.
· The encoder compresses the precoder  into a feature vector .
· The feature vector is passed from the UE to the gNB (here, it is assumed that the feedback channel is noiseless), which passes it to the decoder.
· The decoder decompresses the feature vector into an estimate of the precoder.
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Figure 6: Autoencoder

In this sub-use case, the input/output requirements for an autoencoder should be studied. Candidates for the input type include:
· a set of eigenvectors (or singular vectors)  pre-processed by the UE
· a raw channel .
Similarly, candidates for the output type include:
· an estimate of a set of eigenvectors  reconstructed by the decoder
· an estimate of the raw channel .

If  is the autoencoder input, then the UE also needs to send the RI and CQI to the gNB, since encoding  is equivalent to encoding the PMI. In contrast, if  is the autoencoder input, then the gNB can process the full CSI. These approaches have their respective advantages and disadvantages. For example, if  is the autoencoder input:
· the gNB can identify the eigenvalue corresponding to each eigenvector using an eigenvalue decomposition of the raw channel – enabling it to perform adaptive power allocation (which generally outperforms equal power allocation).
· if the UE does not also report the CQI, though, then the gNB cannot exploit the UE’s measurements of interference.


Table 1: Advantages and disadvantages of candidates for autoencoder input type
	Candidate input type
	Advantages
	Disadvantages

	Precoding vectors in spatial frequency domain
	- Simplifies compression problem. Compressing a single vector as compared to two-dimensional input.
- Better rate adaptation as rate adaptation framework is already developed, e.g., RI, CQI, etc. 
	- Overhead and additional complexity of reporting  RI, CQI.
-  May not achieve full potential of MU-MIMO

	Raw channel in spatial frequency domain
	-   the gNB can exploit full channel information (e.g., eigenvalues and eigenvectors) to obtain improved MIMO performance (e.g. adaptive power allocation).
- facilitates gNB-side CSI prediction 
-  facilitates better MU-MIMO interference cancelation
	- larger compression domain as compared to compressing precoding vectors, i.e., higher complexity and feedback overhead. 
- Needs additional consideration for rate  adaptation, e.g., how to compute CQI, if reported, etc.  

	Precoding vectors in angular-delay domain, e.g., (W2 matrices)
	· further simplifies the compression problem (smaller models)
· performance is less sensitive to deployment scenario.
· better rate adaptation as rate adaptation framework is already developed, e.g., RI, CQI, etc.
	· marginal performance loss as the compression is in a preselected angular-delay subspace.
- overhead and additional complexity of reporting  RI, CQI. 
-    may not achieve full potential of MU-MIMO

	Raw channel in angular-delay domain
	· further simplifies the compression problem (smaller models)
· performance is less sensitive to deployment scenario.
 -  the gNB can exploit full channel information (e.g., eigenvalues and eigenvectors) to obtain improved MIMO performance (e.g. adaptive power allocation).
- facilitates gNB-side CSI prediction 
	· Marginal performance loss as the compression is in a preselected angular-delay subspace.
· larger compression domain as compared to compressing, i.e., percoding vectors, higher complexity and feedback overhead. 
· Needs additional consideration for rate  adaptation, e.g., how to compute CQI, if reported, etc.  
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                         Fig. 7, Precoding vector compression in angular-delay domain


The data format of the required inputs/outputs, including the input to the encoder and the output of the encoder (i.e. the feedback that is sent by the UE to the gNB) should be known at the UE and the gNB.  For example:
· the input to the encoder could consist of the channel matrices of a single resource element (RE)
· the input to the encoder could consist of the channel matrices of multiple REs
· if the gNB trains the encoder and the decoder, and then shares the encoder with the UE, the gNB could signal the required format of the encoder input to the UE
· if the UE trains the encoder and the decoder, and then shares the decoder with the gNB, the UE could signal the required format of the decoder output to the gNB
· a new UCI type could be defined for the output of the encoder, which consists of quantized codewords
· the required format of the encoder/decoder input/output could be included in the description of a model when it is registered.

As we have discussed in the above, the different nominal input and output types present various tradeoffs. RAN1 should study the potential advantages and specification impact of these input/output types without prioritizing one over the other. 

One good starting point is to study how UE reports CSI in angle-delay domain. A UE may extract the relevant SD and FD basis first. Then, the AIML compression will be in W2 domain. How to report the selected SD and FD basis vectors is one discussion point. RAN1 may also discuss whether to introduce additional Rel-16 and REl-17 parameter values for SD and FD basis vectors. 

Proposal 2-1: In AI/ML based CSI compression using two-sided model sub-use case, further study potential specification impact of Option 1b: The precoding matrix in angular-delay domain is an eType II-like PMI. (i.e., precoding vectors in angular-delay domain)
· Whether SD and FD basis vectors are reported separately from AI generated CSI (W2-domain compression)
· Whether to introduce new eType II CB parameter values for SD and FD basis vectors reporting, e.g., L, pv, alpha, betta

The following agreement was made in RAN1#110bis-e:Agreement
In CSI compression using two-sided model use case, evaluate and study quantization of CSI feedback, including at least the following aspects: 
· Quantization non-aware training 
· Quantization-aware training
· Quantization methods including uniform vs non-uniform quantization, scalar versus vector quantization, and associated parameters, e.g., quantization resolution, etc.
· How to use the quantization methods


Depending on the outcome of the evaluation as per the above agreement, a new UCI format may have to be introduced. 

Proposal 2-2: For AI/ML based CSI compression sub-use case, study the specification impact of UCI format for quantized output of CSI generation part.

Moreover, the legacy CSI reporting framework supports different payload size (resolution) configurations. Additionally, legacy CSI report also supports dynamic adjustment of payload size via part 2 CSI dropping. It is important to retain such features in AI/ML based CSI report, thus we propose the followings: 

Proposal 2-3: For AI/ML based CSI compression sub-use case, study flexible configuration of quantization method and quantization resolution that enables the network to
                  1) Adapt to different AI/ML models and channel environments/scenarios
                  2) Control the feedback payload size. 

Proposal 2-4: For AI/ML based CSI compression sub-use case, study the specification impact of adaptable CSI feedback payload size that enables the UE to adapt to available size of uplink resources.
FFS: whether priority and CSI dropping rules have to be introduced. 

Another important feature AI/ML based CSI feedback has to retain from legacy CSI reporting mechanism is codebook subset restriction (CBSR). Recently, some interference complaints are reported (https://spectrum.ieee.org/faa-5g) between 5G systems and the aviation frequencies. With the availability of CBSR functionality for AI/ML based CSI reporting, the gNB may configure a UE with a CSI report configuration to avoid such interferences. A good starting point is the legacy approach wherein gNB configures the UE with information on restricted SD basis vectors. Then, how the UE applies this restriction could be different for inputs in case1) spatial/frequency domain and case2) angle/delay domain. For case2) the application CBSR is simple as the UE can set coefficients associated with restricted SD basis vectors to zero. For Case 1) however UE has to perform some pre-processing on input CSI so that Output-CSI-UE avoids the restricted SD basis vectors. One such method is projecting the input precoding vectors, channel matrix in to the null space of the subspace spanned by the submatrix constructed from the restricted SD basis vectors. Another approach is to transform the spatial-frequency domain in to angle-domain and transform it back to spatial-domain after removal of the restricted vectors. 

Proposal 2-5: For AI/ML based CSI compression sub-use case, study methods to configure and apply codebook subset restriction (CBSR) including:
· Whether the legacy SD basis vectors based  restriction applies 
· How to apply CBSR for when Output-CSI-UE is  in 1) spatial-frequency domain 2) angle-delay domain
· Whether soft amplitude restriction is possible

Two-sided model development

The following agreement was made in RAN1#110:
Agreement
In CSI compression using two-sided model use case, the following AI/ML model training collaborations will be further studied:
· Type 1: Joint training of the two-sided model at a single side/entity, e.g., UE-sided or Network-sided.
· Type 2: Joint training of the two-sided model at network side and UE side, repectively.
· Type 3: Separate training at network side and UE side, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained by UE side and network side, respectively.
· Note: Joint training means the generation model and reconstruction model should be trained in the same loop for forward propagation and backward propagation. Joint training could be done both at single node or across multiple nodes (e.g., through gradient exchange between nodes).
· Note: Separate training includes sequential training starting with UE side training, or sequential training starting with NW side training [, or parallel training] at UE and NW
· Other collaboration types are not excluded.

In our view, the discussion for two-sided model training/development falls under the general aspects of the AI/ML framework as the framework discussion includes characterization of defining stages of AI/ML algorithm and associated complexity, UE-gNB collaboration, life cycle management, dataset(s), and notation/terminology.

In general, two-sided models can be developed either by a single vendor (Type 1) or by two or more vendors through collaboration (Types 2 and 3).  In all three types, two-sided models can be either developed in an offline setup or online setup; in an online setup, collection of training inputs (data, gradient values, etc.) occurs over the air-interface. However, online model development and updates require extensive sharing of training datasets and other quantities such as backpropagation gradient values for training. 

Proposal 2-6: Deprioritize two-sided model training collaboration that requires extensive sharing of training, validation and testing datasets over the air-interface in this study item.

Moreover, model delivery in Types 1, 2, and 3 can be facilitated by 1) model transfer over the air-interface or 2) methods that are transparent to the physical layer, e.g., preinstalled models. In RAN1#109-e, some companies raised concerns on the proprietary aspects of AI/ML models. This imposes further constraints on model sharing between UE and network vendors. 

Table 2: Various two-sided model training collaborations
	No.
	Two-sided model training collaborations
	Model development
	Model delivery
	Can a model be proprietary?

	1.
	Developed by UE; shared to the network
	Offline or online
	Transparent or model transfer
	No

	2.
	Developed by network; shared to the UE
	Offline or online
	Transparent or model transfer
	No

	3.
	Developed via multi-vendor collaboration
	Offline or online
	Transparent or model transfer
	Possible



Types 2 and 3 can protect proprietary aspects of AI/ML models. Additionally, Types 2 and 3 facilitate model development that supports optimization for the target node’s hardware and implementations. However, Types 2 and 3 may not support scalability in model development. It is not practical for each vendor to set up a training session or exchange training datasets or reference models with each potential collaborating vendor. 

  Table 3: Three types of training collaborations agreed to be studied for two-sided model development for CSI compression
	
	Can
model be proprietary?
	Optimization for UE/gNB hardware/implementation
	Model development/training scalability
	Model management scalability (storing, monitoring, updating, etc.)
	Possible
overhead

	Type-1:
Joint training at one side
	No
	Not supported
	Scalable
	· No issues for over-the-air transfer (use and discard).
· Otherwise, UE/gNB has to manage multiple models.
	· Model transfer overhead,  if over the air interface

	Type-2:
Joint training at both sides
	Yes
	Supported
	Not scalable
· Two vendors train the network in one session.
· A vendor has to contact each collaborating vendor for offline engineering.
	· Has to be verified whether a single a UE-side model works with multiple gNB-side models, and vice versa.

	· Dataset, forward and backward propagation values delivery overhead, if over the air interface.

	Type-3:
Separate training at both sides
	Yes
	Supported
	Not scalable
· Independent training sessions.
· Vendor has to receive training data or reference model from collaborating vendors.
	· Has to be verified whether a single UE-side model works with multiple gNB-side models, and vice versa.

	· Dataset delivery overhead, if over the air interface.
· Reference model delivery overhead, if over the air interface.



Types 1, 2, and 3 can be utilized for both offline and online model development, updates or fine-tuning. For example, in Type 2, two vendors can collaborate for offline engineering outside the 3GPP framework (possibly using a private server). These vendors may share training datasets and backpropagation gradient values without disclosing their respective models. However, this method may have the following limitations:
· The inputs of the training dataset may need to be aligned between the UE and the NW, since the UE-side model and the NW-side model are updated in the same loop for forward propagation and backward propagation.
· The model backbone (e.g., CNN, transformer) may need to be aligned between the UE and the NW, since misalignment may prevent the decoder from fully utilizing the channel features extracted by the encoder. For example, assume that a CNN and a transformer are used for the encoder and decoder, respectively. Since the CNN encodes the CSI using convolution filters and the transformer reconstructs the CSI using self-attention, the resulting performance may be degraded compared to the case where a transformer is used for the encoder.
· The training hyperparameters such as batch size and optimizer may need to be aligned between the UE and the NW. Since the backpropagation gradients depend on training hyperparameters, training hyperparameter misalignment may produce incorrect encoder weight updates.
· The quantization methods may need to be aligned between the UE and the NW. For example, assume that the encoder uses 2-bit uniform quantization and the decoder uses 3-bit uniform quantization; the resulting mismatch between their respective latent space representations may prevent training from converging.
· For online model development, updates, or fine-tuning, the backpropagation gradient values and the training dataset should be shared online via either the air interface or in a manner that is transparent to the physical layer. However, these online updates may incur significant overhead, especially for large networks that require large datasets and many iterations for training.


Moreover, if a model backbone, training hyperparameters, and/or quantization methods are viewed as proprietary information, then Type 2 may be infeasible.

[image: ]

Figure 6: Different approaches for two-sided model development without model disclosure
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Figure 7: Different examples for Type 3

Type 3, i.e., separate training of the two sides at the UE and network, can have multiple flavors.  As illustrated in Fig. 7, Type 3-1 Sequential training can start at the network or UE. When the network initiates training, the network trains ENC* and DEC (for example) and generates the labelled dataset {V, c} for the input space and latent space based on the trained model. This labelled dataset can then be shared with the UE for the training of its model (e.g. ENC) via supervised learning. Then, the UE and network would deploy ENC and DEC, respectively. As shown in Fig. 7, a similar procedure can be followed to train the two sides sequentially starting at the UE.

[image: ]
Figure 8: One realization of Type 3-3 [Parallel training]

Similarly, in Type 3-2, collaborating vendors may share reference models. As an example, for auto-encoder-based CSI compression, a UE vendor and a network vendor can provide their reference decoder and encoder models, respectively. These vendors may not view these reference models as proprietary; thus, they can be shared with other vendors. Finally, these vendors train their respective proprietary models with respect to the shared reference models (e.g., a UE vendor trains its proprietary encoder with respect to the shared reference decoder). The performance might be impacted by the reference models, which requires further investigation. In order for the respective proprietary models to match, they may need to be trained with the same dataset (or, at least, datasets that are identically distributed). If the respective proprietary models can generalize across different datasets (e.g., datasets with similar distributions), they can be trained with datasets that are similarly distributed. Thus, these vendors have to share information (metadata) on these training datasets. Otherwise, if these vendors use mismatched training datasets, they may experience performance degradation.

Finally, in Type 3-3, collaborating vendors may independently train their respective models according to a common structure in the latent space. For example, these vendors may agree to use a reference dataset to guide (among various proprietary implementations) the mapping of the input space, V, to the latent space, c. They may then agree on a general mapping principle (e.g. conserving distances in the input and latent spaces; that may require an agreement on how to measure distance in those spaces). Finally, these vendors can separately train their respective models based on the agreed reference datasets and general mapping principle.  However, the feasibility and performance of this approach has not been studied.

In order to mitigate the aforementioned scalability issue in model development for Type 3, training inputs/aspects that are shared by the collaborating vendors (e.g. reference datasets, reference models, mapping principles) can be standardized.

For these two-sided model development approaches, models are assumed to be pre-stored in hardware. These models cannot be updated or fine-tuned for different scenarios if model transfer does not occur. Therefore, the generalization performance of these approaches needs to be carefully evaluated. 

Table 4: Challenges for two-sided model development approaches 

		       Training types
Characteristics
	Type 1
	Type 2
	Type 3
	Gradient exchange sequential

	
	NW-sided
	UE-sided
	
	NW first
	 UE first
	

	
	Device agnostic
	Device specific
	
	
	
	
	

	Whether model can be kept proprietary
	No
	No
	No
	Yes
(Note 1)
	Yes      (Note 1)  
	Yes      (Note 1)
	Yes
(Note 1)

	Whether require privacy-sensitive dataset sharing
	No 
	No
	No
	Needs check
	Need check
	Needs check
	Needs check

	Flexibility to support cell/site/scenario/configuration specific model
	Yes
	Yes
	Yes. With assisted information signaling.
	Difficult
	Semi-flexible.
	Semi-flexible. With assisted information signaling
	Difficult 

	Whether gNB/device specific optimization is allowed
	Restricted
	Yes
	Restricted
	Yes (Partially)
	Yes
	Yes
	Yes (Partially)

	Model update flexibility after deployment
	Flexible
	Flexible
	Conditional, with assisted information (Note 2)
	Not flexible

	Conditional semi-flexible, with assisted information
(Note 2)
	Semi-flexible
(Note 2)
	Not flexible

	Feasibility of allowing UE side and NW side to develop/update models separately
	Does not apply
	Does not apply.   
	Does not apply 
	Infeasible
	Feasible
	Feasible
	Infeasible 

	Whether gNB can maintain/store a single/unified model for a CSI report configuration
	Yes 
	No
	Does not apply
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	
Pending evaluation in 9.2.2.1

	Whether UE device can maintain/store a single/unified model for a CSI report configuration
	Yes
	No
	Does not apply
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	
Pending evaluation in 9.2.2.1

	Extendibility: to train new UE-side model compatible with NW-side model in use; Or to train new NW-side model compatible with UE-side model in use
	Does not apply 
	Does not apply
	Does not apply
	Limited
	Support
	Support
	


Support

	Whether training data distribution can match the inference device
	Infeasible 
	Conditional, with assisted information from UE
	Yes
	Conditional, with assisted information from UE
	
Conditional, with assisted information from UE
	
Yes
	Conditional, with assisted information from UE

	Software/hardware compatibility (Whether device capability can be considered for model development)
	No
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Model performance based on evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1

	Performance dependency for interoperability of multiple UE-side and Network-side models.
	Does not apply
	Does not apply
	Does not apply
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1



Note 1: Some information pertaining to model structure may have to be exchanged between the UE-side and the network-side for better alignment. For example, for Type 2 training the last layer of the UE-side and the first layer of the network-side shall be aligned.  

Note 2: Mode update via Type 3 training may require simultaneous update across multiple vendor, which is practically infeasible.   

 
Proposal 2-7: Consider Table 4 for the comparison of two-sided model training types:
         

Other issues

As we noted, Type 3, which entails separate training at the network and the UE, has several advantages, including 1) preserving proprietary information (e.g. training strategies, model structure, model parameters) and 2) eliminating the overhead of model transfer.

For Type 3, one approach to facilitate a competitive ecosystem for model development entails utilizing a reference decoder (e.g. DEC* for Type 3-2 [Parallel training] in Fig. 5), including training/testing an encoder with this reference decoder.  The performance impact of this approach should be assessed.

Proposal 2-8: For Type 3 training collaboration, study performance impact of training/testing an encoder with a reference decoder.

For model inference of two sided-based CSI compression, the encoder and the decoder should be separately deployed at the UE and the gNB, respectively.  This sub-use case can be supported by the following methods:
· Offline training-based methods:
· For example, a gNB can either 1) use a specified AE(s) or 2) collect a dataset for cell-specific offline training using the current specifications (e.g. CSI measurements from SRS by exploiting DL-UL reciprocity, reconstructed CSIs from legacy CSI feedback, generated CSI from a channel model by applying second-order statistics that are measured from SRS, etc.). Thus, no signaling would be required to transfer a training dataset. After training the AE, the gNB configures the specified/trained encoder to the UE.
· [bookmark: _Hlk102061121]Online training-based methods:
· For example, if a gNB employs a proprietary training strategy, a UE could update the trained/specified encoder without knowledge of the gNB’s training strategy.  In this case, the gNB would also configure its specified/trained decoder to the UE, and the UE would report validation results for the updated encoder to the gNB.

Once the AE model has been trained, the dimension of the compressed vector (i.e., output of encoder) is fixed. 

Proposal 2-9: For AI/ML based CSI compression sub-use case, study and verify model update of the encoder at the UE, where the gNB’s training strategy is not disclosed while transferring/configuring the AE.

Agreement
In CSI compression using two-sided model use case, further study the following options for CQI determination in CSI report, if CQI in CSI report is configured.    
· Option 1: CQI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation, including
· Option 1a: CQI is calculated based on target CSI with realistic channel measurement  
· Option 1b: CQI is calculated based on target CSI with realistic channel measurement and potential adjustment 
· Option 1c: CQI is calculated based on legacy codebook
· Option 2: CQI is calculated based on the output of CSI reconstruction part from the realistic channel estimation, including
· Option 2a: CQI is calculated based on CSI reconstruction output, if CSI reconstruction model is available at the UE and UE can perform reconstruction model inference with potential adjustment
· Note: CSI reconstruction part at the UE can be different comparing to the actual CSI reconstruction part used at the NW. 
· Option 2b: CQI is calculated using two stage approach, UE derive CQI using precoded CSI-RS transmitted with a reconstructed precoder.   
· Other options are not precluded
· Note1: feasibility of different options should be evaluated 
· Note2: Gap analyses between the UE side CQI calculation results and the NW side results, as well as the impact on the scheduling performance should be evaluated
Note3: Complexity of CQI calculation needs to be evaluated, including the computing complexity and potential RS/signaling overhead


For the legacy CSI feedback framework, a UE determines and reports CQI conditioned on the PMI (i.e., which will be mapped to a precoding matrix at the gNB) and rank indicator (RI). In this sub-use case, however, the UE may not perfectly know what the gNB reconstructs as a precoder. Thus, RAN1#112 agreed to investigate two options as shown in the above.

In Option 1, UE does not require the output of CSI generation part (output of the decoder at gNB) to calculate CSI. In Option 1a and 1b, UE calculates CQI based on the target CSI used for CSI generation (input for the encoder). Option 1a is a computationally friendly approach, as it does not require the UE to run the CSI generation part. Note that this approach provides accurate CQI when precoder reconstruction loss is not significant (which is the only supposed case AI/ML based CSI compression could be useful, otherwise, it is better to use the legacy codebooks). Additionally, in case of MU-MIMO, the network may not directly apply the precoder based on reported PMI, e.g., for interference nulling, etc. 


Observation#1
In case of MU-MIMO, the network may not directly apply the precoder based on reported PMI, e.g., for interference nulling, etc. Thus, even in legacy systems, some level of mismatch exists between the PMI (precoder network reconstructs from PMI)  and the precoder network applies for data transmission.  

Observation#2
In CSI compression using two-sided model, for CQI determination in CSI report, for Option 1a: CQI is calculated based on target CSI with realistic channel measurement 
· Is computationally friendly as UE does not require to perform CSI reconstruction or additional measurements for CQI calculation
· The mismatch between CQI determined conditioned on target CSI (precoder) and CQI determined conditioned on the reconstructed CSI (precoder) is insignificant when CSI reconstruction loss is insignificant 

In Option1b UE makes adjustment after it calculates CQI conditioned on the target CSI. One of such adjustment could be based on a nominal CSI reconstruction model at the UE which can emulate the actual CSI reconstruction model at the gNB. However, this can happen in a transparent manner. 

Observation#3
In CSI compression using two-sided model, for CQI determination in CSI report, for Option 1b: CQI is calculated based on target CSI with realistic channel measurement and potential adjustment: 
· The adjustment can be handled in a spec. transparent manner. 

In Option2a UE calculates CQI conditioned on the output of actual reconstruction model at the network. This may not be feasible if the network may not be willing to share its model. Besides, network may employ heavy model, which may not be suitable to run at the UE. 

Observation#4
In CSI compression using two-sided model, for CQI determination in CSI report, for Option 2a: CQI is calculated based on CSI reconstruction output, if CSI reconstruction model is available at the UE and UE can perform reconstruction model inference with potential adjustment:
· The availability of Network’s reconstruction output at the UE is not guaranteed, as network may be willing to share it, thus, may not be feasible. 
· Network may use heavier model, which may not fit in to UE’s computational capability, thus, may not be feasible.

Option 2b includes a multiple step process. First, network reconstructs the UE’s reported precoder. It then precodes a CSI-RS based on the reconstructed precoder. Then, UE measures and reports CQI based on the measurement from the precoded CSI-RS.  Even though, this option may avoid the mismatch due to the reconstruction error without requiring the availability of the actual reconstruction model (decoder) at the UE, it also incurs additional overhead (CSI-RS) and complexity. Moreover, 

Observation#5
In CSI compression using two-sided model, for CQI determination in CSI report, for Option 2b: CQI is calculated using two stage approach in which UE derives CQI using precoded CSI-RS transmitted with a reconstructed precoder:
· It incurs additional CSI-RS overhead 
· The delay between CSI (precoder) generation and CQI determination introduces mismatch.  


Proposal 2-10: In CSI compression using two-sided model, adopt Option 1a: CQI is calculated based on target CSI with realistic channel measurement.


Conclusions

In this contribution, we discussed the potential specification impact of the CSI feedback enhancement use case and finalization of its sub-use cases.  Our proposals are summarized as follows.
Proposal 1-1: Study the specification impacts of UE-side time-domain CSI prediction under network-UE collaboration level y. 

Proposal 1-2: For the AI/ML based CSI prediction sub-use case, study the necessity and specification impact of
· CSI measurement and reporting framework enhancement.
· LCM assistance from gNB including, model monitoring, dataset collection, model activation, model deactivation, model switching, etc. 
Note: The CSI measurement and reporting framework in Rel-18 Type II CSI enhancement for medium/high velocity is considered as a baseline. 


Proposal 2-2: For AI/ML based CSI compression sub-use case, study the specification impact of UCI format for quantized output of CSI generation part.


Proposal 2-3: For AI/ML based CSI compression sub-use case, study flexible configuration of quantization method and quantization resolution that enables the network to
                  1) Adapt to different AI/ML models and channel environments/scenarios
                  2) Control the feedback payload size. 

Proposal 2-4: For AI/ML based CSI compression sub-use case, study the specification impact of adaptable CSI feedback payload size that enables the UE to adapt to available size of uplink resources.
FFS: whether priority and CSI dropping rules have to be introduced. 


Proposal 2-5: For AI/ML based CSI compression sub-use case, study methods to configure and apply codebook subset restriction (CBSR) including:
· Whether the legacy SD basis vectors based  restriction applies 
· How to apply CBSR for when Output-CSI-UE is  in 1) spatial-frequency domain 2) angle-delay domain
· Whether soft amplitude restriction is possible

Proposal 2-6: Deprioritize two-sided model training collaboration that requires extensive sharing of training, validation and testing datasets over the air-interface in this study item.

Proposal 2-7: Consider Table 4 for the comparison of two-sided model training types:
Table 4: Challenges for two-sided model development approaches 

		       Training types
Characteristics
	Type 1
	Type 2
	Type 3
	Gradient exchange sequential

	
	NW-sided
	UE-sided
	
	NW first
	 UE first
	

	
	Device agnostic
	Device specific
	
	
	
	
	

	Whether model can be kept proprietary
	No
	No
	No
	Yes
(Note 1)
	Yes      (Note 1)  
	Yes      (Note 1)
	Yes
(Note 1)

	Whether require privacy-sensitive dataset sharing
	No 
	No
	No
	Needs check
	Need check
	Needs check
	Needs check

	Flexibility to support cell/site/scenario/configuration specific model
	Yes
	Yes
	Yes. With assisted information signaling.
	Difficult
	Semi-flexible.
	Semi-flexible. With assisted information signaling
	Difficult 

	Whether gNB/device specific optimization is allowed
	Restricted
	Yes
	Restricted
	Yes (Partially)
	Yes
	Yes
	Yes (Partially)

	Model update flexibility after deployment
	Flexible
	Flexible
	Conditional, with assisted information (Note 2)
	Not flexible

	Conditional semi-flexible, with assisted information
(Note 2)
	Semi-flexible
(Note 2)
	Not flexible

	Feasibility of allowing UE side and NW side to develop/update models separately
	Does not apply
	Does not apply.   
	Does not apply 
	Infeasible
	Feasible
	Feasible
	Infeasible 

	Whether gNB can maintain/store a single/unified model for a CSI report configuration
	Yes 
	No
	Does not apply
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	
Pending evaluation in 9.2.2.1

	Whether UE device can maintain/store a single/unified model for a CSI report configuration
	Yes
	No
	Does not apply
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	
Pending evaluation in 9.2.2.1

	Extendibility: to train new UE-side model compatible with NW-side model in use; Or to train new NW-side model compatible with UE-side model in use
	Does not apply 
	Does not apply
	Does not apply
	Limited
	Support
	Support
	


Support

	Whether training data distribution can match the inference device
	Infeasible 
	Conditional, with assisted information from UE
	Yes
	Conditional, with assisted information from UE
	
Conditional, with assisted information from UE
	
Yes
	Conditional, with assisted information from UE

	Software/hardware compatibility (Whether device capability can be considered for model development)
	No
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Model performance based on evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1

	Performance dependency for interoperability of multiple UE-side and Network-side models.
	Does not apply
	Does not apply
	Does not apply
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1



Note 1: Some information pertaining to model structure may have to be exchanged between the UE-side and the network-side for better alignment. For example, for Type 2 training the last layer of the UE-side and the first layer of the network-side shall be aligned.  

Note 2: Mode update via Type 3 training may require simultaneous update across multiple vendor, which is practically infeasible.   

Proposal 2-8: For Type 3 training collaboration, study performance impact of training/testing an encoder with a reference decoder or dataset.

Proposal 2-9: For AI/ML based CSI compression sub-use case, study and verify model update of the encoder at the UE, where the gNB’s training strategy is not disclosed while transferring/configuring the AE.

Proposal 2-10: In CSI compression using two-sided model, adopt Option 1a: CQI is calculated based on target CSI with realistic channel measurement.


And the following observations were made:

Observation#1
In case of MU-MIMO, the network may not directly apply the precoder based on reported PMI, e.g., for interference nulling, etc. Thus, even in legacy systems, some level of mismatch exists between the PMI (precoder network reconstructs from PMI)  and the precoder network applies for data transmission.  

Observation#2
In CSI compression using two-sided model, for CQI determination in CSI report, for Option 1a: CQI is calculated based on target CSI with realistic channel measurement 
· Is computationally friendly as UE does not require to perform CSI reconstruction or additional measurements for CQI calculation
· The mismatch between CQI determined conditioned on target CSI (precoder) and CQI determined conditioned on the reconstructed CSI (precoder) is insignificant when CSI reconstruction loss is insignificant 

Observation#3
In CSI compression using two-sided model, for CQI determination in CSI report, for Option 1b: CQI is calculated based on target CSI with realistic channel measurement and potential adjustment: 
· The adjustment can be handled in a spec. transparent manner. 

Observation#4
In CSI compression using two-sided model, for CQI determination in CSI report, for Option 2a: CQI is calculated based on CSI reconstruction output, if CSI reconstruction model is available at the UE and UE can perform reconstruction model inference with potential adjustment:
· The availability of Network’s reconstruction output at the UE is not guaranteed, as network may be willing to share it, thus, may not be feasible. 
· Network may use heavier model, which may not fit in to UE’s computational capability, thus, may not be feasible.


Observation#5
In CSI compression using two-sided model, for CQI determination in CSI report, for Option 2b: CQI is calculated using two stage approach in which UE derives CQI using precoded CSI-RS transmitted with a reconstructed precoder:
· It incurs additional CSI-RS overhead 
· The delay between CSI (precoder) generation and CQI determination introduces mismatch.  






Appendix
Joint CSI Prediction and Compression

Motivation

The legacy codebooks (CBs) compress the CSI in spatial (angle) and frequency (delay) domains, i.e., spatial-domain compression in Rel. 15 CBs as well as spatial & frequency-domain compression in Rel. 16 and Rel. 17 CBs. Moreover, Rel. 17 port selection (PS) CB achieves further reduction in the CSI feedback overhead (higher compression) by exploiting angle-delay reciprocity. The remaining dimension (domain) that has not yet been exploited is the time-domain compression. Therefore, it is natural if AI/ML-based CSI feedback enhancement incorporates joint compression in spatial (angle), frequency (delay), and time (Doppler) domains. It is shown in our contribution [3] that by utilizing the three-dimensional (spatial-frequency-time) compression, the CSI overhead can be reduced significantly, i.e., higher compression ratio can be achieved.

[image: ]
Figure 9: Non-linear compression of CSI via AI/ML

Additionally, one application area for joint prediction & compression is medium/high speed scenarios where CSI aging is observed in the legacy CSI feedback framework. Owing to the shorter channel coherence time/duration in medium/high speed scenarios, frequent CSI measurements and feedback might be required. However, frequent CSI measurements and feedback is inefficient in terms of both feedback overhead and computational complexity. In this regard, it may be helpful to investigate CSI feedback compression in the time domain. In Fig. 9, time-domain compressed CSI which can be applied to N coherence time intervals is depicted; in contrast, N CSI reports in legacy CBs would be required for this scenario.





Finally, another advantage of AI/ML-based CSI feedback enhancement is its ability to achieve non-linear compression. DFT basis vectors-based compression has been utilized in Rel. 15-17 CBs for spatial & frequency-domain compression. Basis vectors-based representation of precoding vectors is computationally advantageous. However, basis vectors-based representation may incur a non-trivial approximation error due to incomplete basis representation, fixed basis sampling, fixed (RRC-configured) number of basis vectors, etc. In particular, to reduce CSI feedback overhead and achieve efficient representation, the conventional schemes (Rel. 16-17 codebooks and their potential enhancement in Rel. 18 for Doppler-domain compression) represent the CSI with fewer number of basis vectors, i.e., L spatial, M[v] frequency and M[d] Doppler basis vectors, as compared to the full set of orthogonal basis vectors, the number of which are, N3, and N[4], respectively, where, and . This incomplete basis representation results in imperfect representation or approximation loss. Furthermore, the number of basis vectors, i.e., L, M[v] and M[d], and the dimension of the basis vectors (sampling), i.e., Ntx, N3 and N[4 ] are fixed (RRC configured), will result in lacking flexibility. Moreover, the existing codebooks rely on fixed (linear) quantization for amplitudes and phase coefficients reporting. In this regard, due to the non-linear approximation property of auto-encoders (AEs), AI/ML-based sampling and quantization may provide more flexibility (degrees-of-freedom) and reduce quantization/approximation error. The nonlinear compression of CSI is depicted in Fig. 9 by a broken yellow line as opposed to linear (basis-vector-based) compression along the axes of the three dimensions.

Description

[image: ]
Figure 10: CSI compression from M measurements and prediction/extrapolation to N time instants/intervals

Joint CSI prediction and compression allows the UE to report a CSI that may be used by the gNB to derive multiple CSI which can be applied to multiple future time instants/intervals. Thus, the CSI in this sub-use case involves time-domain CSI compression in addition to spatial & frequency-domain compression, i.e., spatial-frequency-time domain compression.

[image: ]
Figure 11: Approach 1: prediction at gNB vs. Approach 2: prediction at UE

	
Conclusion
· Further discuss temporal-spatial-frequency domain CSI compression using two-sided model as a possible sub-use case for CSI feedback enhancement after evaluation methodology discussion.
· Further discuss improving the CSI accuracy based on traditional codebook design using one-sided model as a possible sub-use case for CSI feedback enhancement after evaluation methodology discussion.
· Further discuss CSI prediction using one-sided model as a possible sub-use case for CSI feedback enhancement after evaluation methodology discussion
· Further discuss CSI-RS configuration and overhead reduction as a possible sub-use case for CSI feedback enhancement after evaluation methodology discussion
· Further discuss resource allocation and scheduling as a possible sub-use case for CSI feedback enhancement after evaluation methodology discussion
· Further discuss joint CSI prediction and compression as a possible sub-use case for CSI feedback enhancement after evaluation methodology discussion. 




The conclusion above was made in RAN1#109 regarding possible sub-use cases for CSI feedback enhancement after the evaluation methodology discussion. In our view, joint CSI prediction and compression is identical to temporal-spatial-frequency domain CSI compression. Therefore, these sub-use cases can be merged.

Two approaches can be considered for this sub-use case.

Approach 1: A UE measures CSI from M CSI-RS resources and derives a single compressed CSI report from these measurements. The gNB then reconstructs the M CSIs corresponding to the M measurements. Moreover, the gNB performs prediction/extrapolation to future time instants based on the reconstructed M CSIs.

Table 5: Input variants for AE: Approach 1
	Variants  (Inputs to the Autoencoder)
	Compression Domain for AI
	Advantage

	Explicit eigenvectors
	Spatial, frequency and time domain
	- Lower complexity (no need to compute PMI)
- May achieve higher compression ratio

	PMI information based on conventional codebook (Rel. 15, 16, 17 CBs)
	Time domain
	· May have better convergence and/or complexity  

	Full channel matrix (angle-delay domain)
	Time domain
	· May have better convergence and/or complexity
· Lower processing at the UE



Fig. 12 shows two reporting settings that are suitable for (a) aperiodic burst CSI-RS resources and (b) periodic and semi-persistent CSI-RS resources. 


[image: ]
Figure 12: Two reporting settings based on the time-domain property of the CSI measurement configuration (CSI-RS resources)






For aperiodic CSI-RS resources, as shown in Fig. 12 (a), the UE may compress CSI from  measurements after receiving a burst of CSI-RS resources at different time instants. For periodic and semi-persistent CSI-RS resources, as shown in Fig. 12 (b), the UE can perform measurement-by-measurement reporting of CSI. Then the decoder reconstructs the CSI by concatenating the reported codewords for the past  measurements, i.e., , with the current codeword. This enables the gNB to exploit time-domain correlation for spatial-frequency-time domain CSI compression – even if the UE performs measurement-by-measurement reporting of CSI.

Therefore, the CSI reporting method could depend on the time-domain property of the CSI measurement (periodic, aperiodic or semi-persistent).

Approach 2: A UE measures CSI from M CSI-RS resources and predicts/extrapolates the CSIs corresponding to N predefined time intervals. One way to do such prediction/extrapolation is based on Doppler components estimation. The encoder at the UE then compresses the CSI corresponding to these N time intervals. As the N time intervals are ideally within the Doppler stationary time interval, i.e., the time interval where the Doppler components of the channel are constant, the N CSI are correlated thus compressible. The gNB then reconstructs the CSI for these N time instants (sub time units) from the compressed CSI feedback.  

A comparison between these two approaches is provided in the table below. 

Table 6: Comparison of Approach 1 and Approach 2
	No. 
	Metric
	Approach 1
	Approach 2

	1. 
	Burden (complexity) on UE
	Moderate
	Moderate

	2.
	Suitability for CQI reporting
	May require study
	Suitable (CQI can be derived from corresponding PMI)

	3. 
	Time granularity in predicted PMI
	Flexible (gNB has control)
	Configured application interval (subtime unit)



Moreover, Approach 2 can further be categorized as: Approach 2-1 eigenvector-based prediction and Approach 2-2 full channel matrix-based prediction.

                             [image: ]
Figure 13: Eigenvector-based prediction and full channel matrix-based prediction

In our contribution for 9.2.2.1 [3], we showed that eigenvector-based prediction is outperformed by full-channel matrix-based prediction. One challenge for Approach 1 is that making the full channel matrix  available at the gNB incurs significant overhead. Note that the full channel matrix can be decomposed as ; for the right eigenvectors in V, , and for the left eigenvectors in U, . Conventionally, the right eigenvectors in V are sent to the gNB via CSI feedback. Significant reporting overhead is incurred by sending the full channel matrix , which consists of an  matrix per reporting subband. However, the gNB is usually interested in channel information corresponding to the dominant layers (low rank). In this case, the UE may send the channel matrix corresponding to the dominant layers, e.g.,   for layers, .  Note that .

[image: ]
Figure 14: gNB-side prediction with availability of left and right eigenvectors at the gNB


Spec impact
In case the encoder part of the AE is shared by the gNB via model transfer (collaboration level (D)) the values of M and/or N along with other parameters that describe the input to the AE such as the number of sub-bands, quantization bits per port, etc., can be configured as part of the model transfer. Thus, M and N may not be needed to be specified as part of CSI resource and reporting configurations. This facilitates the use of models with different input types without the need for specification support, i.e., inputs including eigenvectors, full channel matrix across angle-delay domains, even PMI information based on legacy CBs etc., giving vendors/operators flexibility in their AI/ML model development.

One of the essential configurations from the gNB is the size of the AE’s output. This information could be included in model transfer description/registration. Then, when the gNB triggers, activates or configures a CSI report based on a certain AI model, the UE will implicitly figure out the size of the AE’s output. One open issue, however, concerns the mapping of feedback bits to the UCI payload. Another open issue is whether an AE-based CSI feedback can be split into multiple parts, which would allow dropping of some feedback bits in case the UCI payload is not large enough to carry all of the feedback bits.

It is essential to spare the UE from the burden of heavy processing as much as possible. In this regard, it is preferred to perform essential training offline. Various approaches can be considered to tackle scenario-sensitivity (generalization issues) of the AE including training with a mixed dataset, transfer learning, assistance information exchange in model selection, update, etc.


Frequency-domain CSI extrapolation 
The benefits of AI-based CSI prediction can be applied to extrapolation in other domains (e.g. frequency, space; we use “extrapolation” to refer to those domains).  For example, a gNB can configure a UE to send it CSI reports for an inactive bandwidth part (BWP).  The UE can use received DL CSI-RS on an active BWP and then perform AI-based CSI extrapolation to infer CSI on the inactive BWP.  The gNB can then decide whether to configure the UE to switch to the inactive BWP, depending on the CSI reports for the active and inactive BWPs.


Another approach for the prediction aspect of this sub-use case could entail UL-to-DL channel prediction at the gNB in an FDD system, where UL-to-DL channel reciprocity cannot be assumed.  In this scenario, the gNB could use one or multiple received SRS to predict DL CSI.

Fig. 2 shows one approach for the extrapolation aspect of this sub-use case which relies on a combination of a 1-D CNN and a residual neural network; it entails the following steps:
· The UE/gNB receives CSI-RS/SRS on one frequency band F1, and it wants to infer CSI on another frequency band F2
· The UE/gNB may also receive some CSI-RS/SRS as assistance information on F2 (in this case, it performs a combination of extrapolation and interpolation)
· The UE/gNB passes its received CSI-RS/SRS on F1 (and possibly F2) to a combination of a 1-D CNN and a residual neural network, which infers the CSI on F2.

[image: ]
Figure 2: AI-based CSI extrapolation
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