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Introduction
At RAN #94, a new study on artificial intelligence/machine learning for NR air interface has been approved [1], with the main goal of exploring the benefits of augmenting the air interface with features enabling improved support of AI/ML-based algorithms for enhanced performance and/or reduced complexity/overhead.

Through studying a few carefully selected use cases, the goal is to identify a common AI/ML framework, including functional requirements of AI/ML architecture, which could be used in subsequent projects. The study should also identify areas where AI/ML could improve the performance of air-interface functions.

The study will serve to identify what is required for an adequate AI/ML model characterization and description establishing pertinent notation for discussions and subsequent evaluations. Various levels of collaboration between the gNB and UE are identified and considered. 

Specification impact will be assessed in order to improve the overall understanding of what would be required to enable AI/ML techniques for the air interface.

The SI consists of studying individual use cases as well as deriving a general framework for AI/ML. Below we summarize the goal of the study as shown in [1] relevant to the general framework:
AI/ML model, terminology, and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable 
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g., 
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting separate or joint ML operations. 
· Characterize lifecycle management of AI/ML model: e.g., model training, model deployment, model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference 
· Identify common notation and terminology for AI/ML related functions, procedures, and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

Some progress has been made in RAN1 #109-e, RAN1 #110, RAN1 #110-bis-e, RAN1 #111, RAN1 #112 and RAN1 #112-bis-e toward achieving the SI objectives. In this contribution, we further discuss general framework as a continuation of our previous diagram, express our views for the definition of AI/ML functionality, model and their identification alignment with the agreements in RAN1 #112-bis-e, and explain how functionality and model-ID based LCM should work including various aspects of it. 

General AI/ML framework 


[bookmark: _Ref127433945]Figure 1: A general AI/ML framework

The general AI/ML framework given in Figure 1 has been obtained by modifying the RAN3 functional framework with the following modifications. 
· The actor block in RAN3 framework that captures the machinery of reinforcement learning has been removed, since there is no specific reinforcement learning requirement for the generic AI/ML framework within the scope of RAN1 and hence the actor block is not relevant. 
· We add the model management/performance monitoring block that can spread into many entities due to including many functionalities, e.g., some aspects of monitoring may be at the NW-side, and some other aspects at the UE-side.
· We add the model storage block, because we note that model training and model storage may be at different places. For example, in Case z1 from RAN1 #112 agreement, model training is at UE-side/neutral site and the trained model is stored at the NW. Therefore, we added the model storage block, and the model delivery/transfer originates from the model storage, not from the model training. 

Proposal 1: Adopt the general AI/ML framework diagram shown in Figure 1.

Proposal 2: Model storage can be necessary for the general AI/ML framework to reflect all cases in “Model transfer/delivery agreement” in RAN1 #112.


Description of Stages
Data Collection
From RAN#1 110-bis-e, it was concluded that
	Conclusion

Data collection may be performed for different purposes in LCM, e.g., model training, model inference, model monitoring, model selection, model update, etc. each may be done with different requirements and potential specification impact.

FFS: Model selection refers to the selection of an AI/ML model among models for the same functionality. (Exact terminology to be discussed/defined)



Data collection in Figure 1 is a block that conceptually represents data sources and entities that hold data, for training, inference, and monitoring. Although it is shown as a single block in the framework diagram, it is important to note that data collection for training, inference, and monitoring have very different flavors and requirements. Moreover, timescale (e.g., real-time or offline) of training and monitoring generally needs separate considerations. 

Data collection for training
For training, training data may be initially generated at the network and UE. The initial data may be subsequently collected (sent) to one or more data collection entities. A data collection entity may be a 3gpp network or a non-3gpp entity. A non-3gpp data collection entity may be owned by a UE vendor, a chipset vendor, a network vendor, a network operator, a private network owner, a positioning service provider, or any other 3rd party. In case the data collection entity is a 3gpp network, specification for data collection may be required. In case the data collection entity is a non-3gpp entity, data collection can be left as an implementation choice and business agreements among involved parties and can be left outside the scope of 3gpp specification. For example, an API could be exposed by a UE to outside entities to allow the outside entities to collect data from the UE.

Data collection for inference
For inference, inference data for the UE-side model (and the UE-part of the two-sided model) may directly come from the UE. Inference data for the NW-side model (and the NW-side of the two-sided model) may either directly come from the NW or be sent from the UE.

Data collection for monitoring
Similarly, for monitoring, monitoring data for the UE-side monitoring may directly come from the UE. Monitoring data for the NW-side monitoring may either directly come from the NW or, if needed, be sent from the UE.

Model Development and Training 
Model training block in Figure 1 includes both initial training and model update. In general, model training consists of two categories.
· Model training that happens together with the model development
· Subsequent training on a developed model 

Depending on the location of the dataset and where the (untrained) model resides, training may be done inside a 3gpp network or in a non-3gpp entity. A non-3gpp entity may be owned by a UE vendor, a chipset vendor, a network vendor, a network operator, a private network owner, a positioning service provider, or any other 3rd party.


Model Deployment, Storage and Transfer/Delivery 
After a model is developed and trained, the model may be stored in a model storage and delivered to the target device. The model should be compiled into an executable prior to inference. Different combinations exist based on the training location, storage location, and model delivery/transfer format, as has been agreed in RAN1 #112:  

	Agreement
To facilitate the discussion, consider at least the following Cases for model delivery/transfer to UE, training location, and model delivery/transfer format combinations for UE-side models and UE-part of two-sided models. 

	Case
	Model delivery/transfer
	Model storage location
	Training location

	y
	model delivery (if needed) over-the-top
	Outside 3gpp Network
	UE-side / NW-side / neutral site

	z1
	model transfer in proprietary format
	3GPP Network
	UE-side / neutral site

	z2
	model transfer in proprietary format
	3GPP Network
	NW-side

	z3
	model transfer in open format
	3GPP Network
	UE-side / neutral site

	z4
	model transfer in open format of a known model structure at UE
	3GPP Network
	NW-side

	z5
	model transfer in open format of an unknown model structure at UE
	3GPP Network
	NW-side



Note: The Case definition is only for the purpose of facilitating discussion and does not imply applicability, feasibility, entity mapping, architecture, signalling nor any prioritization.
Note: The Case definition is NOT intended to introduce sub-levels of Level z.
Note: Other cases may be included further upon interest from companies.
FFS: Z4 and Z5 boundary 




Model Inference 


Performance Monitoring 
Performance monitoring may be performed at the NW, at the UE, or at both. Typically, monitoring is also performed at the training entity/entities.


Overall framework of Features, Functionalities, and Models 
[bookmark: _Ref131712182]AI/ML-enabled Features
As specified in 3GPP TR 38.822:"NR; User Equipment (UE) feature list", there are well-defined features. One example is NR_eMIMO. There can be one or multiple feature groups within a feature. For instances, under NR_eMIMO feature there are many feature groups such as multi-DCI based multi-TRP, regular eType-II, etc. There can be sub-levels within a feature group for more advanced capabilities, e.g., for regular eType-II, support of PMI sub-bands with R=2, support of parameter combinations 7-8, support of rank 3, 4 to name a few. Each feature group contains configuration components. Max # of Tx ports in one resource, max # of resources and total # of Tx ports to support regular eType-II for R=1, support of parameter combinations 1-6, support of rank 1,2 are some examples for regular eType-II. This entire structure is illustrated in Figure 2.
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[bookmark: _Ref131497801]Figure 2: Legacy feature example for NR_eMIMO

In the legacy framework, the definitions of feature/feature group, and the configuration components are static, i.e., predetermined.  Having various configuration components for a feature group does not necessarily mean that UEs have all these features with all configurations. On the contrary, UEs indicate support to a feature only if that feature has been implemented and successfully tested. The supported features are reported by UEs to NW via UE capability reporting when UE moves from IDLE to connected state so that NW can configure and schedule UEs accordingly.

Within the scope of the study item [1], while figuring out how to adapt AI/ML enabled features to 3gpp specification, it is reasonable to consider the legacy framework by fully identifying what the differences are. Before going into the details, it is worth defining an AI/ML feature. In RAN1 #112, it was agreed that

	[bookmark: _Hlk134002470]Agreement
AI/ML-enabled Feature refers to a Feature where AI/ML may be used. 



As compared to the legacy features, one fundamental distinction of AI-ML-enabled features is the need to support dynamic capabilities in addition to static capabilities. This occurs mainly because there may be supported Features and/or trained models for some cells, scenarios, configurations but not for others. 

For one-sided models, we can consider that a feature (or a configuration of a feature or a functionality) can be supported by a given UE for a specific cell, e.g., cell-A. On the other hand, the same feature (or a configuration of a feature or a functionality) for the same UE may not be supported for cell-B. That’s why, UE needs to dynamically indicate the supported Features in the case of handover when UE moves to cell-B.

To be more specific regarding dynamic capability of UEs, we can focus on AI/ML beam management at the UE-side. Suppose that three Features (or Feature Groups), denoted as F1, F2, and F3, have been defined for the AI/ML beam management sub-use-case. A UE may support multiple features/functionalities of this beam management use case denoted by F1, F2, F3 in a cell specific manner.  For example, suppose that the UE supports F1 and F2 for cell-A, F3 for cell-B, and does not support AI/ML beam management for cell-C. This implies that in the case of handover from cell A to cell B, the UE needs to communicate the supported features/functionalities with NW dynamically to indicate that F1 and F2 are no more supported, whereas F3 is. Likewise, each time the UE enters cell-C it should notify NW that there is no support so that NW may deactivate this feature/functionality.

As another example, referring again to AI/ML beam management sub-use-case, suppose that there is one Feature, denoted as F1, has been defined for the sub-use-case. Suppose that cell-A uses a certain beam codebook that is provided as an assistance information (e.g., as a component of the Feature F1) in the form of Set A and Set B relationship. Suppose that cell-B uses a different beam codebook that results in a different relationship between Set A and Set B. Cell-B also provides it via an assistance information (e.g., as a component of the Feature F1). Suppose that UE supports the Set A/B relationship of cell-A but not of cell-B. This implies that in the case of handover from cell A to cell B, the UE needs to communicate that UE no longer supports the Feature F1 so that NW may deactivate F1. Likewise, in case of handover from cell B to cell A, the UE needs to communicate that UE now supports the Feature F1 so that NW may activate F1.

AI/ML Functionalities and Functionality Identification
In RAN1 #112 meeting, it was agreed to reuse legacy 3GPP framework of features as a starting point for discussion for AI/ML functionalities. 

	Agreement
For UE-side models and UE-part of two-sided models:
· For AI/ML functionality identification
· Reuse legacy 3GPP framework of Features as a starting point for discussion.
· UE indicates supported functionalities/functionality for a given sub-use-case.
· UE capability reporting is taken as starting point. 

	



AI/ML functionalities have been related to features/feature groups with an agreement in RAN1 #112-bis-e as follows.

	Agreement
· For AI/ML functionality identification and functionality-based LCM of UE-side models and/or UE-part of two-sided models:
· Functionality refers to an AI/ML-enabled Feature/FG enabled by configuration(s), where configuration(s) is(are) supported based on conditions indicated by UE capability.
· Correspondingly, functionality-based LCM operates based on, at least, one configuration of AI/ML-enabled Feature/FG or specific configurations of an AI/ML-enabled Feature/FG.
· FFS: Signaling to support functionality-based LCM operations, e.g., to activate/deactivate/fallback/switch AI/ML functionalities
· [bookmark: _Hlk134688367]FFS: Whether/how to address additional conditions (e.g., scenarios, sites, and datasets) to aid UE-side transparent model operations (without model identification) at the Functionality level
· FFS: Other aspects that may constitute Functionality
· FFS: which aspects should be specified as conditions of a Feature/FG available for functionality will be discussed in each sub-use-case agenda.



Each functionality can include static configurations and dynamic conditions, e.g., scenarios, sites, and datasets. Regarding the static configurations of an AI/ML enabled feature, only some of them can be selectively supported by a UE. These are indicated with UE capability reporting. 

Proposal 3: Similar to the UE capability signaling for existing features, UE may indicate the static envelope configuration for AI/ML-enabled features representing the possible supported configurations at the UE.

Functionality may refer to a specific configuration of the Feature/FG or a set of configurations of the Feature/FG. For the former, functionality switching may refer to changing from one configuration to another. It is also possible to combine multiple configurations into one group and the NW may activate multiple configurations as a group. For example, for CSI compression, NW may configure multiple payload options that allows the use of AI/ML encoder, and UE may choose one of the payloads based on its channel condition, and then use AI/ML compression. In this case, it is more natural to call the multiple payload options as one functionality, as they are activated together.

Proposal 4: Functionality can be seen as a unit for activation/deactivation/switching, that may correspond to a specific configuration or a set of configurations.

The terminology of functionality identification has been agreed in RAN1 #111 such that 

	Terminology
	Description

	Functionality identification
	A process/method of identifying an AI/ML functionality for the common understanding between the NW and the UE
Note: Information regarding the AI/ML functionality may be shared during functionality identification.
FFS: granularity of functionality



Functionality identification reflects conditions indicated by UE capability, while subsequent procedures, such as functionality configuration reflecting NW’s capability/interest and/or UE’s reporting dynamic updates on applicable functionalities, are viewed as a part of LCM that happens after functionality identification.

Proposal 5: Functionality identification reflects conditions indicated by UE capability. 

Functionalities can require dynamic UE capability reporting. Although it is clear from legacy framework that UEs report the supported features with UE capability reporting for static capabilities, it should be studied how to handle dynamic capability of AI/ML enabled features. To this aim, the key consideration is that NW and UE should be on the same page regarding whether a given AI/ML-enabled Feature is supported on the given cell/configuration/scenario. This is indicated with the below agreement in RAN1 #112-bis-e.

	Agreement
· Study necessity, mechanisms, after functionality identification, for UE to report updates on applicable functionality(es) among [configured/identified] functionality(es), where the applicable functionalities may be a subset of all [configured/identified] functionalities.



We may use the term Functionality at various stages:
· Identified functionalities: Conditions indicated by UE capability. It does not yet reflect NW’s interest.
· Configured functionalities: Conditions indicated by UE capability and NW’s interest. This is a subset of identified/[applicable] functionalities.
Applicable functionalities: Functionalities currently applicable among configured/identified functionalities.
Whether the applicable functionalities are based on identified functionalities or configured functionalities depends on the signaling procedure. Depending on the signaling procedure, there can be two alternatives:

Alt 1
· Configurable functionality is synonymous to identified functionality.
· Configured functionalities are determined by NW as a subset of identified functionalities.
· Applicable functionalities are reported from UE as a subset of configured functionalities.
· NW activates one functionality out of applicable functionalities.
Alt 2
· Applicable functionalities are reported from UE as a subset of identified functionalities.
· Configurable functionality is synonymous to applicable functionality.
· Configured functionalities are determined by NW as a subset of applicable functionalities.
· NW activates one functionality out of configured functionalities.
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Figure 3: Two alternatives for identified, configured, applicable functionality

Note: A subset may be a full set.
Note: The above alternatives are only for terminology alignment purpose and do not imply the introduction of every concept under each Alternative. For example, we may introduce something like below, which is a degenerate version of either Alt 1 or Alt 2.
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Figure 4: Degenerate version of two alternatives

Note: The signaling procedure and/or choice of Alt 1 or Alt 2 may belong to RAN2 discussion.

Observation 1: Identified functionalities do not change (or may change very slowly) since they show what UE can potentially do, whereas functionalities applicable by UE may change fast since they show what UE can currently do. Therefore, the applicable functionalities may be a subset of all configured/identified functionalities.

For various reasons the functionalities applicable at UE may change, e.g., due to memory usage, battery status, or any other hardware limitations. This refers to the fact that functionalities applicable atUE at one time can be different at another time. For functionality activation, deactivation, switching, NW should refresh the applicable functionalities.

Observation 2: Applicable functionalities at UE may change over time. Reasons may include
· Site-specific models underlying the functionalty
· Scenario- and/or dataset-specific models underlying the functionality
· UE’s memory usage, battery status, or any other hardware limitations
· Temporary unavailability of a model (e.g., time to download a model upon transparent model switching)

Proposal 6: UEs report updates on applicable functionalities as necessary or whenever NW inquires.

Applicable functionalities by a UE may also be site-specific. In the case of handover, the candidate cell may want to know the applicable functionalies of UEs for seamless operation of functionality activation, deactivation, switching.

Proposal 7: The source gNB may request UE to provide the functionalities applicable by UE for the target and candidate cells in case of handover. Alternatively, applicable functionalities may be requested by the target cell.

AI/ML Model Identification
Previously it was agreed that
	Working Assumption
	Terminology
	Description

	Model identification
	A process/method of identifying an AI/ML model for the common understanding between the NW and the UE
Note: The process/method of model identification may or may not be applicable.
Note: Information regarding the AI/ML model may be shared during model identification.






In RAN1 #112, AI/ML model identification has been clarified as follows.

	Agreement
For UE-side models and UE-part of two-sided models:
· For AI/ML model identification 
· Models are identified by model ID at the Network. UE indicates supported AI/ML models.
· Network indicates activation/deactivation/fallback/switching of AI/ML functionality via 3GPP signaling (e.g., RRC, MAC-CE, DCI). 
· Models may not be identified at the Network, and UE may perform model-level LCM.
· Study whether and how much awareness/interaction NW should have about model-level LCM
· In model-ID-based LCM, models are identified at the Network, and Network/UE may activate/deactivate/select/switch individual AI/ML models via model ID. 
FFS: Relationship between functionality identification and model identification
FFS: Performance monitoring and RAN4 impact 
FFS: detailed understanding on model 

	



Further details are provided by the below RAN1 #112-bis-e agreement.

	Agreement
· For AI/ML model identification and model-ID-based LCM of UE-side models and/or UE-part of two-sided models:
· model-ID-based LCM operates based on identified models, where a model may be associated with specific configurations/conditions associated with UE capability of an AI/ML-enabled Feature/FG and additional conditions (e.g., scenarios, sites, and datasets) as determined/identified between UE-side and NW-side.
· FFS: Which aspects should be considered as additional conditions, and how to include them into model description information during model identification will be discussed in each sub-use-case agenda.
· FFS: Relationship between functionality and model, e.g., whether a model may be identified referring to functionality(s).
· FFS: relationship between functionality-based LCM and model-ID-based LCM
· Note: Applicability of functionality-based LCM and model-ID-based LCM is a separate discussion.
Conclusion
From RAN1 perspective, it is clarified that an AI/ML model identified by a model ID may be logical, and how it maps to physical AI/ML model(s) may be up to implementation.
· When distinction is necessary for discussion purposes, companies may use the term a logical AI/ML model to refer to a model that is identified and assigned a model ID, and physical AI/ML model(s) to refer to an actual implementation of such a model.




First, we’d like to clarify that model identification itself doesn’t imply any model transfer/delivery nor UE capability. Model identification can refer to a model ID – which is a “naming” process -- and model description information. Model description information or meta information provides supplemental information the model that is provided during model identification. Meta information does not refer to the model itself nor model structure and parameter information. Such information is either hidden (in case of a proprietary-format model) or conveyed by the model itself during a model transfer (in case of an open-format model).

Proposal 8: 
	Meta information
	Supplemental information being provided about a model during model identification process.



For various reasons the models applicable at UE may change, e.g., due to memory usage, battery status, or any other hardware limitations. Furthermore, models may be temporarily unavailable. This refers to the fact that models applicable at UE at one time can be different at another time. For model activation, deactivation, switching, NW should refresh the applicable models. This explains the necessity part of the below agreement from RAN1 #112-bis-e. 

	Agreement
· Study necessity, mechanisms, after model identification, for UE to report updates on applicable UE part/UE-side model(s), where the applicable models may be a subset of all identified models.



Observation 3: Applicable models at UE may change over time. Reasons may include
· UE’s memory usage, battery status, or any other hardware limitations
· Temporary unavailability of a model (e.g., time to download a model upon transparent model switching)

For dynamically reporting applicable models, model IDs that are known by UEs can be utilized by UEs to inform the network.  

Proposal 9: UEs can utilize the identified model IDs to indicate the applicable models at one time to the network. 

For model identification of UE-side or UE-part of two-sided models, three types of model identification have been discussed in the RAN1 #112-bis-e meeting:
· Type A: Model is identified to NW (if applicable) and UE (if applicable) without over-the-air signaling
· The model may be assigned with a model ID during the model identification, which may be referred/used in over-the-air signaling after model identification. 
· FFS: Spec impact to other WGs including SA
· Type B: Model is identified via over-the-air signaling 
· Type B1: UE-initiated model identification of a model known at UE 
· Model identification initiated by the UE, and NW assists the remaining steps of the model identification
· FFS: details of steps
· Type B2: NW-initiated model identification of a model known at NW
· Model identification initiated by the NW, and UE responds (if applicable) for the remaining steps of the model identification
· Note: Type B2 may be is used in conjunction with model transfer from NW to UE
· FFS: details of steps
Note: The support and applicability of each model identification Type is a separate discussion. This study does not imply that model identification is necessary.

Proposal 10: Adopt the three Types of model identification categories – Type A, B1, and B2.

There exists two scenarios for model identification as “initial model identification” and “updated model identification”.  Initial model identification refers to a model that has not been identified before and it is not explicitly linked with any previous model ID. On the other hand, updated model identification refers to a new model with a new model ID, but linked with a previous model ID. For example, updated model identification happens as a result of model parameter update. In this case, a new model being identified is related to the previously identified model via the same model structure, and therefore, an “updated model identification” may be used to explicitly provide the linkage to the previous identified model, and model description information for updated model identification can be  mostly inherited from the previously identified model.

Note that a model with parameter update does not necessarily need “updated model identification”. For example, for a UE-side model developed by a UE vendor, the UE vendor can decide to identify the model with parameter update as a new “initial model” without revealing/providing linkage to any previously identified model.

Observation 4: Updated model identification may be used to identify a new model that is related to a previously identified model via parameter update. Model description information for updated model identification can be mostly inherited from the previously identified model. 

Combining initial and updated model identification with Type A, Type B1 and Type B2 leads to 6 combinations. However, some of these combinations are not feasible.

Proposal 11: Consider the Table 1 to associate “initial model identification” and “updated model identification” with model identification types.

Table 1: Model identification types with initial and update model identification
	
	Initial model identification
	Updated model identification

	Type A
	Applicable 
	Applicable

	Type B1
	Applicable
	Applicable

	Type B2
	Not applicable
	Applicable



Type B1 for initial model identification
Initial model identification at UE-side with over-the-air signaling, i.e., Type B1, brings further challenges to UE implementation. This is mainly associated with the methods to register a model to NW resided by multiple UEs. One approach is to define a criterion to determine a designated or representative UE among the existing ones and then the designated UE identifies the model. This, however, brings unnecessary burden to program one designated UE to perform model identification, or implement a protocol by a UE-side vendor where a UE-side server chooses and commands a UE to perform identification. Another approach can allow UEs identify the same models with over-the-air signaling and then the same models can be discarded at NW with the help of model description information. This, however, brings some unnecessary overhead. These issues are not present in Type A model identification, where the identification happens between the UE-side vendor and the NW. 
Both Type A and Type B1 have similar specification impact but at handled different working groups (RAN vs. SA).
Overall, Type B1 seems unnecessarily complicated to be used for initial model identification, and Type A is preferred over Type B1.

Proposal 12: Deprioritize B1 for initial model identification.

Type B1 for updated model identification
A previously identified model at the UE-side may further be updated. The update may happen at a slow time scale (e.g., via offline training) or at a fast time scale (e.g., via online fine-tuning). 
· For slow-time-scale update, it makes more sense to update the model once and reuse the updated model across millions of devices of the same type. In this case, it is reasonable that the updated model be identified as a new model via Type A initial model identification and that all the UEs supporting the new model update their capabilities via the new model ID. 
· On the other hand, Type A identification may not be appropriate for fast-time-scale model update such as online fine-tuning of the UE-side model. Such a fast-time-scale update of a UE-side model may be either transparent to NW and may not be identified, or may be identified to the NW via Type B1.  Given that fast-time-scale model update at UE may be done transparently to NW (either in functionality-based-LCM or in model-ID-based LCM within a logical model), and given the potentially substantial discussion and specification impact to support such fast time scale model update that are explicitly identified at NW, we propose to deprioritize further discussion of Type B1 for updated model identification during the Rel-18 SI.

Proposal 13: Deprioritize further discussion of Type B1 for updated model identification.

Model description information is not UE-specific information rather it is model-specific information. Hence, NW may map model description information to the assigned ID.

Proposal 14: During the initial model identification procedure, the network should map the provided meta information with the assigned ID for subsequent operations. 

Model description information for initial model identification aims to figure out applicability of the model such as applicable AI/ML-enabled Feature(s),  applicable conditions of the model, etc. In the RAN1-112-bis-e meeting, it was agreed that specific configurations and additional conditions (e.g., scenarios, sites, and datasets) are needed for model identification and hence should be included in model description information.

Observation 5: Functionalities are created according to information exchange between UEs and NW via over-the-air signaling. If model identification happens offline then model description information cannot have related functionality.

Proposal 15: Model description information may not contain the related functionality if model identification is done offline since functionalities can be created with over-the-air signaling.


Configurations and Applicable condition

In RAN1 #112-bis-e, it was agreed:
	Agreement
· For AI/ML functionality identification and functionality-based LCM of UE-side models and/or UE-part of two-sided models:
· Functionality refers to an AI/ML-enabled Feature/FG enabled by configuration(s), where configuration(s) is(are) supported based on conditions indicated by UE capability.
· Correspondingly, functionality-based LCM operates based on, at least, one configuration of AI/ML-enabled Feature/FG or specific configurations of an AI/ML-enabled Feature/FG.
· FFS: Signaling to support functionality-based LCM operations, e.g., to activate/deactivate/fallback/switch AI/ML functionalities
· FFS: Whether/how to address additional conditions (e.g., scenarios, sites, and datasets) to aid UE-side transparent model operations (without model identification) at the Functionality level
· FFS: Other aspects that may constitute Functionality
· FFS: which aspects should be specified as conditions of a Feature/FG available for functionality will be discussed in each sub-use-case agenda.
· For AI/ML model identification and model-ID-based LCM of UE-side models and/or UE-part of two-sided models:
· model-ID-based LCM operates based on identified models, where a model may be associated with specific configurations/conditions associated with UE capability of an AI/ML-enabled Feature/FG and additional conditions (e.g., scenarios, sites, and datasets) as determined/identified between UE-side and NW-side.
· FFS: Which aspects should be considered as additional conditions, and how to include them into model description information during model identification will be discussed in each sub-use-case agenda.
· FFS: Relationship between functionality and model, e.g., whether a model may be identified referring to functionality(s).
· FFS: relationship between functionality-based LCM and model-ID-based LCM
· Note: Applicability of functionality-based LCM and model-ID-based LCM is a separate discussion.



In this section, we discuss the highlighted FFS regarding “conditions of a Feature/FG available for functionality” and “additional conditions”.

Proposal 16: Consider Table 2 for configurations and additional conditions of the relevant sub-use cases.
Table 2: Configurations and additional conditions for sub-use cases
	
	Conditions of a Feature/FG available for functionality 
	Additional conditions (e.g., scenarios, sites, and datasets)

	CSI compression
	Configuration related to CSI feedback analogous to legacy framework (e.g., CSI-RS measurement config, CSI reporting config – subband, antenna port layout, rank restriction, payload configuration)
	Pairing ID to identify compatible UE-part; Other ID for network settings / scenario / site / dataset, if not captured in pairing ID.

	Spatial domain beam prediction
& Temporal domain beam prediction
	Configurations for Set A, Set B (including configuration of associated RS and associated signaling/report)
[Assistance information from NW to UE, including codebook ID, association/mapping/relationship between beams within Set A and beams within Set B (e.g., relative beam pointing angles of beams within Set A and beams within Set B), cell ID]
	[Assistance information from NW to UE, including codebook ID, association/mapping/relationship between beams within Set A and beams within Set B (e.g., relative beam pointing angles of beams within Set A and beams within Set B), cell ID]

	Direct AI/ML positioning
	Assistance data/information considered in legacy NR-RAT UE-based positioning  (e.g. DL PRS config., etc.)  (from LMF to UE)

	Validity area for direct AI/ML positioning  (expressed as zone info [lat./long./alt.] or cell-ID[phy./global]) (from UE to LMF and/or from LMF to UE)
 

	AI/ML-assisted positioning
	Assistance data/information considered in legacy NR-RAT UE-assisted positioning (e.g. DL PRS config., reporting config. etc.) and new measurement reporting type(s) and configurations (from LMF to UE)

	Validity area for AI/ML assisted positioning (expressed as zone info [lat./long./alt.] or cell-ID[phy./global]) (from UE to LMF and/or from LMF to UE)




LCM options
According to whether model IDs are registered/identified to NW or not, we have model-ID based LCM and functionality-based LCM, respectively. From RAN1 #110-bis-e, it has been agreed to study LCM procedure both in terms of model identification and functionality basis as presented below.

	Agreement
Study LCM procedure on the basis that an AI/ML model has a model ID with associated information and/or model functionality at least for some AI/ML operations.
• FFS: Detailed discussion of model ID with associated information and/or model functionality.
• FFS: usage of model ID with associated information and/or model functionality-based LCM procedure
• FFS: whether support of model ID
• FFS: the detailed applicable AI/ML operations




The following was also agreed in RAN1 #111
	Agreement
For UE-part/UE-side models, study the following mechanisms for LCM procedures:
· For functionality-based LCM procedure: indication of activation/deactivation/switching/fallback based on individual AI/ML functionality
· Note: UE may have one AI/ML model for the functionality, or UE may have multiple AI/ML models for the functionality.
· FFS: Whether or how to indicate Funtionality
· For model-ID-based LCM procedure, indication of model selection/activation/deactivation/switching/fallback based on individual model IDs




Additionally, as discussed in functionality and model identification, RAN1 #112-bis-e provides the following agreement.

	Agreement
· For AI/ML functionality identification and functionality-based LCM of UE-side models and/or UE-part of two-sided models:
· Functionality refers to an AI/ML-enabled Feature/FG enabled by configuration(s), where configuration(s) is(are) supported based on conditions indicated by UE capability.
· Correspondingly, functionality-based LCM operates based on, at least, one configuration of AI/ML-enabled Feature/FG or specific configurations of an AI/ML-enabled Feature/FG.
· FFS: Signaling to support functionality-based LCM operations, e.g., to activate/deactivate/fallback/switch AI/ML functionalities
· FFS: Whether/how to address additional conditions (e.g., scenarios, sites, and datasets) to aid UE-side transparent model operations (without model identification) at the Functionality level
· FFS: Other aspects that may constitute Functionality
· FFS: which aspects should be specified as conditions of a Feature/FG available for functionality will be discussed in each sub-use-case agenda.
· For AI/ML model identification and model-ID-based LCM of UE-side models and/or UE-part of two-sided models:
· model-ID-based LCM operates based on identified models, where a model may be associated with specific configurations/conditions associated with UE capability of an AI/ML-enabled Feature/FG and additional conditions (e.g., scenarios, sites, and datasets) as determined/identified between UE-side and NW-side.
· FFS: Which aspects should be considered as additional conditions, and how to include them into model description information during model identification will be discussed in each sub-use-case agenda.
· FFS: Relationship between functionality and model, e.g., whether a model may be identified referring to functionality(s).
· FFS: relationship between functionality-based LCM and model-ID-based LCM
· Note: Applicability of functionality-based LCM and model-ID-based LCM is a separate discussion.




In RAN2 #119bis, it was agreed:
	R2 assumes that a model is identified by a model ID. Its usage is FFS.
R2 assumes that from Management or Control point of view mainly some meta info about a model may need to be known, details FFS



Associated with the above agreements, functionality and model-ID based LCMs can be described as follows. 

Functionality-based LCM 
For functionality-based LCM, which AI/ML model to use is not controlled by the network, UE is free to use one or more AI/ML models for the given functionality and can do the model selection/switching decision (i.e., the decision on which model among a family of models to use for inference). To illustrate, UE autonomously switches between a low doppler and a high doppler model without network interruptions. As another example, UE may use one AI/ML model for certain values of Set A and Set B and use a different AI/ML model for different values of Set A and Set B.

[bookmark: _Hlk131716468]Generally, functionality-based LCM is applicable to UE-side models in Collaboration Level y.

Proposal 17: Functionality-based LCM is applicable to UE-side models in Collaboration Level y.

It is worth discussing how to decide whether activate or deactivate a functionality. Furthermore, there can be more than one functionality related to a sub use case. In this case, the most functionality should be selected and functionality switching should take place if necessary.

Proposal 18: Functionality activation, deactivation and switching are NW implementation based on identified functionalities assocociated with UE capability and do not need to be studied in this agenda item 9.2.1.

Dataset  ID can be used by the NW to provide additional conditions (e.g., scenario/configuration/dataset) to the UE. This ID can be used by NW to signal any information that is not a part of configuration(s). The use of this ID is NW-vendor specific (i.e., voluntary use), so there is no concern on preserving infra-side proprietary information. The dataset IC may be used by the UE side for categorizing dataset for model training for either functionality-based or model-ID-based LCM. For model-ID-based LCM, the dataset ID can be provided in the model description during model identification.

Proposal 19: NW can provide dataset ID for additional conditions that are not a part of configurations.

Model ID-based LCM 
For model-ID based LCM, (logical) AI/ML models at UE side are registered/identified to NW and assigned model IDs and each model has model description information (meta information). Hence, NW is aware of the (logical) AI/ML models and their associated feature/functionality due to meta information. 

Proposal 20: The model ID and associated model description information can be utilized for various LCM steps for model management and control purposes.

For model selection, activation, deactivation, switching, and fallback, RAN1 #111 has made the following agreement.

	Agreement
For model selection, activation, deactivation, switching, and fallback at least for UE sided models and two-sided models, study the following mechanisms:
· Decision by the network 
· Network-initiated
· UE-initiated, requested to the network
· Decision by the UE
· Event-triggered as configured by the network, UE’s decision is reported to network
· UE-autonomous, UE’s decision is reported to the network
· UE-autonomous, UE’s decision is not reported to the network
FFS: for network sided models
FFS: other mechanisms



NW selects a model by activating one of the supported model IDs and deactivating others using meta information as below agreement in RAN1 #112-bis-e and other information available at the network. 

	Working Assumption
Model selection
	
The process of selecting an AI/ML model for activation among multiple models for the same AI/ML enabled feature.
Note: Model selection may or may not be carried out simultaneously with model activation



Proposal 21: Models are identified by model IDs, and associated meta information known at the network is used for selection of the right model at the inference time.
 
For two-sided models, as discussed earlier, (logical) models may be identified during the multi-vendor model training process, e.g., via a pairing ID. In addition, UE indicates in its capability report the list of model IDs (pairing IDs) that the UE supports. During inference, NW knows which model ID (pairing ID) should be used, and the NW knows whether the UE supports the given model ID (pairing ID), and therefore, the NW can activate a (logical) model corresponding to the model ID (pairing ID). 
 
Likewise, for one sided models, model ID based LCM may be useful in addressing additional conditions such as scenarios, datasets, custom configuration outside specification with the collaboration of vendors.

Proposal 22: Model-ID-based LCM is useful for one-sided models when additional conditions such as scenarios, datasets, custom configurations are addressed outside specification, via vendor collaboration.

Proposal 23: Model-ID-based LCM is applicable for both one-sided and UE-part of two-sided models. 

For collaboration level z, with model transfer, it is reasonable that LCM is performed at the model ID level.

Proposal 24: Model-ID-based LCM is applicable to Collaboration Level z.

[bookmark: _Ref131625000][bookmark: _Ref127434607]Performance monitoring and testing

At the end of the RAN1 #112, FL recommended to bring discussions on general frameworks on performance testing, validation, and monitoring. In this section, we provide a systematic analysis and scoping of solution spaces.

Performance issues for AI/ML models may arise from several sources:
· Bad training/validation dataset
· Bad model design/training
· Imperfect model selection and switching
· Target platform different from training platform
· Data distribution shift
· Unexpected events
As the above issues arise at different steps of the AI/ML LCM pipeline and at different frequencies, they demand different solutions. Below we discuss each of the above and discuss potential solutions.

 
[bookmark: _Ref131520146]Bad training/validation dataset

It is important for the training/validation dataset to contain diverse variations in terms of channel conditions, network configurations, interference variations, UE locations, mobility, and the likes, that may be encountered during inference of the AI/ML model. Specifically, the dataset should contain samples reflecting environmental variations (e.g., SNR, fading, blocking, interference), geographical variations (e.g., UE locations), and any variations in scenarios/configurations that the given AI/ML model is expected to operate. To ensure proper dataset quality and coverage, the training/validation dataset should be collected over various UE locations and over sufficient amount of time.

Observation 6: Training/validation dataset should be collected with sufficient coverage. Any variations/events that can be expected to be encountered during inference should be collected and made into the training/validation dataset.

If the training/validation dataset coverage is good, AI/ML performance issues due to unexpected events should be rare.

If, for some reason, training/validation dataset coverage is insufficient, inference performance may suffer. Such performance issues can be detected by background (non-real-time) KPI monitoring:
(1) In typical AI/ML pipeline, training/validation data will continue be collected in a background even after the AI/ML model is deployed, and validation performance will be monitored against the newly collected dataset to assess the performance of the deployed AI/ML model. Any performance issues due to insufficient dataset coverage can be detected via such validation, and if needed, the model may be re-trained using an updated dataset that has better coverage.
(2) NW can also monitor indirect KPI over a sufficient period of time to detect any long-term performance issues, and the issues can be notified to the training entity to trigger more proper data collection and re-training.
(3) If genie labels are available at UE, UE can also monitor direct KPI and/or derive statistics based on the direct KPI and report to the training entities.


Observation 7: Performance issues due to insufficient training/validation dataset coverage can be detected via background monitoring, for example, by direct KPI monitoring at the training entities, indirect KPI monitoring from the Network, and/or KPI monitoring from UEs. The monitoring result from NW/UE can be reported to the training entities. The monitoring can be non-real-time, and the model may be re-trained using an updated dataset that has better coverage.


Bad model design/training

Even if training/validation dataset has good quality and coverage, the AI/ML model design itself may not be good, and/or the training may have been done poorly, resulting in unacceptably high validation loss.

In principle, it is RAN4 tests that should strive to ensure that the AI/ML model design is good enough (i.e., high enough complexity and design/training quality) at least for the RAN4 scenario.

Observation 8: RAN4 tests are primary means to ensuring that the AI/ML model design and offline training are satisfactory.

If, despite the above, a poorly designed/trained AI/ML model is deployed, the same background (non-real-time) KPI monitoring.

Observation 9: Performance issues due to a bad model design/training can be detected via background monitoring, for example, by direct KPI monitoring at the training entities, indirect KPI monitoring from the Network, and/or KPI monitoring from UEs. The monitoring result from NW/UE can be reported to the training entities. The monitoring can be non-real-time, and the model may be re-trained to meet performance requirement.
Imperfect model selection and switching

In case of multiple models covering a Feature/functionality (e.g., site-specific models), performance issue may arise if UE uses a wrong model for inference due to imperfect model switching behavior. 

In this case, the primary solution should be to base the model selection/switching on well-defined conditions that are available during inference. That is, the criteria that are used for partitioning/categorizing dataset for multiple model development should be chosen among the ones that are available during inference time. Such examples include explicit configurations provided as a part of Feature/functionality, assistance information, serving cell ID, PRS identity, model pairing information for two-sided models, etc. For example, for cell-specific models, a serving cell ID can serve as a model selection and switching trigger. For site-specific positioning models, observable PRS identities can be a natural selection/switching trigger. For two-sided CSI models, dataset for each multi-vendor training effort could be constructed based on well-defined boundaries, such as cell IDs or type of configurations, that will enable unambiguous switching based on signaling from the NW.

Model selection / switching may also be based on locally measurable quantities (e.g., Doppler, SNR, etc.). In such a case, the multiple models should be developed with overlapping coverage (e.g., model 1 for SNR<20dB, model 2 for SNR>10dB) to allow a margin for imperfect model selection / switching. 

It is not desirable to rely on model performance monitoring for a model selection / switching trigger, as such monitoring incurs very high complexity, overhead, and/or latency. Further, such an approach is reactive and may incur performance gaps during switching. Further, such an approach also requires monitoring of inactive models, which incurs additional complexity and is subject to UE capability concern.

If needed, RAN4 test could be introduced to test a proper switching behavior.

Proposal 25: Model selection / switching should be based on well-defined conditions that are available during inference. Model monitoring is not a desirable mean for model selection / switching due to potentially high complexity, overhead, and/or latency.

Additionally, as before, background (non-real-time) KPI monitoring can also be utilized to detect persistent model selection / switching issues.

Observation 10: Performance issues due to persistent imperfect model selection/switching can be detected via background monitoring, for example, by direct KPI monitoring at the training entities, indirect KPI monitoring from the Network, and/or KPI monitoring from UEs. The monitoring result from NW/UE can be reported to the training entities. The monitoring can be non-real-time, and the model switching trigger and models may be re-developed / re-trained to meet performance requirement.


Training and Target platform difference

Performance issue may arise is the target platform for inference is different from the training platform. This arises, for example, when a model is trained at NW and transferred to a UE via an open-format, where the model is quantized and compiled before being used for inference.

To avoid this problem, it is highly desirable for the model trained at NW to be compiled and tested offline at the target platform before being deployed. In other words, the trained model is compiled and tested and converted into a target-specific proprietary format, before being delivered to the UE.

Proposal 26: To avoid performance issues due to training and target platform differences, it is highly desirable for the trained model to be converted (quantized, compiled) and tested offline prior to being delivered to UE.

In case an open-format model is directly transferred to UE causing performance issues, the performance issue may be subtle but will be persistent, and background (non-real-time) KPI monitoring can be used to detect performance issues.

Observation 11: Performance issues due to a training and target platform difference, if untested offline, can be detected via background monitoring, for example, by direct KPI monitoring at the training entities, indirect KPI monitoring from the Network, and/or KPI monitoring from UEs. The monitoring result from NW/UE can be reported to the training entities. The monitoring can be non-real-time, and the model may be re-trained, re-quantized, or re-compiled to meet performance requirement.

Data distribution shift
Despite good dataset coverage and good model design/training, performance may suffer if the data distribution changes over time, such as an appearance of a new building affecting RF propagation.

It is noted that such a change occurs in slow time scale, and it’s important to distinguish the (slow time scale) data distribution shift from the (fast time scale) variations in the data. The latter should be considered as in-distribution variations across samples and should be captured into the dataset distribution for proper coverage. This was discussed in Section 4.1 in detail. 

As data distribution shift is expected to happen infrequently and in slow time scale, performance issues due to data distribution shift can be detected by background (non-real-time) KPI monitoring:

Observation 12: Performance issues due to data distribution shift can be detected via background monitoring, for example, by direct KPI monitoring at the training entities, indirect KPI monitoring from the Network, and/or KPI monitoring from UEs. The monitoring result from NW/UE can be reported to the training entities. The monitoring can be non-real-time, and the model may be re-trained using an updated dataset that has a new shifted distribution.

Unexpected events
As discussed earlier in Section 4.1, it is important for the training/validation dataset to be collected with sufficient coverage, and that any variations/events that can be expected to be encountered during inference should be collected and made into the training/validation dataset.

Therefore, the problem of unexpected events is fundamentally minimized by proper dataset construction. Any events that may happen frequently during inference should also be captured into the training dataset.

Observation 13: With proper dataset construction, unexpected events should occur rarely.

However, it is still possible that unexpected events that rarely occur may not have been captured into the training dataset and become persistent over time. If such events are persistent, background (non-real-time) monitoring should be able to capture the issues. Given the rareness of such events and given the high cost/overhead of real-time monitoring, real-time monitoring is not a proper solution.

Observation 14: Performance issues due to unexpected events can be detected via background monitoring, for example, by direct KPI monitoring at the training entities, indirect KPI monitoring from the Network, and/or KPI monitoring from UEs. The monitoring result from NW/UE can be reported to the training entities. The monitoring can be non-real-time, and the model may be re-trained using an updated dataset that incorporates the unexpected events.

Real-time monitoring
In principle, real-time monitoring, if feasible, can address nearly all the aforementioned performance issues. However, the feasibility of real-time monitoring is sometimes questionable due to complexity, over-the-air overhead, accuracy, and/or larger latency. Taking a two-sided CSI compression as an example for discussion:
· NW-side real-time monitoring of direct KPI incurs either high overhead or high latency. It is impossible to achieve low overhead and latency at the same time.
· Frequent ground truth reporting for low latency monitoring will be infeasible due to high overhead.
· Infrequent or event-based ground truth reporting incurs latency and is not really real-time.
· NW-side real-time monitoring of indirect KPI is possible and is up to NW implementation. Accuracy and latency will vary.
· UE-side real-time monitoring via a proxy model or direct SGCS estimation is possible. Our companion contribution R1-2305328 shows that the direct SGCS estimation can achieve low complexity, low overhead, high accuracy, and low latency at the same time.

In fact, the group has already agreed on the following KPIs (i.e., criteria) for assessing performance monitoring schemes.
	Agreement
Study performance monitoring approaches, considering the following model monitoring KPIs as general guidance
· Accuracy and relevance (i.e., how well does the given monitoring metric/methods reflect the model and system performance)
· Overhead (e.g., signaling overhead associated with model monitoring)
· Complexity (e.g., computation and memory cost for model monitoring)
· Latency (i.e., timeliness of monitoring result, from model failure to action, given the purpose of model monitoring)
· FFS: Power consumption
· Other KPIs are not precluded.
Note: Relevant KPIs may vary across different model monitoring approaches.
FFS: Discussion of KPIs for other LCM procedures




Proposal 27: Real-time performance monitoring that incurs high overhead, high complexity, or high latency should be deprioritized.

From the discussions from the previous sub-sections, it is observed that, even when real-time performance monitoring is infeasible due to high complexity, high overhead, low accuracy, and/or large latency, most of the performance issues can still be addressed by combinations of measures without resorting to real-time performance monitoring. 

Regardless of feasibility of real-time monitoring, any deployed models should be made robust enough during training time that they do not need to rely on real-time monitoring. Defective models that may arise from bad training/validation dataset or bad model design/training, if ever deployed, can be detected via non-real-time monitoring. It is noted that real-world ML models in other domains rarely rely on real-time direct KPI monitoring but rather rely on (1) indirect KPI monitoring and (2) non-real-time direct KPI monitoring on newly collected data.


Summary of performance issues and solution approaches
Below we summarize the above discussions, listing the performance issues and their solution approaches.
· “Yes” indicates a viable solution for the issue.
· “Maybe” indicates a potential solution for the issue but its feasibility should be considered.
· A blank cell indicates that the solution is not applicable for the issue.


	
	Bad training / validation dataset
	Bad model design / training
	Imperfect model selection and switching
	Training and target platform difference
	Data distribution shift
	Unexpected events

	RAN4 test
	
	Yes
	Yes
	
	
	

	Proper dataset construction
	Yes
	
	
	
	
	Yes

	Non-real-time direct KPI monitoring at training server
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Non-real-time indirect KPI monitoring at NW/UE
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Well-defined model selection criteria
	
	
	Yes
	
	
	

	Setting validation performance target for offline training
	
	Yes
	
	
	
	

	Offline testing at the target platform
	
	
	
	Yes
	
	

	Real-time performance monitoring
	Maybe
	Maybe
	Maybe
	Maybe
	Maybe
	Maybe



In addition to RAN4 testing, given the fundamental lack of RAN4 test coverage, there may be a need for over-the-air model performance testing procedures during live operation. One can envision performing a RAN4 test (e.g., a follow-PMI test for the two-sided CSI against a randomly chosen PMI) on a deployed UE. Since the procedure will negatively impact the system throughput, such a test should be reserved for the cases when a new model is used for the first time, in order to detect problems arising from bad training/validation dataset or bad model design/training.

Proposal 28: Study feasibility of RAN4-like tests over-the-air on deployed UEs.

Data collection

Data collection for model training

Regarding the role of RAN1, 3GPP states RAN1’s role (https://www.3gpp.org/3gpp-groups/radio-access-networks-ran/ran-wg1 )
	RAN1 is responsible for specification of the physical layer of the radio Interfaces for UE, Evolved UTRAN, NG-RAN, and beyond. The work in RAN1 includes especially:
· Specification of physical channels and modulation
· Specification of physical layer multiplexing, channel coding and error detection
· Specification of physical layer procedures (both control and data)
· Specification of definition of measurements and their provision by the physical layer to the upper layers
RAN1 also specifies handling of physical layer related UE capabilities and parameters used in device tests.



Observation 15: 3GPP relies on RAN1 to standardize the physical layer features as described above. Other groups standardize how the control plane signaling, user plane data and logging are performed and transported throughout the network (along with many other network features).

Proposal 29:  Mechanism for training data collection needs architectural considerations and should be handled by other working groups. 

UE vendors may want to develop different models for different UE types, UE internal conditions, etc. Therefore, although for each sub-use case, RAN1 may define data collection requirements based on nominal inputs and outputs, the UE side may take other information into account for model development and training. Note that the actual inputs/outputs to/from the models used at the device may be different from the nominal inputs and outputs. For example, a model at UE may take auxiliary inputs such as SNR, Doppler, sensor measurements, etc. that do not need to be standardized. As another example, a model at UE may use pre-processing and post-processing that may make the actual input/output to/from the model different from the nominal ones. What should be the actual inputs and outputs of a model is an implementation-specific decision per device/chipset development and cannot be pre-determined/standardized.

Proposal 30: For data collection for model training, UE-side may take auxiliary inputs such as SNR, Doppler, sensor measurements, etc. that do not need to be standardized.
[bookmark: _Ref131645556]Discussion of Collaboration Level y and z for UE-side (and UE-part of two-side) models

From RAN1 #112, it has been agreed that
	Agreement
To facilitate the discussion, consider at least the following Cases for model delivery/transfer to UE, training location, and model delivery/transfer format combinations for UE-side models and UE-part of two-sided models. 

	Case
	Model delivery/transfer
	Model storage location
	Training location

	y
	model delivery (if needed) over-the-top
	Outside 3gpp Network
	UE-side / NW-side / neutral site

	z1
	model transfer in proprietary format
	3GPP Network
	UE-side / neutral site

	z2
	model transfer in proprietary format
	3GPP Network
	NW-side

	z3
	model transfer in open format
	3GPP Network
	UE-side / neutral site

	z4
	model transfer in open format of a known model structure at UE
	3GPP Network
	NW-side

	z5
	model transfer in open format of an unknown model structure at UE
	3GPP Network
	NW-side



Note: The Case definition is only for the purpose of facilitating discussion and does not imply applicability, feasibility, entity mapping, architecture, signalling nor any prioritization.
Note: The Case definition is NOT intended to introduce sub-levels of Level z.
Note: Other cases may be included further upon interest from companies.
FFS: Z4 and Z5 boundary 




In this section, we analyse the pros, cons, and feasibility of supporting the above Cases from various angles. We assume the Case z4 and z5 boundary as in the proposal for email approval:
	[For email approval]:
In model delivery/transfer Case z4, the “known model structure” means an exact model structure as has been previously identified between NW and UE and for which the UE has and explicitly indicated its support.

In model delivery/transfer Case z5, the “unknown model structure” means any other model structure not covered in z4, including any model structure that is only partially known.




Proprietary information disclosure across vendors:
Preserving proprietary design is important to promote innovation and vendor differentiation. However, training UE-side AI/ML models (and UE-part of two-sided AI/ML models) in a 3gpp network will inevitably disclose UE-side proprietary model design information. Likewise, storing UE-side models (and UE-part of two-sided AI/ML models) in an open-format will inevitably disclose UE-side proprietary model design information.

Proposal 31: Model training needs to consider feasibility of disclosing proprietary model information to the other side.

Observation 16: Cases y and z1 can preserve UE-side proprietary design, whereas Cases z2, z3, z4 and z5 do not preserve UE-side proprietary design.

Device-specific optimization:
Just like any other modem algorithms, AI/ML models for the sub-use-cases being discussed in the current SI need to be highly optimized for the given device in terms of power consumption, latency, area, and concurrency with the rest of the model algorithms. The optimization is heavily dependent on device implementation, including its hardware, software, various memory types and sizes, CPU, DSP, and ML accelerator capabilities/structures/dimensions. Typically, an ML model structure whose operations are supported by the target device’s ML accelerator runs a lot faster than an alternative ML model whose operations are not fully supported by the ML accelerator, even when the alternative ML model has a lower FLOP count. Therefore, the architectural choice (e.g., convolutional, LSTM, transformer, etc.) for the AI/ML Model very well depends on the device’s ML accelerator capability. More often than not, the device’s hardware, software, memory, and ML accelerator are co-designed in consideration of the AI/ML models that the device needs to support. As an example, a given target device may have an ML accelerator that supports acceleration of certain types (but not all types) of neural network layers (e.g., 2D convolution of certain kernel size and activation size). What types of layers enjoy acceleration, and how much is the acceleration, is device specific. It is often the case that inference latency can be an order of magnitude different depending on whether the layers used in a deep neural network are supported by the ML accelerator or not, and also depending on whether the size of activations fit into the memory/cache size or not. For example, a chipset vendor may decide to add support for LSTM layers in the device’s ML accelerator if the chipset vendor sees enough benefit despite the added device cost and chip area due to adding such support. The chipset vendor will be more willing to add the LSTEM support to the ML accelerator if the device has more than one LSTM-based AI/ML models. Though this is an illustrative example, it is easy to see why the AI/ML model design should be device-specific. 

The above considerations/observations practically rule out the possibility of device-agnostic one-size-fit-all AI/ML model design. Chipset/UE vendors will want to design their own proprietary models optimized for each of their devices, by tailoring the design to the device’s internal implementations/capabilities of CPU, GPU, DSP, HW accelerator, physical/virtual memory, and cache. Such a device-specific optimized model will be more competitive in terms of power consumption, latency, and area than one-size-fit-all model.

Proposal 32: Model structure design needs to consider device-specific design optimization and capability.

In this regard, Case z5 is practically not feasible.

Proposal 33: Deprioritize Case z5.

Moreover, after an AI/ML model is developed, it needs to be compiled to be used for inference at target devices. This step may include model quantization and compression for a fixed-point inference. The fixed-point AI/ML model then goes through standalone and end-to-end performance simulations for link level KPIs. The designed ML Model then may be mapped to a sequence of operations for execution targets (e.g., hardware, firmware, DSP, ML accelerator) and converted into a run-time format. This process involves various optimization for power, area, and latency, via various levels of parallelism and optimization decisions. The model compilation process is target-device specific. Finally, the run-time images are tested for correctness, and the devices with the run-time image goes through rigorous functional and performance testing to ensure good end-to-end performance and error-free operations in conjunction with the rest of the device implementation, before they can be deployed in the commercial devices. The entire process from data collection, model design, training, compile, and testing is an iterative engineering process, and key decisions are often made in the context of the overall modem design in consideration of optimization across performance, power consumption, chip area, latency, concurrency, memory efficiency, hardware reuse, etc. 

Proposal 34: Model training and conversion to executable involves device-specific optimization.

Observation 17: Cases y, z1, z2 (assuming that model structure is determined from the UE-side), and z3 allow full device specific optimization, whereas Case z4 (if model structure is determined from the UE-side) allows device specific optimization of the model structure but not model parameters, and Case z5 lacks device specific optimization.


[bookmark: _Hlk131593581]Testability aspects and lack of performance guarantee:

As the model compiling process may involve target-device-specific quantization and other optimization processes that may alter the model performance as well as how the AI/ML model interacts with the rest of the device implementation, it is important to test the fully developed/trained/compiled model at the target device. It is a lot safer to go through end-to-end device performance testing with fully developed and compiled models during the model development, in order to ensure performance requirements and interoperability with other existing features in the target device. It is dangerous to ask the target device to run models that haven’t been fully verified/tested.

In collaboration level y, as well as in collaboration level z with UE-side training (Cases z1, z3), models can be fully developed/trained offline and go through extensive testing with the rest of the device implementation prior to deployment. 

Likewise, in Case z2, the NW-side trained model may be handed over to the UE side, compiled, converted to a target-device-specific proprietary format, go through extensive testing with the rest of the target device implementation, all offline, and the converted and tested model may be stored back at the NW for model transfer. 

However, in Cases z4 and z5, the NW-side trained model is transferred to UE without compilation and testing at the target device, raising performance concerns and potential device malfunction risks.


Observation 18: In Cases y, z1, z2, and z3, models can be fully developed/trained/compiled and tested offline prior to deployment, whereas Cases z4 and z5 lack such testing, raising performance concerns and potential device malfunction risks.


Device capability for compiling and running the model:
AI/ML models delivered in a target-specific pre-compiled format (i.e., proprietary format) won’t need device’s capability for compiling the model. 
Transferring AI/ML models in an open format requires advanced UE capability. As the model is delivered in an open format, the target device becomes responsible for converting the standardized model description into an executable form. This includes run-time compiling of the model and going through various target-specific procedures such as quantization, compression, mapping to execution targets (hardware, firmware, neural accelerator, etc.), all inside the device in run-time, which would require advanced capabilities at the target device. It is unlikely for UEs in the near future to have such capability. The compilation process is CPU intensive and requires tools that are better optimized offline.

Observation 19: Model transfer in an open-format (Cases z3, z4, and z5) requires advanced UE capability for compiling the model.

To avoid the dependency on such advanced UE capability, it is desirable for a NW-side trained model to be quantized and compiled offline into a proprietary format before being transferred to UE. In other words, Case z2 is preferable over Case z4. Likewise, it is desirable for a UE-side trained model to be quantized and compiled offline into a proprietary format before being stored at NW and transferred to UE. In other words, Case z1 is preferable over Case z3.

Proposal 35: Prioritize proprietary format (Cases z1 and z2) over open-format model (Cases z3 and z4) for model transfer.


Summary

Below we summarize the above discussion.

	
	Case y
	Case z1
	Case z2
	Case z3
	Case z4
	Case z5

	Preservation of UE-side proprietary design
	Yes
	Yes
	No
	No
	No
	No

	Allows device-specific model structure optimization and capability.
	Yes
	Yes
	Yes (if model structure is determined from the UE-side)
	Yes
	Yes (if model structure is determined from the UE-side)
	No

	Allows full (structure and parameters) model optimization
	Yes
	Yes
	Yes (if model structure is determined from the UE-side)
	Yes
	No
	No

	Performance concerns and potential device malfunction risks due to lack of testing of fully developed/tested/compiled model at the target device
	No
	No
	No
	No
	Yes
	Yes

	Requires advanced UE capability for compiling the model
	No
	No
	No
	Yes
	Yes
	Yes






[bookmark: _Ref118324701]Two-sided model development and training
In this section, we discuss considerations related to the development and training of two-sided models, and compare the different training types.

In collaboration level y, models are trained offline, and stored at the target device or at a server and delivered to the target device in a proprietary manner. 

For type 1 training in collaboration level y, the UE-part of the two-sided model trained by the type 1 training is delivered to the UE over-the-top in a manner transparent to air-interface signaling. For example, with offline coordination between the NW-side vendor and UE-side vendor, type 1 training may be performed at a training server and hosted at a model server, and the trained UE-part model may be delivered from the model server to the UE over-the-top in a manner transparent to air-interface signalling. Similarly, the trained NW-part model may be delivered from the model server to the gNB over-the-top.

For type 2 or type 3 training, the UE-side vendor is directly involved in the training process of the UE-part, and the NW-side vendor is directly involved in the training process of the NW-part. Hence, it is natural for the UE-vendor to compile, test and store the UE-part model for delivery, and similarly on the NW-side. 

Considering these aspects, we make the following observation:

Observation 20: Training type 1 (with device-specific encoder), training type 2, and training type 3 are all applicable to both collaboration level y and level z.


Our companion paper R1-2305329 has in-depth discussion of various training types of two-sided models. Table 3 below summarizes the findings.


Table 3: Comparison of training types for two-sided models
	
 
 
 
	Type 1
	Type 2
	Type 3
	NW-first Gradient exchange sequential

	
	NW-sided
	UE-sided
	Level Y
	
	NW first
	UE first
	

	
	Device agnostic
	Device specific (z2)
	Device specific (z4)
	
	
	
	
	
	

	Defining assumptions of each training type column

	Device specificity of encoder (specific / agnostic)?
	Agnostic
	Specific
	Specific
	Specific
	Specific
	Specific
	Specific
	Specific
	Specific

	Collaboration level
	z5
	z2
	z4
	z
	y
	y
	y
	y
	y

	Encoder training vendor (NW-vendor / UE-vendor / other)?
	NW-vendor
	NW-vendor
	NW-vendor
	UE-vendor
	UE-side / NW-side / neutral site
	UE-vendor
	UE-vendor
	UE-vendor
	UE-vendor

	Decoder training vendor (NW-vendor / UE-vendor / other)?
	NW-vendor
	NW-vendor
	NW-vendor
	UE-vendor
	UE-side / NW-side / neutral site
	NW-vendor
	NW-vendor
	NW-vendor
	NW-vendor

	Model transfer
	NW to UE
	NW to UE
	NW to UE
	UE to NW
	None
	None
	None
	None
	None

	Multi-vendor joint training assumption
	1 NW and multiple UE vendors
	Not applicable

	Data collection for decoder training
	At NW
	At NW
	At NW
	Proprietary
	Proprietary
	At NW or proprietary
	At NW or proprietary
	Shared by UE-side
	At NW or proprietary

	Data collection for encoder training
	At NW
	At NW
	At NW
	Proprietary
	Proprietary
	At NW or proprietary
	Shared by NW-side
	Proprietary
	Proprietary

	Properties of each training type

	Whether model can be kept proprietary
	No
	No
	No
	No
	No
	Yes
	Yes
	Yes
	Yes

	Whether require privacy-sensitive dataset sharing
	No
	No
	No
	No
	No
	No
	No
	No
	No

	Flexibility to support cell/site/scenario/configuration specific model
	Yes
	Yes
	Yes
	Yes, with assistance info / vendor collaboration
	Yes, with assistance info / vendor collaboration
	Yes
	Yes
	Yes, with assistance info / vendor collaboration
	Yes

	Whether gNB specific optimization is allowed
	Yes
	Yes
	Yes
	No
	Yes
	Yes
	Yes
	Yes
	Yes

	Whether device specific optimization is allowed
	No
	Yes
	No
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Whether the model is fully tested before deployment
	No
	Yes
	No
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Whether compilation capability can be avoided
	No
	Yes
	No
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Model update flexibility after deployment
	Yes
	Parameter update  Yes
Structure update  No
	No
	No
	No
	Yes
	Yes
	Yes

	Feasibility of allowing UE side and NW side to develop/update models separately
	No
	No
	No
	No
	No
	No
	Yes
	Yes
	Yes

	Whether gNB can maintain/store a single/unified model for a CSI report configuration
	Yes
	Yes for decoder
No for encoder (for model transfer)
	No
	Yes
	Yes
	Yes
	Yes
	Yes

	Whether UE device can maintain/store a single/unified model for a CSI report configuration *
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Extensibility: to train new UE-side model compatible with NW-side model in use
	No
	No
	No
	No
	No
	No
	No
	No
	Yes

	Extensibility: to train new NW-side model compatible with UE-side model in use
	No
	No
	No
	No
	No
	No
	No
	Yes
	No


	Whether training data distribution can match the inference device 
	No
	Yes**
	Yes**
	Yes
	Yes
	Yes**
	Yes**
	Yes
	Yes


	Software/hardware compatibility (Whether device capability can be considered for model development)
	No
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes



* “Whether UE device can maintain/store a single/unified model for a CSI report configuration” : In some cases, a UE may need to switch to a different encoder when the NW vendor changes upon handover; however, since the wording says "for a CSI report configuration", we have assumed this case is not included in the question.

** “Whether training data distribution can match the inference device” : Dataset should be categorized per device type during data collection, otherwise the answer is "No". 
Based on the table, we make the following observations.

Observation 21: Type 1 training with device-agnostic encoder would result in a UE-side model that:
· is not optimized in a device-specific manner for the intended UE-side device, 
· assumes a structure and input format that is not compatible with the UE-side implementation capabilities, and
· may have sub-optimal performance due to a discrepancy between the training and inference data distribution due to device-side variations.

Observation 22: For Type 3 (separate) training, the engineering effort of adding a new UE type or new UE-side vendor is contained and does not propagate to other vendors even if the NW-side or UE-side use a common model for multiple models on the opposite side.

The discussion above summarizes the pros and cons of the different training approaches. However, the overall framework for training two-sided models need not be restricted to one of the training types. The framework has to accommodate various aspects such as new vendors, new device types, new cell-sites, and the need for backward compatibility of the model to already deployed models on the other side. Taking these into consideration, we have the following proposal.

Proposal 36: Adopt the following two-sided model development/training framework:
Case 1: Initial (non-backward-compatible) development/training of “nominal encoder + nominal decoder”
· The use of the nominal encoder at the UE-side is not mandated
· If needed, UE-side may implement a different proprietary encoder based on this decoder using Case 2.
· As the encoders are only nominal, input used in the training process is only a nominal input. The actual input to the CSI encoders may be different and of proprietary choice.
· The use of the nominal decoder at the NW-side is not mandated
· If needed, NW-side may implement a different proprietary decoder based on this encoder using Case 3.
Case 2: Encoder development/training to be interoperable with existing decoders (e.g., encoders for new UEs or updating encoders for existing UEs):
· UE-side vendor trains new encoders based on the existing decoders. 
· Infra vendor should make the existing decoders available (via either a run-time image or an API for training) for the encoder training.
Case 3: Decoder development/training to be interoperable with existing encoders (e.g., decoders for new cell sites or updating decoders for existing cell sites):
· Network-side vendor trains new decoders based on the existing encoders.
· FFS: Need for encoder availability for decoder training


Conclusions
In this paper, we discussed general aspects for AI/ML framework for Rel-18 SI and made the following observations and proposals.

Proposal 1: Adopt the general AI/ML framework diagram shown in Figure 1.

Proposal 2: Model storage can be necessary for the general AI/ML framework to reflect all cases in “Model transfer/delivery agreement” in RAN1 #112.

Proposal 3: Similar to the UE capability signaling for existing features, UE may indicate the static envelope configuration for AI/ML-enabled features representing the possible supported configurations at the UE.

Proposal 4: Functionality can be seen as a unit for activation/deactivation/switching, that may correspond to a specific configuration or a set of configurations.

Proposal 5: Functionality identification reflects conditions indicated by UE capability. 

Observation 1: Identified functionalities do not change (or may change very slowly) since they show what UE can potentially do, whereas functionalities applicable by UE may change fast since they show what UE can currently do. Therefore, the applicable functionalities may be a subset of all configured/identified functionalities.

Observation 2: Applicable functionalities at UE may change over time. Reasons may include
· Site-specific models underlying the functionalty
· Scenario- and/or dataset-specific models underlying the functionality
· UE’s memory usage, battery status, or any other hardware limitations
· Temporary unavailability of a model (e.g., time to download a model upon transparent model switching)

Proposal 6: UEs report updates on applicable functionalities as necessary or whenever NW inquires.

Proposal 7: The source gNB may request UE to provide the functionalities applicable by UE for the target and candidate cells in case of handover. Alternatively, applicable functionalities may be requested by the target cell.

Proposal 8: 
	Meta information
	Supplemental information being provided about a model during model identification process.



Observation 3: Applicable models at UE may change over time. Reasons may include
· UE’s memory usage, battery status, or any other hardware limitations
· Temporary unavailability of a model (e.g., time to download a model upon transparent model switching)

Proposal 9: UEs can utilize the identified model IDs to indicate the applicable models at one time to the network. 

Proposal 10: Adopt the three Types of model identification categories – Type A, B1, and B2.

Observation 4: Updated model identification may be used to identify a new model that is related to a previously identified model via parameter update. Model description information for updated model identification can be mostly inherited from the previously identified model. 

Proposal 11: Consider the Table 1 to associate “initial model identification” and “updated model identification” with model identification types.

Table 1: Model identification types with initial and update model identification
	
	Initial model identification
	Updated model identification

	Type A
	Applicable 
	Applicable

	Type B1
	Applicable
	Applicable

	Type B2
	Not applicable
	Applicable



Proposal 12: Deprioritize B1 for initial model identification.

Proposal 13: Deprioritize further discussion of Type B1 for updated model identification.

Proposal 14: During the initial model identification procedure, the network should map the provided meta information with the assigned ID for subsequent operations. 

Observation 5: Functionalities are created according to information exchange between UEs and NW via over-the-air signaling. If model identification happens offline then model description information cannot have related functionality.

Proposal 15: Model description information may not contain the related functionality if model identification is done offline since functionalities can be created with over-the-air signaling.

Proposal 16: Consider Table 2 for configurations and additional conditions of the relevant sub-use cases.
Table 2: Configurations and additional conditions for sub-use cases
	
	Conditions of a Feature/FG available for functionality 
	Additional conditions (e.g., scenarios, sites, and datasets)

	CSI compression
	Configuration related to CSI feedback analogous to legacy framework (e.g., CSI-RS measurement config, CSI reporting config – subband, antenna port layout, rank restriction, payload configuration)
	Pairing ID to identify compatible UE-part; Other ID for network settings / scenario / site / dataset, if not captured in pairing ID.

	Spatial domain beam prediction
& Temporal domain beam prediction
	Configurations for Set A, Set B (including configuration of associated RS and associated signaling/report)
[Assistance information from NW to UE, including codebook ID, association/mapping/relationship between beams within Set A and beams within Set B (e.g., relative beam pointing angles of beams within Set A and beams within Set B), cell ID]
	[Assistance information from NW to UE, including codebook ID, association/mapping/relationship between beams within Set A and beams within Set B (e.g., relative beam pointing angles of beams within Set A and beams within Set B), cell ID]

	Direct AI/ML positioning
	Assistance data/information considered in legacy NR-RAT UE-based positioning  (e.g. DL PRS config., etc.)  (from LMF to UE)

	Validity area for direct AI/ML positioning  (expressed as zone info [lat./long./alt.] or cell-ID[phy./global]) (from UE to LMF and/or from LMF to UE)
 

	AI/ML-assisted positioning
	Assistance data/information considered in legacy NR-RAT UE-assisted positioning (e.g. DL PRS config., reporting config. etc.) and new measurement reporting type(s) and configurations (from LMF to UE)

	Validity area for AI/ML assisted positioning (expressed as zone info [lat./long./alt.] or cell-ID[phy./global]) (from UE to LMF and/or from LMF to UE)



Proposal 17: Functionality-based LCM is applicable to UE-side models in Collaboration Level y.

Proposal 18: Functionality activation, deactivation and switching are NW implementation based on identified functionalities assocociated with UE capability and do not need to be studied in this agenda item 9.2.1.

Proposal 19: NW can provide dataset ID for additional conditions that are not a part of configurations.

Proposal 20: The model ID and associated model description information can be utilized for various LCM steps for model management and control purposes.

Proposal 21: Models are identified by model IDs, and associated meta information known at the network is used for selection of the right model at the inference time.
 
Proposal 22: Model-ID-based LCM is useful for one-sided models when additional conditions such as scenarios, datasets, custom configurations are addressed outside specification, via vendor collaboration.

Proposal 23: Model-ID-based LCM is applicable for both one-sided and UE-part of two-sided models. 

Proposal 24: Model-ID-based LCM is applicable to Collaboration Level z.

Observation 6: Training/validation dataset should be collected with sufficient coverage. Any variations/events that can be expected to be encountered during inference should be collected and made into the training/validation dataset.

Observation 7: Performance issues due to insufficient training/validation dataset coverage can be detected via background monitoring, for example, by direct KPI monitoring at the training entities, indirect KPI monitoring from the Network, and/or KPI monitoring from UEs. The monitoring result from NW/UE can be reported to the training entities. The monitoring can be non-real-time, and the model may be re-trained using an updated dataset that has better coverage.

Observation 8: RAN4 tests are primary means to ensuring that the AI/ML model design and offline training are satisfactory.

Observation 9: Performance issues due to a bad model design/training can be detected via background monitoring, for example, by direct KPI monitoring at the training entities, indirect KPI monitoring from the Network, and/or KPI monitoring from UEs. The monitoring result from NW/UE can be reported to the training entities. The monitoring can be non-real-time, and the model may be re-trained to meet performance requirement.

Proposal 25: Model selection / switching should be based on well-defined conditions that are available during inference. Model monitoring is not a desirable mean for model selection / switching due to potentially high complexity, overhead, and/or latency.

Observation 10: Performance issues due to persistent imperfect model selection/switching can be detected via background monitoring, for example, by direct KPI monitoring at the training entities, indirect KPI monitoring from the Network, and/or KPI monitoring from UEs. The monitoring result from NW/UE can be reported to the training entities. The monitoring can be non-real-time, and the model switching trigger and models may be re-developed / re-trained to meet performance requirement.

Proposal 26: To avoid performance issues due to training and target platform differences, it is highly desirable for the trained model to be converted (quantized, compiled) and tested offline prior to being delivered to UE.

Observation 11: Performance issues due to a training and target platform difference, if untested offline, can be detected via background monitoring, for example, by direct KPI monitoring at the training entities, indirect KPI monitoring from the Network, and/or KPI monitoring from UEs. The monitoring result from NW/UE can be reported to the training entities. The monitoring can be non-real-time, and the model may be re-trained, re-quantized, or re-compiled to meet performance requirement.

Observation 12: Performance issues due to data distribution shift can be detected via background monitoring, for example, by direct KPI monitoring at the training entities, indirect KPI monitoring from the Network, and/or KPI monitoring from UEs. The monitoring result from NW/UE can be reported to the training entities. The monitoring can be non-real-time, and the model may be re-trained using an updated dataset that has a new shifted distribution.

Observation 13: With proper dataset construction, unexpected events should occur rarely.

Observation 14: Performance issues due to unexpected events can be detected via background monitoring, for example, by direct KPI monitoring at the training entities, indirect KPI monitoring from the Network, and/or KPI monitoring from UEs. The monitoring result from NW/UE can be reported to the training entities. The monitoring can be non-real-time, and the model may be re-trained using an updated dataset that incorporates the unexpected events.

Proposal 27: Real-time performance monitoring that incurs high overhead, high complexity, or high latency should be deprioritized.

Proposal 28: Study feasibility of RAN4-like tests over-the-air on deployed UEs.

Observation 15: 3GPP relies on RAN1 to standardize the physical layer features as described above. Other groups standardize how the control plane signaling, user plane data and logging are performed and transported throughout the network (along with many other network features).

Proposal 29:  Mechanism for training data collection needs architectural considerations and should be handled by other working groups. 

Proposal 30: For data collection for model training, UE-side may take auxiliary inputs such as SNR, Doppler, sensor measurements, etc. that do not need to be standardized.

Proposal 31: Model training needs to consider feasibility of disclosing proprietary model information to the other side.

Observation 16: Cases y and z1 can preserve UE-side proprietary design, whereas Cases z2, z3, z4 and z5 do not preserve UE-side proprietary design.

Proposal 32: Model structure design needs to consider device-specific design optimization and capability.

Proposal 33: Deprioritize Case z5.

Proposal 34: Model training and conversion to executable involves device-specific optimization.

Observation 17: Cases y, z1, z2 (assuming that model structure is determined from the UE-side), and z3 allow full device specific optimization, whereas Case z4 (if model structure is determined from the UE-side) allows device specific optimization of the model structure but not model parameters, and Case z5 lacks device specific optimization.

Observation 18: In Cases y, z1, z2, and z3, models can be fully developed/trained/compiled and tested offline prior to deployment, whereas Cases z4 and z5 lack such testing, raising performance concerns and potential device malfunction risks.

Observation 19: Model transfer in an open-format (Cases z3, z4, and z5) requires advanced UE capability for compiling the model.

Proposal 35: Prioritize proprietary format (Cases z1 and z2) over open-format model (Cases z3 and z4) for model transfer.

Observation 20: Training type 1 (with device-specific encoder), training type 2, and training type 3 are all applicable to both collaboration level y and level z.

Observation 21: Type 1 training with device-agnostic encoder would result in a UE-side model that:
· is not optimized in a device-specific manner for the intended UE-side device, 
· assumes a structure and input format that is not compatible with the UE-side implementation capabilities, and
· may have sub-optimal performance due to a discrepancy between the training and inference data distribution due to device-side variations.

Observation 22: For Type 3 (separate) training, the engineering effort of adding a new UE type or new UE-side vendor is contained and does not propagate to other vendors even if the NW-side or UE-side use a common model for multiple models on the opposite side.

Proposal 36: Adopt the following two-sided model development/training framework:
Case 1: Initial (non-backward-compatible) development/training of “nominal encoder + nominal decoder”
· The use of the nominal encoder at the UE-side is not mandated
· If needed, UE-side may implement a different proprietary encoder based on this decoder using Case 2.
· As the encoders are only nominal, input used in the training process is only a nominal input. The actual input to the CSI encoders may be different and of proprietary choice.
· The use of the nominal decoder at the NW-side is not mandated
· If needed, NW-side may implement a different proprietary decoder based on this encoder using Case 3.
Case 2: Encoder development/training to be interoperable with existing decoders (e.g., encoders for new UEs or updating encoders for existing UEs):
· UE-side vendor trains new encoders based on the existing decoders. 
· Infra vendor should make the existing decoders available (via either a run-time image or an API for training) for the encoder training.
Case 3: Decoder development/training to be interoperable with existing encoders (e.g., decoders for new cell sites or updating decoders for existing cell sites):
· Network-side vendor trains new decoders based on the existing encoders.
· FFS: Need for encoder availability for decoder training
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