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Introduction
[bookmark: _Hlk58595024]In the SID governing the AI/ML study, an initial set of use cases has been decided on for positioning accuracy enhancements in different scenarios including, e.g., those with heavy NLOS conditions, with  the following objective:

· evaluate the performance benefits of AI/ML-based algorithms with a methodology based on statistical models for link and system simulations. 

In this contribution, we provide some preliminary performance evaluation results for the direct AI ML positioning method based on the evaluation methodology and parameters agreed on in RAN1.
Background
Evaluation Methodology
In RAN1 #109-e  and RAN #110, the following agreements were made on the evaluation methodology [4]:

	Agreement
Companies are encouraged to provide evaluation results for:
· Direct AI/ML positioning
· Companies are encouraged to describe at least the following implementation details for the evaluation
· details of the channel observation used as the input of the AI/ML model inference (e.g., type and size of model input), model input acquisition and pre-processing
· AI/ML assisted positioning
· Companies are encouraged to describe at least the following implementation details for the evaluation
· details of the channel observation used as the input of the AI/ML model inference (e.g., type and size of model input), model input acquisition and pre-processing
· details of the output of the AI/ML model inference, how the AI/ML model output is used to obtain the UE’s location


Agreement
When reporting evaluation results with direct AI/ML positioning and/or AI/ML assisted positioning, proponent company is expected to describe if a one-sided model or a two-sided model is used.
· If one-sided model (i.e., UE-side model or network-side model), the proponent company report which side the model inference is performed (e.g. UE, network), and any details specific to the side that performs the AI/ML model inference.
· If two-sided model, the proponent company report which side (e.g., UE, network) performs the first part of interference, and which side (e.g., network, UE) performs the remaining part of the inference.


Agreement
As a starting point, the training, validation and testing dataset are from the same large-scale and small-scale propagation parameters setting. Subsequent evaluation can study the performance when the training dataset and testing dataset are from different settings.


Agreement
For all scenarios and use cases, the main KPI is the CDF percentiles of horizonal accuracy.
· Companies can optionally report vertical accuracy.

Agreement
The CDF percentiles to analyse are: {50%, 67%, 80%, 90%}.

Agreement
For evaluation of AI/ML based positioning, the computational complexity can be reported via the metric of floating point operations (FLOPs).
· Note: For AI/ML assisted methods, computational complexity for the AI/ML model is only one component of the overall complexity for estimating the UE’s location.
· Note: Other metrics to measure the computational complexity are not precluded. 

Agreement
For evaluation of AI/ML based positioning, the model complexity is reported via the metric of “number of model parameters”. 





In RAN1 #111, the following agreement was made:

	Agreement
Study how AI/ML positioning accuracy is affected by: user density/size of the training dataset.
Note: details of user density/size of training dataset to be reported in the evaluation.

Agreement
For both direct and AI/ML assisted positioning methods, investigate at least the impact of the amount of fine-tuning data on the positioning accuracy of the fine-tuned model.
· The fine-tuning data is the training dataset from the target deployment scenario.


Agreement
For AI/ML based positioning, company optionally evaluate the impact of at least the following issues related to measurements on the positioning accuracy of the AI/ML model. The simulation assumptions reflecting these issues are up to companies.
· SNR mismatch (i.e., SNR when training data are collected is different from SNR when model inference is performed).
· Time varying changes (e.g., mobility of clutter objects in the environment)
· Channel estimation error

Agreement
For AI/ML assisted approach, study the performance of model monitoring metrics at least where the metrics are obtained from inference accuracy of model output.


Agreement
For AI/ML assisted positioning, evaluate the three constructions:
· Single-TRP, same model for N TRPs
· Single-TRP, N models for N TRPs
· Multi-TRP (i.e., one model for N TRPs)
	Note: Individual company may evaluate one or more of the three constructions.




In RAN1 #112, the following agreements were made :
	Agreement
For both direct AI/ML positioning and AI/ML assisted positioning, companies include the evaluation area in their reporting template, assuming the same evaluation area is used for training dataset and test dataset.



Data Set Generation 
We generate the dataset based on agreements in RAN1 #109-e using the IIoT  InF-DH scenario based on the following agreements with detailed assumptions in the Appendix:

	Agreement
The IIoT indoor factory (InF) scenario is a prioritized scenario for evaluation of AI/ML based positioning. 

Agreement
For evaluation of AI/ML based positioning, at least the InF-DH sub-scenario is prioritized in the InF deployment scenario for FR1 and FR2.

Agreement
For evaluation of AI/ML based positioning, details of the training dataset generation are to be reported by proponent company. The report may include (in addition to other selected settings, if applicable):
· The size of training dataset, for example, the total number of UEs in the evaluation area for generating training dataset;
· The distribution of UE location for generating the training dataset may be one of the following:
· Option 1: grid distribution, i.e., one training data is collected at the center of one small square grid, where, for example, the width of the square grid can be 0.25/0.5/1.0 m.
· Option 2: uniform distribution, i.e., the UE location is randomly and uniformly distributed in the evaluation area. 

Agreement
If spatial consistency is enabled for the evaluation, companies model at least one of: large scale parameters, small scale parameters and absolute time of arrival, where
· the large scale parameters are according to Section 7.5 of TR 38.901 and correlation distance = [image: ] for InF (Section 7.6.3.1 of TR 38.901)
· the small scale parameters are according to Section 7.6.3.1 of TR 38.901
· the absolute time of arrival is according to Section 7.6.9 of TR 38.901

Agreement
If spatial consistency is enabled for the evaluation of AI/ML based positioning, the baseline evaluation does not incorporate spatially consistent UT/BS mobility modelling (Section 7.6.3.2 of TR 38.901).
-         It is optional to implement spatially consistent UT/BS mobility modelling (Section 7.6.3.2 of TR 38.901).


Agreement
When providing evaluation results for AI/ML based positioning, participating companies are expected to describe data labelling details, including:
· Meaning of the label (e.g., UE coordinates; binary identifier of LOS/NLOS; ToA)
· Percentage of training data without label, if incomplete labeling is considered in the evaluation
· Imperfection of the ground truth labels, if any

Agreement
For evaluation of AI/ML based positioning, study the performance impact from availability of the ground truth labels (i.e., some training data may not have ground truth labels). The learning algorithm (e.g., supervised learning, semi-supervised learning, unsupervised learning) is reported by participating companies.




AI Model and Input for Direct AI/ML positioning 
We evaluate the direct AI/ML positioning technique in which parameters from multiple gNBs serve as inputs into a neural network that directly estimates the UE position coordinates. Examples of these inputs could include the Channel Impulse Response (CIR), the Power Delay Profile (PDP), the delay profile (DP) and/or the Layer 1 Reference Signal Received Power (L1-RSRP) and what (if any) pre-processing is needed. The specific input  may have an impact on the specification. Figure 1 illustrates a block diagram with the AI model, its input and output
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Figure 1: High Level AI model
We assume a one-sided AI-model with model inference at either the UE-side (UE-based positioning) or at the network side (LMF based/UE assisted positioning or LMF based/NG-RAN assisted positioning).  Note that the training can take place at either side with the resulting model used at the side at which it is trained or  transferred to the other side. 

The complexity of the AI model is shown in the Table below:


Table 1: Model Complexity
	AI model
	FLOPs
	Trainable Parameters

	CNN model 1 (default)
	2.75G
	1.48 M

	CNN model 2
	24.95
	3.88M

	CNN model 3
	103G
	12.37M





AI Model and Input AI/ML-Assisted Positioning 
We evaluate the AI/ML-assisted positioning technique in which parameters from multiple gNBs serve as inputs into a neural network that estimates the TOA of the different channels. The input is the normalized Channel Impulse Response (CIR). Figure 1 illustrates a block diagram with the AI model, its input and output
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Figure 2: High Level AI model
We assume a one-sided AI-model with model inference at either the UE-side (UE-based positioning) or at the network side (LMF based/UE assisted positioning or LMF based/NG-RAN assisted positioning).  Note that the training can take place at either side with the resulting model used at the side at which it is trained or  transferred to the other side. We assume a multi-TRP model with 1 model for 18 TRPs.

The complexity of the AI model is shown in the Table below:

Table 2: Model Complexity
	AI model
	FLOPs
	Trainable Parameters 

	CNN
	3.1 G
	1.6 M





KPIs or Metrics
In RAN1 #109-e, the following agreement was made 

	Agreement
For all scenarios and use cases, the main KPI is the CDF percentiles of horizonal accuracy.
· Companies can optionally report vertical accuracy.

Agreement
The CDF percentiles to analyze year: {50%, 67%, 80%, 90%}.





In RAN1 #110-bis-e, the following agreement was made:

	Agreement
For evaluation of AI/ML assisted positioning, the following intermediate performance metrics are used:
· LOS classification accuracy, if the model output includes LOS/NLOS indicator of hard values, where the LOS/NLOS indicator is generated for a link between UE and TRP;
· Timing estimation accuracy (expressed in meters), if the model output includes timing estimation (e.g., ToA, RSTD).
· Angle estimation accuracy (in degrees), if the model output includes angle estimation (e.g., AoA, AoD).
· Companies provide info on how LOS classification accuracy and timing/angle estimation accuracy are estimated, if the ML output is a soft value that represents a probability distribution (e.g., probability of LOS, probability of timing, probability of angle, mean and variance of timing/angle, etc.)





Generalization and Finetuning
In RAN1 #110, to study the generalization and finetuning of the AI model, the following agreements have been made

	Agreement
To investigate the model generalization capability, at least the following aspect(s) are considered for the evaluation for AI/ML based positioning:
(a) Different drops
· Training dataset from drops {A0, A1,…, AN-1}, test dataset from unseen drop(s) (i.e., different drop(s) than any in {A0, A1,…, AN-1}). Here N>=1.
(b) Clutter parameters, e.g., training dataset from one clutter parameter (e.g., {40%, 2m, 2m}), test dataset from a different clutter parameter (e.g., {60%, 6m, 2m});
(c) Network synchronization error, e.g., training dataset without network synchronization error, test dataset with network synchronization error;
· Other aspects are not excluded.
Note: It’s up to participating companies to decide whether to evaluate one aspect at a time, or evaluate multiple aspects at the same time.

Agreement
For both direct and AI/ML assisted positioning methods, investigate at least the impact of the amount of fine-tuning data on the positioning accuracy of the fine-tuned model.
· The fine-tuning data is the training dataset from the target deployment scenario.




Additional agreements were made in RAN1 #110-bis-e, as follows:

	Agreement
To investigate the model generalization capability, the following aspect is also considered for the evaluation of AI/ML based positioning:
(e) InF scenarios, e.g., training dataset from one InF scenario (e.g., InF-DH), test dataset from a different InF scenario (e.g., InF-HH)


Agreement
For AI/ML based positioning, if an InF scenario different from InF-DH is evaluated for the model generalization capability, the selected parameters (e.g., clutter parameters) are compliant with TR 38.901 Table 7.2-4 (Evaluation parameters for InF).
· Note: In TR 38.857 Table 6.1-1 (Parameters common to InF scenarios), InF-SH scenario uses the clutter parameter {20%, 2m, 10m} which is compliant with TR 38.901.




In RAN1 #111, the following agreement was made:

	Agreement
For AI/ML assisted approach, for a given AI/ML model design (e.g., input, output, single-TRP vs multi-TRP), identify the generalization aspects where model fine-tuning/mixed training dataset/model switching  is necessary



In RAN1 #112-bis, the following agreement was made: 
	Agreement
For both the direct AI/ML positioning and AI/ML assisted positioning, study the model input, considering the tradeoff among model performance, model complexity and computational complexity.
· The type of information to use as model input. The candidates include at least: time-domain CIR, PDP.
· The dimension of model input in terms of NTRP, Nt, and Nt’.
· Note: For the direct AI/ML positioning, model input size has impact to signaling overhead for model inference.


Agreement
For direct AI/ML positioning, study the performance of model monitoring methods, including:
· Label based methods, where ground truth label (or its approximation) is provided for monitoring the accuracy of model output.
· Label-free methods, where model monitoring does not require ground truth label (or its approximation).
Agreement
For AI/ML assisted approach, study the performance of label-free model monitoring methods, which do not require ground truth label (or its approximation) for model monitoring.


Agreement
For direct AI/ML positioning, study the impact of labelling error to positioning accuracy  
· The ground truth label error in each dimension of x-axis and y-axis can be modeled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 
· Value L is up to sources. 
· Other models are not precluded
· [Whether/how to study the impact of labelling error to label-based model monitoring methods]
· [Whether/how to study the impact of labelling error for AI/ML assisted positioning.]




In RAN1 #112-bis-e, the following agreements were made
	Agreement
For evaluation of both the direct AI/ML positioning and AI/ML assisted positioning, company optionally adopt delay profile (DP) as a type of information for model input.
· DP is a degenerated version of PDP, where the path power is not provided.



Agreement
For the evaluation of AI/ML based positioning, the study of model input due to different number of TRPs include the following approaches. Proponent of each approach provide analysis for model performance, signaling overhead (including training data collection and model inference), model complexity and computational complexity.
· Approach 1: Model input size stays constant as NTRP=18. The number of TRPs (N’TRP) that provide measurements to model input varies. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs do not provide measurements to model input, i.e., measurement value is set to 0.
· Approach 1-A. The set of TRPs (N’TRP) that provide measurements is fixed.
· Approach 1-B. The set of TRPs (N’TRP) that provide measurements can change dynamically.
· Note: for Approach 1, one model is provided to cover the entire evaluation area.
· Approach 2: The TRP dimension of model input is equal to the number of TRPs (N’TRP) that provide measurements as model input. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs are ignored by the given model. For a given AI/ML model, the set of TRPs (N’TRP) that provide measurements is fixed. 
· For Approach 2: one model can be provided to cover the entire evaluation area, which is equivalent to deploying N’TRP TRPs in the evaluation area for positioning if ignoring the potential inference from the remaining (18  N’TRP) TRPs.
· For Approach 2, if Nmodel (Nmodel >1) models are provided to cover the entire evaluation area, the total complexity (model complexity is the summation of the Nmodel models.

Agreement
In the evaluation of AI/ML based positioning, if N’TRP<18, the set of N’TRP TRPs that provide measurements to model input of an AI/ML model are reported using the TRP indices shown below.
[image: ]

Agreement
For AI/ML assisted positioning with TOA as model output, study the impact of labelling error to TOA accuracy and/or positioning accuracy.
· The ground truth label error of TOA is calculated based on location error. The location error in each dimension of x-axis and y-axis can be modelled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 
· Value L is up to sources.
· Other models of labelling error are not precluded
· Other timing information, e.g., RSTD, as model output is not precluded.




Evaluation Results
Evaluation Options
The synthetic dataset used in this contribution is generated with the options in the Table below. 

Table 3: General Assumptions/Options
	Scenario
	InF-DH

	Training/Validation Data Set Size
	47500, 23750, 9500

	Testing Data Set Size
	2500, 1250, 500

	UE Distribution
	uniform distribution, i.e., the UE location is randomly and uniformly distributed in the evaluation area

	Spatial Consistency
	We model spatial consistency for the Large Scale Parameters, Small scale Parameters and  Absolute Time of Arrival
We do not model spatial consistency for UT/BS mobility modeling 

	Factory Size
	40m x 100m, 
60 m x 120m

	Input Data
	Direct AI Model:

CIR ~ [18 x 256 x 2] ~ [#  gNBs x # taps x Real/Imaginary]
The # of gNBs indicates the channel from each gNB.
The # of taps is truncated if greater than 256
The third dimension captures the real and imaginary values of the channel taps
NOTE: CIR for each gNB is the CIR of {1Tx x 1Rx} pair from the {32 Tx x 4 Rx} channel based on the channel assumptions

PDP ~ [18 x 256 x 1] ~[#  gNBs x # taps x RSRPP]

DP ~ [18 x 256 x 1] ~[#  gNBs x # taps x flag/RSRP]

AI assisted model: 

Same input but normalized to a power of 1.


	Ground Truth Label
	Direct AI Model:
Perfect UE coordinates with 100% of the training data labeled

AI assisted model: 
Perfect TOA of UE from gNB

	Synchronization
	The network synchronization error, per UE dropping, is defined as a truncated Gaussian distribution of (T1 ns) rms values between an eNB and a timing reference source which is assumed to have perfect timing, subject to a largest timing difference of T2 ns, where T2 = 2*T1
–	That is, the range of timing errors is [-T2, T2]
–	T1:	0ns (perfectly synchronized), 50ns (Optional)

	Learning Algorithm
	Supervised learning

	Generalization
	· Different drops
· Different clutter parameters
· gNB synchronization error
· InF scenario (InF-SH)
· SNR
One aspect at a time is evaluated

	Channel Size
	# of Taps: 64, 128, 256: First N consecutive taps
# of TRPs: 4, 9, 18 : Approach 1b with TRPs 0,…,17



Evaluation of Direct AI/ML Positioning

No Model Generalization: UE distribution Area, User Density, Model Input, Model Complexity
In this sub-section, we evaluate the following:
· User distribution Area: 100m x 40 m (convex hull of BS, default), 120m x 60m (entire factory)
· User Density Modelled as Number of UEs in factory with a fixed area: 50000 (default), 25000, 10000
· Model Complexity: CNN1 (1.48M parameters, 2.75 GFLOPS, default) CNN2 (3.88M parameters, 24.95 GFLOPs), CNN3 (12.37M parameters, 103 GFLOPs)
· Model Input: CIR (default), PDP, DP

The evaluation results can be found in the tables below.

Table 4: Direct AI/ML Positioning: Evaluation results for AI/ML model deployed on UE or Network side, without model generalization, with different CNNs, UE distribution area = 120x60 m, Model Input CIR
UE density, model complexity Evaluation

	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	47500
	2500
	1.48 M
	2.75G
	1.57m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	47500
	2500
	3.88 M
	24.95G
	0.923m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	47500
	2500
	12.37M
	103G
	0.745m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	23750
	1250
	1.48 M
	2.75G
	1.6043m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	23750
	1250
	3.88 M
	24.95G
	1.432m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	23750
	1250
	12.37M
	103G
	1.054m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	9500
	500
	1.48 M
	2.75G
	2.51m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	9500
	500
	3.88 M
	24.95G
	2.019m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	9500
	500
	12.37M
	103G
	1.632m




Table 4: Direct AI/ML Positioning: Evaluation results for AI/ML model deployed on UE or Network side, without model generalization, with a CNN, UE distribution area = 100x40 m, Model Input CIR
UE density, UE distribution Area Evaluation

	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Factory
Area
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	Length x Breath
	AI/ML

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	47500
	2500
	1.48 M
(default)
	2.75G
(default)
	100x 40
	0.884m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	23750
	1250
	1.48 M
(default)
	2.75G
(default)
	100x 40
	1.234m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	9500
	500
	1.48 M
(default)
	2.75G
(default)
	100x 40
	1.860m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	47500
	2500
	1.48 M
	2.75G
	120 x 60
	1.57m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	23750
	1250
	1.48 M
	2.75G
	120 x 60
	1.6043m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	9500
	500
	1.48 M
	2.75G
	120 x 60
	2.51m



Table 5: Direct AI/ML Positioning: Evaluation results for AI/ML model deployed on UE or Network side, without model generalization, with a CNN, UE distribution area = 100x40 m, Model Input Comparison Study (CIR, PDP, DP)
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	47500
	2500
	1.48 M
(default)
	2.75G
(default)
	0.884m

	Delay Profile
[18,1,256,1]
DP
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	47500
	2500
	1.48 M
	2.75G
	0.7289m

	Power Delay Profile
[18,1,256,1]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	47500
	2500
	1.48 M
	2.75G
	0.7441m






Observation 1: For Direct AI/ML positioning
· As the complexity of the model increases, the positioning error performance improves.
· The performance of AI/ML positioning with the evaluation area as the convex hull of the horizontal BS deployment shows better performance than that with the entire factory as evaluation area. 
· Use of the PDP and DP as input shows improved performance compared with using the CIR as input for the default model
· NOTE: This may be model specific and should be investigated. 
· In the case of a uniform distribution of the UEs in the factory, as the user density increase, the positioning performance improves.

Proposal 1: Investigate the effect with a non-uniform distribution of users.


Model Generalization:  Drops, Clutter, Factor Scenario, Network Synchronization, SNR

In the tables below, we evaluate the direct AI/ML positioning performance with model generalization and model finetuning for the following scenarios: 
· Drops: Train (drop seed 1), Test (drop seed 2)
· Clutter: Train (60%, 6, 2), Test (40%, 4, 2)
· Factory Scenario: Train (InF-DH), Test (InF-SH)
· Network Synchronization: Train (Ideal), Test (non-ideal)
· SNR: Test (+ 10 dB), Test (-10dB) 
The evaluation results can be found in the tables below.

Table 7: Direct AI/ML Positioning: Evaluation results for AI/ML model deployed on UE or Network side, with model generalization, with  CNN1, UE distribution area = 100x40 m

	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 2
	47500
	2500
	1.48M
	2.75G
	4.665m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	60%,6,2
	40%,2,2
	47500
	2500
	1.48M
	2.75G
	5.076m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Ideal n/w synch
	Non-ideal network sync
	47500
	2500
	1.48M
	2.75G
	10.9103m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	InF-DH
	InF-SH
	47500
	2500
	1.48M
	2.75G
	6.037m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop1 
-3 dB
	47500
	2500
	1.48M
	2.75G
	1.1739

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop1 
-6 dB
	47500
	2500
	1.48M
	2.75G
	1.1739

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop1 
-10 dB
	47500
	2500
	1.48M
	2.75G
	13.4713

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop1 +10 dB
	47500
	2500
	1.48M
	2.75G
	10.6156



Observation 2
· Synchronization and SNR levels have the largest negative effect on the generalization performance of the direct AI-ML model
· An SNR mismatch between the training data and inference input shows increasing performance loss with increasing mismatch as expected.
· Training with a lower SNR data set seems to provide some benefits in the case there is an SNR mismatch between the training and test data.


In the table below, we evaluate the direct AI/ML positioning performance with model finetuning for scenarios with different drops, clutter, model, synchronization

Table 8: Direct AI/ML Positioning: Evaluation results for AI/ML model deployed on UE or Network side, with model finetuning, with CNN1, UE distribution area = 100x40 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop1
	Drop 2
	Drop2
	47500
	5000
	2500
	1,480,140
	2.75G
	3.69m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop1
	Drop 2
	Drop2
	47500
	2500
	2500
	1,480,140
	2.75G
	4.02m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	60%,6,2
	40%,2,2
	40%,2,2
	47500
	5000
	2500
	1,480,140
	2.75G
	4.41m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	60%,6,2
	40%,2,2
	40%,2,2
	47500
	2500
	2500
	1,480,140
	2.75G
	4.81m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Ideal n/w synch
	Non-ideal network sync
	Non-ideal network sync
	47500
	5000
	2500
	1,480,140
	2.75G
	8.22m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Ideal n/w synch
	Non-ideal network sync
	Non-ideal network sync
	47500
	2500
	2500
	1,480,140
	2.75G
	8.62m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	InF-DH
	InF-SH
	InF-SH
	47500
	5000
	2500
	1,480,140
	2.75G
	5.08m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	InF-DH
	InF-SH
	InF-SH
	47500
	2500
	2500
	1,480,140
	2.75G
	4.8m



Observation 3
· Finetuning improves the performance with more improvement as the data size increases. 
· Note: Results may improve with optimization
· Study the relative performance between model finetuning and model training with the same amount of data. 

Data Size (Number of TRPs)

We evaluate the direct AI/ML positioning performance assuming the N TRPs with the highest RSRP are used in the model where N = 4, 9 or 18 and using Option 1b. This means the all the TRPs in the factory are used depending on the location of the UE.

Table 10: Direct AI/ML Positioning: Evaluation results for AI/ML model deployed on UE or Network side, using different # of TRPs , with CNN1, UE distribution area = 100x40 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
18 TRP
	Drop 1
18 TRP
	47500
	2500
	1,480,140
	2.75G
	0.884m

	CIR
[9,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
9 TRP
	Drop 1
9 TRP
	47500
	2500
	1,480,140
	2.75G
	1.0629

	CIR
[4,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
4 TRP 
	Drop 1
4 TRP
	47500
	2500
	1,480,140
	2.75G
	1.4959

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
18 TRP
	Drop 1
18 TRP
	23750
	1250
	1,480,140
	2.75G
	1.234m

	CIR
[9,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
9 TRP
	Drop 1
9 TRP
	23750
	1250
	1,480,140
	2.75G
	1.2960

	CIR
[4,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
4 TRP 
	Drop 1
4 TRP
	23750
	1250
	1,480,140
	2.75G
	1.8235

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
18 TRP
	Drop 1
18 TRP
	9500
	500
	1,480,140
	2.75G
	1.860m

	CIR
[9,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
9 TRP
	Drop 1
9 TRP
	9500
	500
	1,480,140
	2.75G
	1.9717m

	CIR
[4,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
4 TRP 
	Drop 1
4 TRP
	9500
	500
	1,480,140
	2.75G
	2.7403m
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Figure 3: Performance Accuracy vs. # of inputs

The # of TRPs has a direct relationship with the input needed. Note that in this case, the AI model stays the same and the parameters not used are set to zero. This can be optimized. The # of TRPs affects the performance with improved performance with an increased # of TRPs. 
· The difference between 18 and 9 TRPs is minimal
· The difference between 9 and 4 TRPs is quite large
Note that the performance loss can be regained by using a mix of CIRs and RSRPs as demonstrated in 

Observation 4: For direct AI-ML positioning, as the # of TRPs reduces, the positioning performance suffers. It may be possible to regain some of those losses by mixing different input types e.g. CIR for X TRPs and L1-RSRP for Y TRPs

Proposal 2: Study the performance using mixed inputs

Data Size (Number of consecutive taps)
In the table below, we evaluate the positioning error performance based on the # of consecutive taps in the input to the AI/ML model.

Table 10: Direct AI/ML Positioning: Evaluation results for AI/ML model deployed on UE or Network side, using a different # of consecutive taps , with a CNN, UE distribution area = 100x40 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
18 TRP
	Drop 1
18 TRP
	47500
	2500
	1,480,140
	2.75G
	0.884m

	CIR
[18,1,128,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
9 TRP
	Drop 1
9 TRP
	47500
	2500
	1,480,140
	2.75G
	0.884

	CIR
[18,1,64,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
4 TRP 
	Drop 1
4 TRP
	47500
	2500
	1,480,140
	2.75G
	1.1206



Observation 5: For direct AI/ML based positioning
· Reducing the number of taps from 256 to 128 does not affect the performance
· Reducing the number of taps to 64 starts affecting the performance negatively
· Reducing the number of taps ultimately reduces the overhead by the same factor

Proposal 3: Investigate effect of feedback of the significant taps only for further overhead reduction.

Label Quality

In RAN1 #112, the following agreement was made [8]:
	Agreement
For direct AI/ML positioning, study the impact of labelling error to positioning accuracy  
· The ground truth label error in each dimension of x-axis and y-axis can be modeled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 
· Value L is up to sources. 
· Other models are not precluded




We evaluate the direct AI/ML positioning performance assuming L = 0.25, 0.5 and 1.


Table 10: Direct AI/ML Positioning: Evaluation results for AI/ML model deployed on UE or Network side, using difference labeling error= L , with a CNN, UE distribution area = 100x40 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
Label error = 0
	Drop 1

	47500
	2500
	1.48M
	2.75G
	0.884m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
Label error = 0.25
	Drop 1

	47500
	2500
	1.48M
	2.75G
	0.8410m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
Label error = 0.5
	Drop 1

	47500
	2500
	1.48M
	2.75G
	1.1291m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
Label error = 1
	Drop 1

	47500
	2500
	1.48M
	2.75G
	1.1431

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
Label error = 2
	Drop 1

	47500
	2500
	1.48M
	2.75G
	1.1745

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
Label error = 0
	Drop 1

	23750
	1250
	1.48M
	2.75G
	1.234

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
Label error = 0.25
	Drop 1

	23750
	1250
	1.48M
	2.75G
	1.0545

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
Label error = 0.5
	Drop 1

	23750
	1250
	1.48M
	2.75G
	1.0981

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
Label error = 1
	Drop 1

	23750
	1250
	1.48M
	2.75G
	1.1775

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
Label error = 2
	Drop 1

	23750
	1250
	1.48M
	2.75G
	1.5370

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
Label error = 3
	Drop 1

	23750
	1250
	1.48M
	2.75G
	2.1081

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
Label error = 4
	Drop 1

	23750
	1250
	1.48M
	2.75G
	3.0328

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
Label error = 5
	Drop 1

	23750
	1250
	1.48M
	2.75G
	3.9595

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
Label error = 0
	Drop 1

	9500
	500
	1.48M
	2.75G
	1.860m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
Label error = 0.25
	Drop 1

	9500
	500
	1.48M
	2.75G
	1.6032m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
Label error = 0.5
	Drop 1

	9500
	500
	1.48M
	2.75G
	1.5806m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
Label error = 1
	Drop 1

	9500
	500
	1.48M
	2.75G
	1.7671m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
Label error = 2
	Drop 1

	9500
	500
	1.48M
	2.75G
	2.0548m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
Label error = 3
	Drop 1

	9500
	500
	1.48M
	2.75G
	2.6621m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
Label error = 4
	Drop 1

	9500
	500
	1.48M
	2.75G
	3.5203m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
Label error = 5
	Drop 1

	9500
	500
	1.48M
	2.75G
	4.5676m
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Figure 4: Performance Accuracy vs label accuracy

From the results shown, the label error has different effects on the overall performance depending on the error performance with perfect label error. 

We observe that label error that is on the order of (less than or equal to) the positioning accuracy without label errors does not hurt (or even helps) the overall performance. Label error larger than the order of the positioning accuracy without label errors hurts overall performance as expected. This implies that the expected label error is needed during data collection for training and for  performance monitoring. 

Observation 6: 
· label error that is on the order of (less than or equal to) the positioning accuracy without label errors does not hurt (or even helps) the overall performance. 
· Label error larger than the order of the performance error hurts overall performance as expected. 

Proposal 4:
· The expected label error is needed during data collection for training and for  performance monitoring. 


Evaluation of AI/ML Assisted Positioning
No Model Generalization: User Density, Model Input
In this section, we evaluate the baseline AI/ML-assisted Positioning (TOA estimation) performance in which the AI-ML model estimates the TOA of the UE from at least 3 base stations. This output is then fed into a traditional positioning estimation algorithm to estimate the position of the UE. We assume Multi-TRP  model (i.e., one model for N TRPs)

In this sub-section, we evaluate the following:
· User Density Modelled as Number of UEs in factory with a fixed area: 50000 (default), 25000, 10000
· Model Input: CNN1 (1.48M parameters, 2.75 GFLOPS, default) CNN2 (3.88M parameters, 24.95 GFLOPs), CNN3 (12.37M parameters, 103 GFLOPs)
· Model Input: CIR (default), PDP, DP

The evaluation results can be found in the tables below.

Table 7:  AI/ML-assisted Positioning (TOA estimation): Evaluation results for AI/ML model deployed on UE or Network-side, without model generalization, with a CNN, UE distribution area = 100x40 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 1
	47500
	2500
	1.6 M
	3.1 G
	1.138m

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 1
	23750
	1250
	1.6 M
	3.1 G
	1.396m

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 1
	9500
	500
	1.6 M
	3.1 G
	1.748m



For the AI-ML assisted method, the mean absolute TOA error with a data set of size 47500 is 1.22 ns equivalent to 0.36 meters.

Observation 7: Similar to the direct AI/ML positioning, increased user density reflected by increasing the number of UEs in the uniformly distributed UE assumption, results in an improvement in performance.



Table 5: AI/ML Assisted Positioning: Evaluation results for AI/ML model deployed on UE or Network side, without model generalization, with a CNN, UE distribution area = 100x40 m, Model Input Comparison Study (CIR, PDP, DP)
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 1
	47500
	2500
	1.6 M
	3.1 G
	1.138m

	Delay Profile
[18,1,256,1]
DP
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 1
	47500
	2500
	1.6 M
	3.1 G
	0.9183m

	Power Delay Profile
[18,1,256,1]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 1
	9500
	500
	1.6 M
	3.1 G
	0.9490m




Observation 8:
· For AI/ML assisted positioning, the use of the PDP and DP as input shows improved performance compared with using the CIR as input for the default model
· NOTE: This may be model specific and should be investigated. 



Model Generalization:  Drops, Clutter, Factor Scenario, Synchronization, SNR
In the tables below, we evaluate the direct AI/ML positioning performance with model generalization and model finetuning for the following scenarios: 
· Drops: Train (drop seed 1), Test (drop seed 2)
· Clutter: Train (60%, 6, 2), Test (40%, 4, 2)
· Factory Scenario: Train (InF-DH), Test (InF-SH)
· Network Synchronization: Train (Ideal), Test (non-ideal)
· SNR: Test (+ 10 dB), Test (-10dB) 

The evaluation results can be found in the tables below.


Table 8: AI/ML-assisted Positioning (TOA estimation): Evaluation results for AI/ML model deployed on UE/network-side, model generalization, with a CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 2
	47500
	2500
	1,480,140
	2.75G
	3.3219m

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	60%,6,2
	40%,2,2
	47500
	2500
	1,480,140
	2.75G
	3.9532m

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Ideal n/w synch
	Non-ideal network sync
	47500
	2500
	1,480,140
	2.75G
	11.0172m

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	InF-DH
	InF-SH
	47500
	2500
	1,480,140
	2.75G
	3.8203m




In the table below, we evaluate the AI/ML-assisted Positioning (TOA estimation) performance with model finetuning for scenarios with different drops, clutter, model and synchronization


Table 9: AI/ML-assisted Positioning (TOA estimation):  Evaluation results for AI/ML model deployed on UE or Network side, with model finetuning, with a CNN, UE distribution area = 100x40 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop1
	Drop 2
	Drop2
	47500
	2500
	2500
	2.43
	5.12
	1.5884m

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop1
	Drop 2
	Drop2
	47500
	2500
	2500
	2.43
	5.12
	1.8724m

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	{60%,6,2}
	{40%,2,2}
	{40%,2,2}
	47500
	5000
	2500
	2.43
	5.12
	2.5522m 

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	{60%,6,2}
	{40%,2,2}
	{40%,2,2}
	47500
	2500
	2500
	2.43
	5.12
	2.7036m

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Ideal n/w synch
	Non-ideal network sync
	Non-ideal network sync
	47500
	5000
	2500
	2.43
	5.12
	4.3411m 

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Ideal n/w synch
	Non-ideal network sync
	Non-ideal network sync
	47500
	2500
	2500
	2.43
	5.12
	5.3007m

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	InF-DH
	InF-SH
	InF-SH
	47500
	5000
	2500
	2.43
	5.12
	1.8826m 

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	InF-DH
	InF-SH
	InF-SH
	47500
	2500
	2500
	2.43
	5.12
	2.1166m



Observation 9
·  AI-ML assisted positioning shows better generalization performance than the direct AI/ML case
· Finetuning improves the performance with more improvement as the data size increases 


Data Size (Number of consecutive taps)
In the table below, we evaluate the positioning error performance based on the # of consecutive taps in the input to the AI/ML model.

Table 10: AI/ML-assisted Positioning: Evaluation results for AI/ML model deployed on UE or Network side, using a different # of consecutive taps , with a CNN, UE distribution area = 100x40 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 1
	47500
	2500
	1.6 M
	3.1 G
	1.138m

	CIR
[128,1,128,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 1
	23750
	1250
	1.6 M
	3.1 G
	1.1362m

	CIR
[18,1,64,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 1
	9500
	500
	1.6 M
	3.1 G
	1.2410m



Observation 10: For AI/ML assisted positioning, when optimizing the data size by reducing the number of consecutive taps into the model
· Reducing the number of taps even to 54 does not does not affect the performance materially
· This seems to be more robust than direct AI-ML based positioning. 
· Reducing the number of taps ultimately reduces the overhead by the same factor


Label Quality
In the table below, we evaluate the positioning error performance based on the label quality.

Table 10: AI/ML-assisted Positioning: Evaluation results for AI/ML model deployed on UE or Network side, using a different # of consecutive taps , with a CNN, UE distribution area = 100x40 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
Error = 0
	Drop 1
	47500
	2500
	1.6 M
	3.1 G
	1.138m

	CIR
[256,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
Error = 0.25
	Drop 1
	23750
	1250
	1.6 M
	3.1 G
	1.1495

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
Error = 0.5
	Drop 1
	9500
	500
	1.6 M
	3.1 G
	1.1512

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
Error = 1
	Drop 1
	9500
	500
	1.6 M
	3.1 G
	1.2991

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
Error = 2
	Drop 1
	9500
	500
	1.6 M
	3.1 G
	1.1.2994




Observation 11: AI-ML assisted positioning seems to be robust to label error derived from an error in the GT location. 

Performance Monitoring
Performance monitoring can be one of the following:

· Model monitoring using statistics of measurement(s) without ground truth label
· Model monitoring based on provided ground truth label (or its approximation) 
· Model monitoring using statistics of output without ground truth  label.

We show the statistics assuming an SNR mismatch between the training data and inference data for the direct AI/ML model. 
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Figure 5: CDF of RSRP of Input
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Figure 6: CDF of difference between output and GT label
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Figure 7: CDF of output X-axis and Y-axis
From the figures, it can be seen at least in the evaluation scenario, that all three measures are suitable for identifying an > 10 dB mismatch. For less than 10 dB, using the input statistics or the statistics of the ground truth difference may be more accurate.

Observation 12: For direct AI-positioning, any of the following is suitable for performance monitoring:
· Model monitoring using statistics of measurement(s) without ground truth label
· Model monitoring based on provided ground truth label (or its approximation) 
· Model monitoring using statistics of output without ground truth  label.


Conclusion
In this contribution, we have evaluation methodology for AI_ML for positioning and presented some preliminary results showing the benefits of AI-based positioning in high NLOS scenarios. We also have made the following observations:
Observation 1: For Direct AI/ML positioning
· As the complexity of the model increases, the positioning error performance improves.
· The performance of AI/ML positioning with the evaluation area as the convex hull of the horizontal BS deployment shows better performance than that with the entire factory as evaluation area. 
· Use of the PDP and DP as input shows improved performance compared with using the CIR as input for the default model
· NOTE: This may be model specific and should be investigated. 
· In the case of a uniform distribution of the UEs in the factory, as the user density increase, the positioning performance improves.

Proposal 1: Investigate the effect with a non-uniform distribution of users.

Observation 2
· Synchronization and SNR levels have the largest negative effect on the generalization performance of the direct AI-ML model
· An SNR mismatch between the training data and inference input shows increasing performance loss with increasing mismatch as expected.
· Training with a lower SNR data set seems to provide some benefits in the case there is an SNR mismatch between the training and test data.

Observation 3
· Finetuning improves the performance with more improvement as the data size increases. 
· Note: Results may improve with optimization
· Study the relative performance between model finetuning and model training with the same amount of data. 

Observation 4: For direct AI-ML positioning, as the # of TRPs reduces, the positioning performance suffers. It may be possible to regain some of those losses by mixing different input types e.g. CIR for X TRPs and L1-RSRP for Y TRPs

Proposal 2: Study the performance using mixed inputs (e.g. L1-RSRP with reduced CIR)

Observation 5: For direct AI/ML based positioning
· Reducing the number of taps from 256 to 128 does not affect the performance
· Reducing the number of taps to 64 starts affecting the performance negatively
· Reducing the number of taps ultimately reduces the overhead by the same factor

Proposal 3: Investigate effect of feedback of the significant taps only for further overhead reduction.

Observation 6: 
· label error that is on the order of (less than or equal to) the positioning accuracy without label errors does not hurt (or even helps) the overall performance. 
· Label error larger than the order of the performance error hurts overall performance as expected. 

Proposal 4:
· The expected label error is needed during data collection for training and for  performance monitoring. 

Observation 7: Similar to the direct AI/ML positioning, increased user density reflected by increasing the number of UEs in the uniformly distributed UE assumption, results in an improvement in performance.

Observation 8:
· For AI/ML assisted positioning, the use of the PDP and DP as input shows improved performance compared with using the CIR as input for the default model
· NOTE: This may be model specific and should be investigated. 

Observation 9
·  AI-ML assisted positioning shows better generalization performance than the direct AI/ML case
· Finetuning improves the performance with more improvement as the data size increases 

Observation 10: For AI/ML assisted positioning, when optimizing the data size by reducing the number of consecutive taps into the model
· Reducing the number of taps even to 64 does not does not affect the performance materially
· This seems to be more robust than direct AI-ML based positioning. 
· Reducing the number of taps ultimately reduces the overhead by the same factor

Observation 11: AI-ML assisted positioning seems to be robust to label error derived from an error in the GT location. 

Observation 12: For direct AI-positioning, any of the following is suitable for performance monitoring:
· Model monitoring using statistics of measurement(s) without ground truth label
· Model monitoring based on provided ground truth label (or its approximation) 
· Model monitoring using statistics of output without ground truth  label.

Reference
[1] [bookmark: _Ref40195690]RP-213588, Revised SID on Study on expanded and improved NR positioning
[2] [bookmark: _Ref61720508][bookmark: _Ref101884024][bookmark: _Ref102056607][bookmark: specRelease]3GPP TR 38.857, Study on NR Positioning Enhancements; (Release 17)
[3] [bookmark: _Ref101884227][bookmark: _Ref102056617]3GPP TR 398.901, Study on channel model for frequencies from 0.5 to 100 GHz (Release 16)
[4] [bookmark: _Ref111186670]Chairman’s Notes, RAN1 #109-e, May 2022.
[5] [bookmark: _Ref115352708][bookmark: _Ref115352788]Chairman’s Notes, RAN1 #110, August 2022
[6] Chairman’s Notes, RAN1 #110-bis-e, October 2022
[7] Chairman’s Notes, RAN1 #111, November 2022
[8] [bookmark: _Ref131772957]Chairman’s Notes, RAN1 #112, February 2023
[9] R1-2204242, Evaluation on AI/ML for positioning accuracy enhancement, May 2022, Apple
[10] Chairman’s Notes, RAN1 #112-bis-e, April 2023
Simulation Assumptions

	 
	FR1 Specific Values

	Channel model
	InF-DH

	Layout 
	Hall size
	InF-DH: (baseline) 120x60 m

	
	BS locations
	18 BSs on a square lattice with spacing D, located D/2 from the walls.
-	for the small hall (L=120m x W=60m): D=20m
-	for the big hall (L=300m x W=150m): D=50m

[image: ]

	
	Room height
	10m

	Total gNB TX power, dBm
	24dBm

	gNB antenna configuration
	(M, N, P, Mg, Ng) = (4, 4, 2, 1, 1), dH=dV=0.5λ – Note 1
Note: Other gNB antenna configurations are not precluded for evaluation

	gNB antenna radiation pattern
	Single sector – Note 1

	Penetration loss
	0dB

	Number of floors
	1

	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area is the convex hull of the horizontal BS deployment.

	UE antenna height
	Baseline: 1.5m


	UE mobility
	3km/h

	Min gNB-UE distance (2D), m
	0m

	gNB antenna height
	Baseline: 8m

	Clutter parameters: {density [image: ][image: ], height [image: ][image: ],size [image: ][image: ]}
	High clutter density:
- {40%, 2m, 2m}
- {60%, 6m, 2m}
· Note: an individual company may treat {40%, 2m, 2m} as optional in their evaluation considering their specific AI/ML design.


	Note 1:	According to Table A.2.1-7 in TR 38.802
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