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Introduction
AI/ML for physical layer has gained tremendous interest in academic research in recent years. The first 3GPP SI will study the use of AI/ML technology in air interface design, through three carefully selected use cases [1]. New evaluation methodology and corresponding evaluation are required to fully understand the benefit of AI/ML in comparison with traditional methods, and the associated potential specification. 
Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels











In this paper, we focus on the evaluation of CSI feedback enhancement use case.  
Evaluation methodology 
RI determination  
RI determination plays a key role in system level throughput evaluation. 3GPP specification does not specify how RI is determined and left it for UE implementation.  

For RI determination, different methods can be used for e-type II or AI based solution as well. For e-type II, the RI determination can be:
· Option 1: Sequential approach: 
· RI is determined first, based on ideal eigen vector that optimized the PHY abstraction metric. PMI is searched based on determined RI.  
· Option 2: Joint search:
· For each rank hypothesis, search the best PMI. then select the PMI and RI combination that optimize the PHY abstraction metric. 

For AI based CSI compression, the RI determination can be: 
· Option 1: RI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation: 
· RI is determined based on ideal eigen vector that optimized the PHY abstraction metric.  
· Option 2: RI is calculated based on the output of CSI reconstruction part from the realistic channel estimation:
· For each rank hypothesis, generate CSI reconstruction part output. Then select the PMI and RI combination that optimize the PHY abstraction metric. 
· Note: CSI reconstruction part at the UE can be different comparing to the actual CSI reconstruction part used at the NW. 

And per our observation, different RI/CQI determination method can the final SLS performance quite significantly. CQI determination method was agreed to be reported based on RAN1 112bis-e agreement. Similar for RI determination, each company should report the RI determination method in the result submission, to align and fully understand the benefit of AI based CSI over e-type II, also give guidance on whether RI determination methods have specification impact or not.  

Proposal 1: When e-type II codebook is used, two options for RI determination:
· Option 1: Sequential approach. RI is determined based on ideal eigen-vector. PMI is searched based on RI. 
· Option 2: Joint approach. RI is determined based on the best PMI for each RI hypothesis.  

Proposal 2: When AI based CSI compression is used, two options for RI determination:
· Option 1: RI is determined based on ideal eigen-vector. RI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation. 
· Option 2: RI is calculated based on the output of CSI reconstruction part from the realistic channel estimation. RI is determined based on the best PMI for each RI hypothesis.  
Proposal 3: In result reporting table, add a row to describe the RI determination method for AI and e-type II separately. 
 
Layer common and rank specific model 
In RAN1 112, different layer and rank combination models have been agreed. In particular, for layer common and rank specific model, it was captured as:
· Option 3 (layer common): A unified AI/ML model is trained and applied for each layer to perform individual inference.
· FFS on the reported complexity and storage
· Note: input/output type is Precoding matrix
· Companies to report whether the setting is 
· Option 3-1: layer common and rank common (A unified AI/ML model is applied for each layer under any rank value to perform individual inference), or 
· Option 3-2: layer common and rank specific (different models applied for different rank values; for a specific rank, the same model is applied for all layers)














Layer common is mainly from training point of view where one model is trained for all layers and can be used for inferencing of all the layers. Option 3-2 layer common rank specific models indicates that different models can be applied to different rank values. However, the last sentence put a limitation that for a specific rank, the same model is applied for all layers. 

During our system level evaluation, we find overall performance depends on the accuracy of each layer, for max rank 4 feedback per UE. In many cases, the same model applied to all layers do not give the best performance. For example, we trained 4 layer-common models with CSI size of 50, 100, 150 and 200 per layer. With rank specific model, we have
· Rank 1 with CSI output size of 100
· Rank 2 with the same CSI output size of 100 model
· Rank 3 with CSI output size of 100 model, and CSI output size of 50 model. In combination gives total of 200 bits
· Rank 4 with the same CSI output size of 50 model
With current the layer specific and rank common definition, rank 3 transmission has to use either model with CSI size of 100 or 50, resulting either over selection rank 3 or under-selection of rank 3 in the final system result. Therefore we propose to remove the restriction that all layers has to use the same model. 

Proposal 4: Update layer common and rank specific option 3-2 without limiting the same model for all layers. 

· Option 3 (layer common): A unified AI/ML model is trained and applied for each layer to perform individual inference.
· Option 3-1: layer common and rank common (A unified AI/ML model is applied for each layer under any rank value to perform individual inference), or 
· Option 3-2: layer common and rank specific (different models applied for different rank values; for a specific rank, the same model is applied for all layers)
CSI compression evaluation results 
CSI compression SGCS and System level throughput  
For auto-encoder/decoder based CSI compression use case, CNN based autoencoder and transformer based auto-encoders are the two main directions for AI model design. Earlier publications are mostly CNN based [3-6]. [3] designed CsiNet which uses one convolutional layer and fully connected layer as a simple encoder, and multiple stage of refine block with skip connection at decoder. [4,5,6] fine turn the design with different filter sizes, dilation factor, number of layers etc.

Recent work has moved to transformer based auto-encoder design [7,8]. Transformer based auto-encoder has observe better gain comparing to CNN, due to its global view comparing to local view of CNN. 

For CNN based auto-encoder, we observe similar performance comparing type II codebook with low feedback bits such as config 1 and 2. However as feedback bits go higher, type II codebook performance improve faster than CNN based auto-encoder, resulting worse performance for CNN based auto-encoder in Config 5 and 6.   In this contribution, we only present transformer based autoencoder performance.  

The following evaluation assumption following agreed EVM are used. 

Table I: summary of evaluation setting

	Parameter
	Value

	Duplex, Waveform 
	FDD, OFDM 

	Carrier frequency
	2GHz  

	Bandwidth
	10MHz  

	Subcarrier spacing
	15kHz  

	Nt
	32: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

(M, N, P, Mg, Ng; Mp, Np) = (8,8,2,1,1;4,4)  for generation study only


	Nr
	4: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ

	Layout 
	21 cells, ISD: 200m for dense Urban (Macro only). 


	UE dropping
	20% outdoor, 80% indoor



To get diverse data samples, the data set for training and testing is generated with 500 random drops, each with 21 cells, 16 UEs per cell, 10 different CSI-RS measurements per UE. Per CSI-RS measurement, the frequency domain matrix size is 4x32x52. Total data set size is 500 * 21 * 16 * 10. 

Fig. 1 shows the SGCS per layer comparing AI based approach versus e-Type II codebook. Layer common approach is used in the following evaluation results, where the model weights are trained using the 1st layer eigen-vector. For layer-3 and layer-4, to have fair comparison, the traditional e-Type II codebook performance is calculated assuming no max payload size limitation, i.e., layer 3 and layer 4 scales similar as layer 2. This is for comparison purpose only since it is not the specified e-Type II codebook behavior. 
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Fig. 1 SGCS for each layer


Observation 1: Transformer based AE can achieve better SGCS consistently comparing to type II codebook. Around 40% overhead reduction is observed.

 
We further evaluate the system level performance comparing e-type II and AI based approach. Preliminary system level throughput simulation based on the agreed EVM is shown in Table II. The type II codebook performance is the baseline, and improvement is captured in the table for different load and 5% and mean throughput. 

Per UE, maximum rank is configured as 4. In e-type II codebook, the PMI size for rank 2,3 and 4 are similar with the same number of non-zero coefficients, as shown in Table II. 

Table II: Maximum feedback overhead (in bits) of Type II for configuration

	
	B(c,r)

	
	rank 1
	rank 2
	rank 3
	rank 4

	config 1
	62
	110
	94
	102

	config 2
	92
	167
	151
	159

	config 3
	112
	205
	182
	199

	config 4
	170
	318
	295
	312

	config 5
	228
	431
	408
	425

	config 6
	282
	539
	524
	561

	config 7
	246
	467
	437
	463

	config 8
	332
	636
	606
	632



For AI based simulation, when layer common or layer specific AI model is used, to achieve similar UCI size for rank-2, 3 and 4, different AI models can be used. Taken e-type II configuration 1 as example, we trained layer common the AI model with 30 bits, 40 bits and 60bits output. Different model combination can be simulated, as shown in Table III:  

Table III: Layer/rank common and layer common/rank specific model combination for e-type II parameter Config 1

	
	RI=1
	RI=2
	RI=3
	RI=4

	Option 1
	30
	30 30 
	30 30 30
	30 30 30 30

	Option 2
	40
	40 40
	40 40 40
	40 40 40 40

	Option 3
	60
	60 60
	60 60 60
	60 60 60 60

	Option 4
	60
	60 60
	40 40 40
	30 30 30 30


  

Based on rank distribution, final payload size can be either higher than e-Type II, or lower than e-Type II, with different performances. 

For higher layload size, for example, parameter configuration 5, layer common rank specific combination are possible, as shown in table IV, with the models output size trained and tested in section 3.1. 

Table IV: Layer/RI common and Layer common/RI specific model combination for e-type II parameter Config 5

	
	RI=1
	RI=2
	RI=3
	RI=4

	Option 1
	170
	170 170
	170 170 170
	170 170 170 170

	Option 2
	230
	230 230 
	110 110 110
	110 110 110 110

	Option 3
	230
	230 230 
	170 110 110
	110 110 110 110

	Option 4
	230
	230 230 
	170 110 110
	170 110 110 60




In addition, as discussed in Section 2.1, different RI and CQI determination can also play an important role is the evaluation. 

Observation 2: System level performance gain depends on RI selection algorithm. With layer common RI specific AI method, model selection per RI also play important role is system performance. 

Observation 3: For e-type II parameter set Config 1
· When RI selection for e-type II and AI based method are based best PMI for each RI hypothesis (joint RI/PMI search, with UE knows the AI decoder), 
· 5.8% cell edge gain and 3% cell average gain is observed at 74% RU.  
· 5% cell edge gain and 3% cell average gain is observed at 50% RU
· 8% cell edge gain and 2.5% cell average gain is observed at 13% RU 
· When e-type II RI selection is based on selected codebook, and AI RI selection is based on ideal eigen-vector, performance loss is observed.    

Overall AI model parameters and performance are summarized in Table III, following the template agreed in RAN1 111.  Layer common model is used in the table below. As discussed in section 3.2, layer specific model will have better SGCS for layer 2,3,and 4, with the expense of higher storage overhead. 

              Table I: Evaluation results for CSI compression without model generalization 

	
	
	Apple 

	CSI generation 
part
	AL/ML model backbone
	Transformer (Layer common)

	
	Pre-processing
	None

	
	Post-processing
	None

	
	FLOPs/M
	47.0 M

	
	Number of parameters/M
	2.7M

	
	[Storage /Mbytes]
	

	CSI 
Reconstruction
 part
	AL/ML model backbone
	Transformer (Layer common)

	
	[Pre-processing]
	None

	
	[Post-processing]
	None

	
	FLOPs/M
	47.0 M

	
	Number of parameters/M
	2.7M

	
	[Storage /Mbytes]
	

	Common
 description
	Input type
	Eigen-vector

	
	Output type
	Eigen-vector

	
	Quantization /dequantization method
	VQ

	Dataset 
description
	Train/k
	1512k = 500 (drops) * 21(cells) * 16(UEs) * 10 (samples) * 0.9

	
	Test/k
	168K = 500 (drops) * 21(cells) * 16(UEs) * 10 (samples) * 0.1

	
	Ground-truth CSI quantization method
	Floating point

	[Other assumptions/settings agreed to be reported]
	

	Benchmark
	

	SGCS
layer 1
	CSI feedback payload 60
	6.43%

	
	CSI feedback payload 110
	3.61%

	
	CSI feedback payload 230
	4.75%

	SGCS
layer 2
	CSI feedback payload 60
	12.49%

	
	CSI feedback payload 110
	4.3%

	
	CSI feedback payload 230
	1%

	SGCS 
layer 3

	CSI feedback payload 60
	93%

	
	CSI feedback payload 110
	8%

	
	CSI feedback payload 230
	13.7%

	Gain for 
Intermediate
 KPI#1, [layer 4]
	CSI feedback payload 60
	172%

	
	CSI feedback payload 110
	8%

	
	CSI feedback payload 230
	23.3%



Performance monitoring performance
In RAN1 112bis-e, evaluation methodology for monitoring performance was agreed. For the following evaluation, we use e-type II codebook with parameter configuration 8 as the feedback for ground truth target CSI to calculate KPIActual, and KPIdiff is defined as option 1.  
Agreement
To evaluate the performance of the intermediate KPI based monitoring mechanism for CSI compression,  is in forms of
· Option 1: Gap between  and , i.e. ; 
· Monitoring accuracy is the percentage of the samples for which , where  is a threshold of the intermediate KPI gap.











Fig 2 shows the cdf of KPIDiff  for performance monitoring of AI model with CSI output size of 60 bits per layer, and CSI output bits of 230 bits per layer.  At 90%, the KPIDiff  comparing to e-type II parameter configuration 8 is less than 0.1. This demonstrate that using legacy codebook for intermediate KPI based performance monitoring is effective. 
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Fig. 2. CDF of KPIDiff for different CSI output model versus e-type II codebook

Observation 4: At 90%, the KPIDiff  comparing SGCS of different AI models to e-type II parameter configuration 8 is less than 0.1.
 
Proposal 5: Use legacy e-type 2 configuration for intermediate KPI based performance monitoring.   

Training type 3 
In this sub-section, we evaluate NW first and UE first training type 3, with 1:1 mapping and multiple to 1 mapping. For 1:1 NW first mapping, NW first perform end to end training, and use the reference encoder to generate training data set. The reference encoder/decoder parameters is the same as the transformer parameters in section 3.2. Once the training dataset is generated, UE trained encoder. We test different UE encoder parameters and overall similar performance is observed compare to joint 1:1 training. Similar observation is observed in UE first training with 1:1 training.

For multi-vendor UE first training, each UE vendor chooses different model parameters as reference encoder/decoder pairs. For each UE vendor, the VQ codebook is trained by each UE vendor as well. UE vendor 1 model has 5x more learnable parameters than UE vendor 2, and 25x more learnable parameters than UE vendor 3. The dataset is mixed together to train one NW vendor decoder. The test is test again UE vendor 2 encoder. The multi-vendor training works well and similar performance as 1:1 training is observed.

For multi-vendor NW first training, each NW vendor chooses different model parameters as reference encoder/decoder pairs. For each NW vendor, the VQ codebook is trained by each NW vendor as well. NW vendor 1 model has 5x more learnable parameters than NW vendor 2 and has 25x more learnable parameters than NW vendor 3. The datasets are mixed together for UE encoder training. Due to the large variance of latent space distribution generated by different NW vendor, the mixed dataset has larger NMSE loss comparing the 1:1 training. The final SGCS suffer significant loss. 

Observation 5: For training collaboration type 3 with UE first training 
· One UE encoder to one NW decoder training achieve similar performance as joint training
· Multiple UE encodes to one NW decoder training achieve similar performance as joint training. 
Observation 6: For training collaboration type 3 with NW first training 
· One UE encoder to one NW decoder training achieve similar performance as joint training
· One UE encoder to multiple NW decoders training observes large performance degradation.
Quantization aware and non-aware training   
For AI based CSI compression, quantization is one key aspect in the end-to-end evaluation.  In RAN1 110-bis-e, the following agreement was captured: 

Agreement
In CSI compression using two-sided model use case, evaluate and study quantization of CSI feedback, including at least the following aspects: 
· Quantization non-aware training 
· Quantization-aware training
· Quantization methods including uniform vs non-uniform quantization, scalar versus vector quantization, and associated parameters, e.g., quantization resolution, etc.
· How to use the quantization methods













Further details on quantization aware and non-aware evaluation assumption were agreed in RAN1 111. 




Agreement
For the evaluation of quantization aware/non-aware training, the following cases are considered and reported by companies:
· Case 1: Quantization non-aware training, where the float-format variables are directly passed from CSI generation part to CSI reconstruction part during the training
· Fixed/pre-configured quantization method/parameters is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2: Quantization aware training, where quantization/dequantization is involved in the training process
· Case 2-1: Fixed/pre-configured quantization method/parameters are applied during the training phase; the same quantization codebook is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2-2: The quantization method/parameters are updated in together with the AI/ML models during the training; when training is finished, the final quantization codebook is applied for the inference phase
· Companies to report how to update the quantization method/parameters during the training
· Note: the above cases apply for training Type 1/2/3
· Others are not precluded.


























We focus on 60bit per layer for AI based CSI compression quantization comparison study, which corresponds to e-Type II config 1 for layer 1 and layer 2.  For case 1, we train the transformer base auto-encoder without quantization, the floating-point latent dimension is set to 30. After that, we apply scaler codebook and vector quantization codebook which quantize one float point value to 2 bits. 

For fixed VQ codebook, the VQ codebook is trained using Linde-Buzo-Gray (LBG) algorithm based on floating point encoder output. The VQ codebook is used for VQ based quantization non-aware evaluation, also fixed VQ based quantization aware training (case 2-1). The same AI model structure is used for all quantization methods. 


Table V: Summary of quantization evaluation

	Method
	SGCS

	e-type II configuration 1 baseline
	0.691

	Float point, no quantization (30 float value)
	0.773

	Uniform scaler quantization non-aware (60 bits)
	0.513

	Fixed VQ codebook quantization non-aware (60bits)
	0.709

	Uniform scaler quantization aware (60bits) 
	0.722

	Case 2-1: Fixed VQ codebook quantization aware (60bits)
	0.730

	Case 2-2: Joint VQ and AI model 
	0.735



  
Observation 7: For quantization aware training, fixed VQ codebook can achieve similar performance comparing to joint VQ codebook/auto-encoder design.  

Training dataset quantization    
In RAN1 110bis-e, the following agreement was captured on training dataset quantization.
Agreement
For evaluating the performance impact of ground-truth quantization in the CSI compression, study high resolution quantization methods for ground-truth CSI, e.g., including at least the following options
· High resolution scalar quantization, e.g., Float32, Float16, etc.
· FFS select one of the scalar quantization resolutions as baseline
· High resolution codebook quantization, e.g., R16 Type II-like method with new parameters
· FFS new parameters
· Other quantization methods are not precluded


 














Simply scaler quantization is evaluated for the lowest UCI configuration, using layer common model. For training dataset, the AI model input CSI and the target CSI is quantized using 32 bits, 16 bits, 8 bits and 4 bits. For testing dataset, there is no quantization for input or target CSI. 

Table IV shows the results of different quantization for 60bit UCI size per layer. It is observed that 4-bit quantization suffer noticeable performance loss. 

Table VI: SGCS versus quantization of target CSI with 60bit UCI per layer 

	
	32 bits
	16bits
	8bits
	4 bits

	U1
	0.726563
	0.727325
	0.724561
	0.697744

	U2
	0.550424
	0.554369
	0.548524
	0.496096

	U3
	0.424542
	0.428177
	0.423602
	0.402386

	U4
	0.32442
	0.331857
	0.330396
	0.31255



Observation 8: For ground true data quantization, 8 bit quantization achieve the best tradeoff between overhead, performance and complexity.    

Proposal 6: Adopt 8-bit scaler quantization for ground true data quantization for AI model training 

Layer specific, layer common and rank-specific AI model for CSI compression  

For AI model discussion, 4 different approaches have been discussed. 
· Rank common: input is the measured channel matrix, and output is RI together with PMI corresponding to the RI. 
· Rank specific: The rank is estimated similar to traditional method. For a given rank, the input is the PMI of the corresponding rank, and output is the reconstructed precoding matrixes. 
· Layer common: Rank determination is like traditional method. Based on RI, different layers will be encoded by the common AI model separately. The AI model can be trained using only layer 1 eigen-vector as input or using mixture of layers’ eigen vector. Inferencing is done for layer 1,2,3,4. 
· Layer specific: Separate AI model is trained per layer.    Rank determination is like traditional method. Based on RI, different layers will be encoded by each layer’s AI model separately.

For layer specific and layer common, the following results use transformer model with symmetric structure. To simply the design, scaler quantization is used in the evaluation of this section. Depending on the UCI feedback bit, the encoder/decoder parameters range from 2.7M to 2.8M.  

For rank specific, since the input size scale with rank, the model size also scale. For rank-2, the model parameters is 11M for encoder and decoder respectively, and model parameters increases to 25M for rank-3 and 44M for rank-4. 

Fig 1 shows the SGCS of layer common versus layer specific performance for layer 1,2,3 and 4 respectively. For layer common, the AI model is trained using layer 1 eigenvector as input, and the same model is used for inferencing on the test dataset for layer 1, 2, 3, 4 separately. For layer specific, per feedback bit, four models are trained for each layer, using specific layer input. For layer 1, the performance is the same since layer common model is trained using layer 1 input only. For layer-3 and layer-4, to have fair comparison, the traditional e-Type II codebook performance is calculated assuming no max payload size limitation, i.e., layer 3 and layer 4 scales similar as layer 2. This is for comparison purpose only since it is not the specified e-Type II codebook behavior. Scaler quantization-aware training is used in the evaluation. 
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	Fig. 2. Comparison of layer common versus layer specific model for layer 1,2,3,4  


It can be observed that layer specific achieve the best performance at the expense of higher storage requirement.  


Observation 9: Layer specific AI model can achieve better performance comparing to layer common AI model, with 4 times storage overhead.  

Fig.2 shows the performance of for rank specific model, for rank-1, 2, 3 and 4. For rank-specific model, the simulation used “1- average SGCS of all layers” as the loss function.  Since the optimization is to maximize the average SGCS of all layers for a given rank, we see very similar performance for all layers per rank. As rank goes higher, the average performance goes down, as layer 3 and layer 4 eigen-vectors become dominate, which has much diverse signature comparing to layer 1 and 2. 

For rank specific model, if the loss function uses “1 - weighted average of SGCS of layers”, where weighting is related to eigen-value, then different SGCS of each layer can be observed, which is not part of this evaluation here.  
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Fig. 3 SGCS of each layer in rank specific model

Observation 10: Rank specific AI model perform depends on loss function. If average SGCS is used in loss function, the model averages out the SGCS of each layer. With rank 4 model, the layer 1 and layer 2 SGCS suffer significant loss comparing to layer specific and layer common.  Higher model complexity and higher storage requirement for rank specific model is observed. 

Rank specific, layer common and layer specific model design all have similar input and model structure. However, for rank common, it is not clear how this is done. Further discussion is needed.  


Mixed models 
In RAN1 110bis-e, it has been agreed to evaluate not aligned AI/ML model structure between NW aide and UE side. 
Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following cases are considered for evaluations:
· Case 1 (baseline): Aligned AI/ML model structure between NW side and UE side
· Case 2: Not aligned AI/ML model structures between NW side and UE side
· Companies to report the AI/ML structures for the UE part model and the NW part model, e.g., different backbone (e.g., CNN, Transformer, etc.), or same backbone but different structure (e.g., number of layers)
· FFS different sizes of datasets between NW side and UE side
· FFS aligned/different quantization/dequantization methods between NW side and UE side
· FFS: whether/how to evaluate the case where the input/output types and/or pre/post-processing are not aligned between NW part model and UE part model






















Table V shows the mixed model performance with 60 bits UCI, again with layer common model. Encoder is tested with the transformer model with 2.8M parameters, and one hidden layer fully connected model with 888K parameters. Decoder model is tested with transformer model and CNN model, with similar number of parameters.  It should be noted that the CNN model hyper-parameters can be further optimized. 


Table VII: Mixed model performance

	
	Encoder: Transformer 
Decoder: Transformer
	Encoder: Transformer  
Decoder: CNN
	Encoder: FC  
Decoder: Transformer
	

eType II

	Layer 1
	0.722031
	0.672102
	0.682453
	0.691

	Layer 2
	0.549226
	0.487161
	0.380671
	0.4983

	Layer 3
	0.423905
	0.372462
	0.29214
	0.227

	Layer 4
	0.32965
	0.288702
	0.203797
	0.1245



Observation 11: When mis-matched model is used, a simple fully connected encoder model with one hidden layer, together with transformer-based decoder, perform better than other combinations.   

Generalization performance  

Agreement
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.
































The main focuses is to study the generalization impact of antenna port layout (N1/N2/P).  We use layer common model in this section as well. 


Case 1:  

For case 1, the training data set is generated for [8,2,2] antenna port layout, and testing with the same [8,2,2] antenna port layout. The SGCS performance is shown in Fig. 1 of section 3.1.1. 

Case 2:  

For case 2, the training data set is generated for [8,2,2] antenna port layout, and testing with the same [4,4,2] antenna port layout. Figure 5 shows the preliminary results of SGCS comparing to testing dataset of [4,4,2] versus testing data set of [8 2 2]. Only the layer 1 SGCS is shown, and other layers follow similar observations.  

As expected, when the training dataset is mis-matched with the testing dataset, larger performance drop is observed. 
[image: ]
Fig.4 SGCS of layer 1 for case 2


Case 3:  

For case 3, the training data set is mixed data set with [8,2,2] antenna port layout and [4 4 2] antenna port layout. For each antenna port layout, data is generated with 500 independent drops. So the total data set size is doubling of case 1. The trained model is tested using [4,4,2] antenna port layout and [8 2 2] separately. Figure 6 shows the preliminary results of SGCS comparing to testing dataset of [4,4,2] versus testing data set of [8 2 2]. Only the layer 1 SGCS is shown, and other layers follow similar observations.  

When the training dataset is mix with different antenna port layout, and testing dataset is a subset of training mix, the trained model works in both testing data set. 
[image: ]
Fig.5 SGCS of layer 1 for case 3

 

Observation 12: For generalization study case 2, when the autoencoder is trained in UMa with [8 2 2] antenna port layout, and test with [4 4 2] antenna port layout, large performance loss is observed.

Observation 13: For generalization study case 3, when the autoencoder is trained in mixed dataset with [8 2 2] and [4 4 2] antenna port layout, and test with [4 4 2] antenna port layout, similar performance is observed as case 1.  
 
CSI prediction evaluation 
LSTM based AI model description: 

It was agreed that time domain CSI prediction using UE sided model as a representative use case for CSI enhancement. For CSI prediction, we focus on channel prediction where the past measured channel based on CSI-RS are stored in buffer and used to predict future time slot. 

Dataset is generated using system level simulator, UMa deployment but all UEs are outdoor with 30kmph or 60kmph speed. We test prediction results with respect to number of samples in the measurement window, length of measurement window, the periodicity of CSI-RS measurement samples within measurement window, and generalization performance with respect to different mobility. Prediction window is 10ms, where we predict the channel 2.5ms, 5ms, 7.5ms and 10ms ahead of the last CSI-RS measurement. 
Unlike the CSI compression use case which mainly focus on spatial and frequency domain correlation, the CSI prediction mainly rely on time domain correlation priority of the channel. A LSTM network is a nature choice in this case. 

The baseline performance is no prediction, which assume UE always calculate PMI based on the latest CSI-RS measurement. This is represented by the sample and holder error. Normalized MSE is used as the metric, which is defined as 



In addition, we calculate the SGCS for each layer between the predicted channel’s eigen-vectors versus the ground truth channel eigen-vector. For comparison, the SGCS between the sample and hold channel eigenvectors and the ground truth eigen-vectors are also calculated. It should be noted that additional PMI search, either using e-type II codebook for the predicted channel or AI based compression, can be further considered to calculate the SGCS with quantization error. 

Measurement window length 

We first evaluate the CSI prediction performance with different measurement window length in terms of sample. Assuming CSI-RS periodicity of 5ms, the measurement window length 8 is shown in Fig. 6.  

[image: ]
Fig. 6 CSI prediction using time domain channel responses


Variable samples within the measurement window is evaluated. We predict four future samples at 2.5ms, 5ms, 7.5ms and 10ms. The results in summarized in Table VII for 30 km per hour speed UEs.  

Table VII: NMSE of CSI prediction

	
	2.5ms
	5ms
	7.5ms
	10ms

	Sample/Hold Error
	-5.8958
	-0.4079
	2.2325
	3.4643

	LSTM (4 samples)
	-19.1891
	-10.8214
	-6.3591
	-4.1523

	LSTM (6 samples)
	-25.0764
	-15.6182
	-9.8039
	-6.319

	LSTM (8 samples)
	-30.3729
	-20.359
	-13.5788
	-9.0573



Observation 14: LSTM based AI model achieves more than 10dB gain in NMSE for CSI prediction use case. 


Table VIII shows the SGCS of sample and hold channel per layer, up to four layers. It is observed that although the NMSE at 10ms is already de-correlated, the eigen-vectors are not deviated too far from the ground true. This can be due to the channel model where only Doppler spread is modelled, and large scale and small scale parameters are all the same. Therefore the dominate spatial direction does not change although channel is fully de-correlated due to Doppler.  

Table VIII: SGCS of Sample and hold baseline 

	
	2.5ms
	5ms
	7.5ms
	10ms

	Layer 1 
	0.9304
	0.8154
	0.7479
	0.7256

	Layer 2
	0.8993
	0.7653
	0.6978
	0.6796

	Layer 3
	0.8326
	0.5932
	0.4677
	0.4386

	Layer 4
	0.7958
	0.5025
	0.352
	0.3143



Table IX shows the SGCS LSTM based prediction with 8 samples in the measurement window. 
Table IX: SGCS of AI base prediction 

	
	2.5ms
	5ms
	7.5ms
	10ms

	Layer 1 
	0.9978
	0.9803
	0.9211
	0.8013

	Layer 2
	0.9968
	0.972
	0.8892
	0.7354

	Layer 3
	0.9943
	0.9566
	0.8469
	0.6618

	Layer 4
	0.9945
	0.9578
	0.8471
	0.6535



Observation 15: For sample and hold method, the SGCS performance is much better than NMSE since only Doppler effect is modeled in the channel. 

Observation 16: LSTM based prediction achieve 20% SGCS performance gain at 5ms predict time, 23% at 7.5ms prediction time, and 10% at 10ms prediction time. 

Sample distance within measurement window 
We further evaluate the CSI prediction performance with different CSI-RS periodicity assuming the same measurement window length in terms of samples. Assuming CSI-RS periodicity of 2.5ms, the measurement window length 8 is shown in Fig. 7.  Baseline results for sample and hold is the same as Table II for NMSE and Table VIII for SGCS. 

[image: ]
Fig. 7 CSI prediction using time domain channel responses

Table X shows the NMSE and SGCS for the LSTM based prediction with 8 samples in the measurement window, each sample is 2.5ms apart.  
 
Table X: SGCS of AI base prediction 

	
	2.5ms
	5ms
	7.5ms
	10ms

	NMSE
	-43.8663
	-32.0427
	-22.827
	-15.7108

	SGCS layer 1 
	0.9999
	0.9984
	0.9872
	0.9416

	SGCS layer 2
	0.9998
	0.9977
	0.9814
	0.9149

	SGCS layer 3
	0.9997
	0.9968
	0.9753
	0.8846

	SGCS layer 4
	0.9997
	0.997
	0.9772
	0.8946



Observation 17: Reduce the CSI-RS sample distance from 5ms to 2.5ms improve the SGCS by for LSTM based AI model. At 10ms prediction time, 17.5% SGCS improvement is observed over 5ms sample distance. Overall 30.6% SGCS improved at 10ms over sample and hold baseline.  


Generalization over different speed 

In order to test 60km per hour prediction performance, we used 2.5ms CSI-RS sample distance in this section, so the measured sample still within coherent time.  We fixed the measurement window length is 8 samples in this evaluation. 

To test the generalization performance, the training dataset is a mixed dataset with both 30kmph speed and 60kmph speed UEs. Same UMa setting is used based on evaluation assumption. The testing case is 30kmph data set and 60kmph data set separately. The performance is compared to the same where AI model is trained using 30kmph dataset and 60kmph dataset separately 

Table XI shows the NMSE and SGCS for 30kmph testing dataset using LSTM based prediction. Comparing to Table X, we see similar performance up to 7.5ms prediction time, and slight performance degradation for 10ms. 

  Table XI: SGCS of 30kmph testing UE with mixed training dataset 

	
	2.5ms
	5ms
	7.5ms
	10ms

	NMSE
	-35.7685
	-25.3528
	-17.1066
	-11.0878

	SGCS layer 1 
	0.9991
	0.9938
	0.9605
	0.8623

	SGCS layer 2
	0.9988
	0.9904
	0.9424
	0.8116

	SGCS layer 3
	0.9974
	0.9834
	0.9155
	0.7596

	SGCS layer 4
	0.9975
	0.9846
	0.9195
	0.7613



Table XII shows the NMSE and SGCS for 60kmph testing dataset using LSTM based prediction versus baseline sample and hold performance. Similar as 30kmph case, we see slight performance degradation for 10ms. 

  Table XI: SGCS of 60kmph testing UE with mixed training dataset 

	
	2.5ms
	5ms
	7.5ms
	10ms

	NMSE
	-19.6075
	-8.8935
	-4.9401
	-4.1271

	SGCS layer 1 
	0.9805
	0.8097
	0.6212
	0.551

	SGCS layer 2
	0.9716
	0.7453
	0.5394
	0.4802

	SGCS layer 3
	0.9528
	0.652
	0.398
	0.3068

	SGCS layer 4
	0.9514
	0.6311
	0.3682
	0.2812



NMSE and SGCS of 60kmph testing UE with 60kmph training dataset

	
	2.5ms
	5ms
	7.5ms
	10ms

	NMSE
	-20.0108
	-9.0996
	-5.1658
	-4.5986

	SGCS layer 1 
	0.9812
	0.8201
	0.6392
	0.5852

	SGCS layer 2
	0.9733
	0.7578
	0.5589
	0.5158

	SGCS layer 3
	0.9565
	0.6651
	0.4224
	0.3442

	SGCS layer 4
	0.955
	0.6441
	0.3876
	0.3064



Observation 18: LSTM based AI model performance has small performance degradation with mixed training dataset.  Model switching can be used to adapt to different mobility. 

System level throughput 

For system level throughput evaluation, outdoor UEs are at speed of 30km per hour were dropped. The prediction is 5ms ahead of last CSI-RS observation. Channel covariance matrix per subband is predicted, and e-type II codebook parameter configuration 1 was further used to generate PMI. The results were compared to sample and hold baseline. 

Observation 19: For system level throughput, comparing to sample and hold baseline, the following gain are observed:
· For mean UPT, at low load scenario, 7.6% gain is observed. At median load, 8.5% gain is observed. At high load scenario, 8.5% gain is observed. 
· For 5% UPT, at low load, 12.9% gain is observed. At median load, 20.1% gain is observed. At high load, 15.8% gain is observed.


Conclusion
In the paper, we discuss the evaluation methodology and evaluation result for AI based CSI enhancement.   The proposals and observations are: 

Proposal 1: When e-type II codebook is used, two options for RI determination:
· Option 1: Sequential approach. RI is determined based on ideal eigen-vector. PMI is searched based on RI. 
· Option 2: Joint approach. RI is determined based on the best PMI for each RI hypothesis.  

Proposal 2: When AI based CSI compression is used, two options for RI determination:
· Option 1: RI is determined based on ideal eigen-vector. RI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation. 
· Option 2: RI is calculated based on the output of CSI reconstruction part from the realistic channel estimation. RI is determined based on the best PMI for each RI hypothesis.  
Proposal 3: In result reporting table, add a row to describe the RI determination method for AI and e-type II separately. 

Proposal 4: Update layer common and rank specific option 3-2 without limiting the same model for all layers. 
· Option 3 (layer common): A unified AI/ML model is trained and applied for each layer to perform individual inference.
· Option 3-1: layer common and rank common (A unified AI/ML model is applied for each layer under any rank value to perform individual inference), or 
· Option 3-2: layer common and rank specific (different models applied for different rank values; for a specific rank, the same model is applied for all layers)

Proposal 5: Use legacy e-type 2 configuration for intermediate KPI based performance monitoring.   

Proposal 6: Adopt 8-bit scaler quantization for ground true data quantization for AI model training

Observation 1: Transformer based AE can achieve better SGCS consistently comparing to type II codebook. Around 40% overhead reduction is observed.

Observation 2: System level performance gain depends on RI selection algorithm. With layer common RI specific AI method, model selection per RI also play important role is system performance. 

Observation 3: For e-type II parameter set Config 1
· When RI selection for e-type II and AI based method are based best PMI for each RI hypothesis (joint RI/PMI search, with UE knows the AI decoder), 
· 5.8% cell edge gain and 3% cell average gain is observed at 74% RU.  
· 5% cell edge gain and 3% cell average gain is observed at 50% RU
· 8% cell edge gain and 2.5% cell average gain is observed at 13% RU 
· When e-type II RI selection is based on selected codebook, and AI RI selection is based on ideal eigen-vector, performance loss is observed.    

Observation 4: At 90%, the KPIDiff  comparing SGCS of different AI models to e-type II parameter configuration 8 is less than 0.1.

Observation 5: For training collaboration type 3 with UE first training 
· One UE encoder to one NW decoder training achieve similar performance as joint training
· Multiple UE encodes to one NW decoder training achieve similar performance as joint training. 
Observation 6: For training collaboration type 3 with NW first training 
· One UE encoder to one NW decoder training achieve similar performance as joint training
· One UE encoder to multiple NW decoders training observes large performance degradation.

Observation 7: For quantization aware training, fixed VQ codebook can achieve similar performance comparing to joint VQ codebook/auto-encoder design.  

Observation 8: For ground true data quantization, 8 bit quantization achieve the best tradeoff between overhead, performance and complexity.    

Observation 9: Layer specific AI model can achieve better performance comparing to layer common AI model, with 4 times storage overhead.  

Observation 10: Rank specific AI model perform depends on loss function. If average SGCS is used in loss function, the model averages out the SGCS of each layer. With rank 4 model, the layer 1 and layer 2 SGCS suffer significant loss comparing to layer specific and layer common.  Higher model complexity and higher storage requirement for rank specific model is observed. 

Observation 11: When mis-matched model is used, a simple fully connected encoder model with one hidden layer, together with transformer-based decoder, perform better than other combinations.   

Observation 12: For generalization study case 2, when the autoencoder is trained in UMa with [8 2 2] antenna port layout, and test with [4 4 2] antenna port layout, large performance loss is observed.

Observation 13: For generalization study case 3, when the autoencoder is trained in mixed dataset with [8 2 2] and [4 4 2] antenna port layout, and test with [4 4 2] antenna port layout, similar performance is observed as case 1.  

Observation 14: LSTM based AI model achieves more than 10dB gain in NMSE for CSI prediction use case. 

Observation 15: For sample and hold method, the SGCS performance is much better than NMSE since only Doppler effect is modeled in the channel. 

Observation 16: LSTM based prediction achieve 20% SGCS performance gain at 5ms predict time, 23% at 7.5ms prediction time, and 10% at 10ms prediction time. 

Observation 17: Reduce the CSI-RS sample distance from 5ms to 2.5ms improve the SGCS by for LSTM based AI model. At 10ms prediction time, 17.5% SGCS improvement is observed over 5ms sample distance. Overall 30.6% SGCS improved at 10ms over sample and hold baseline.  

Observation 18: LSTM based AI model performance has small performance degradation with mixed training dataset.  Model switching can be used to adapt to different mobility. 

Observation 19: For system level throughput, comparing to sample and hold baseline, the following gain are observed:
· For mean UPT, at low load scenario, 7.6% gain is observed. At median load, 8.5% gain is observed. At high load scenario, 8.5% gain is observed. 
· For 5% UPT, at low load, 12.9% gain is observed. At median load, 20.1% gain is observed. At high load, 15.8% gain is observed.
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