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1	Introduction
The approval of the Rel-18 work package marks the start of 5G Advanced evolution. The package includes a study item on AI/ML for NR air interface, and the work item description can be found in [1].
The initial use cases focused in this study include:
 (
CSI feedback enhancement, e.g., overhead reduction, improved accuracy
, prediction [RAN1]
Beam management, e.g., 
beam prediction in time,
 and/or 
spatial domain
 for overhead and
 
latency reduction
, beam selection accuracy improvement [RAN1]
Positioning accuracy enhancements
 for different scenarios including, e.g.,
 
those with
 heavy
 
NLOS 
conditions [RAN1] 
)
For the use cases under consideration, the study aims to evaluate performance benefits of AI/ML based algorithms:
 (
Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
Whether f
ield data 
are optionally needed 
to further assess the performance and
 
robustness in real-world environments 
should be discussed as part of the study. 
Need for common
 assumptions in
 dataset construction for training, 
validation
 and test for the
 
selected use cases
.
 
Consider adequate model training strategy, collaboration levels and associated 
implications
Consider agreed-upon base AI model(s) for 
calibration
AI model description and training methodology used for evaluation should be reported for information and cross-checking 
purposes
KPIs: 
Determine the common KPIs and corresponding requirements for the AI/ML operations.
 
Determine the use-case specific KPIs and benchmarks of the selected use-cases.
Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art 
baseline
Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.
)
In the previous RAN1 meetings, a comprehensive set of evaluation assumptions were agreed. In this contribution, we discuss the remaining issues on evaluation assumptions and present initial evaluation results on AI/ML for positioning enhancements.
2	Methodology
NR offers a variety of positioning technologies. Release-15 NR supports positioning, e.g., by using LTE positioning in non-standalone (NSA) operation. Release-16 NR much enhances the positioning support with a range of positioning methods, including both downlink-based and uplink-based positioning. Release-17 NR introduces additional enhancements to reduce latency for time-critical use cases such as remote control, deliver positioning accuracy down to the level of 20-30 cm for use cases such as factory automation, and improve integrity protection of the location information. 3GPP Release 18 is investigating solutions to further improve accuracy, integrity, and power efficiency in positioning, study sidelink positioning, and investigate positioning support for RedCap devices.
NR supports large channel bandwidth (up to 100 MHz in FR1 and up to 400 MHz in FR2). Such large signal bandwidths offer an improved ability to resolve multipath effects. The use of multiple antennas for transmission and/or reception in NR facilitates directional positioning including Angle-of-Arrival positioning and Angle-of-Departure positioning. The evaluation results captured in TR 38.855 [2] and TR 38.857 [3] show that NR can achieve high positioning accuracy results.
Nonetheless, the achievable position accuracy is largely dependent on the network deployment pertinent to the corresponding environment, such as if the density of base stations is high enough to create a high probability of LOS conditions. It is reasonable to focus on scenarios with heavy NLOS signal propagation conditions between base station and UE to study AI/ML based algorithms for positioning accuracy enhancements.
With Industry 4.0, we are at a new dawn of automation and intelligence, with smart, connected products and the smart factories that produce them. Positioning is a valuable service for Industry 4.0. Industrial factories may also have heavy NLOS signal propagation conditions between base station and UE, and thus are ideal scenarios for study AI/ML based algorithms for positioning accuracy enhancements. 3GPP has defined a set of indoor factory (InF) scenarios, focusing on factory halls of varying sizes and with varying levels of density of clutters, e.g., machinery, assembly lines, storage shelves. Evaluating indoor factory (InF) scenarios as part of the study on AI/ML based algorithms for positioning accuracy enhancements is essential.
For positioning accuracy enhancements, AI/ML based algorithms can be used for either direct AI/ML positioning or AI/ML assisted positioning.
· Direct AI/ML positioning: The output of the AI/ML model directly provides position estimate. 
· AI/ML assisted positioning: The output of the AI/ML model provides intermediate estimates such as LOS/NLOS classification, timing estimates, and angular estimates. These intermediate estimates become input to another algorithm (AI/ML based or non-AI/ML based) to derive the final position estimate. 
Both direct AI/ML positioning and AI/ML assisted positioning can improve positioning accuracy enhancements with different degrees of complexity and specification impact. From evaluation perspective, it is necessary to evaluate both to develop a holistic understanding of AI/ML based algorithms for positioning accuracy enhancements.
As the Rel-18 study on AI/ML for NR air interface is the first one in 3GPP that explores the benefits of augmenting air interface with features enabling improved support of AI/ML based algorithms, it is important to calibrate evaluation results from different companies in order to facilitate drawing observations and making conclusions. 
3GPP has established simulation methodology for studying positioning (see, e.g., TR 38.855 [2] and TR 38.857 [3]), which can be used to generate synthetic data for the study of AI/ML based algorithms for positioning accuracy enhancements. 
However, the simulation layout for indoor factory scenarios described in TR 38.857 [3] is much simplified compared to real-world indoor factory scenarios. Additional simulation methodology for generating synthetic data, such as digital twins, can be explored. A digital twin is a virtual representation — a true-to-reality simulation of physics and materials — of a real-world physical asset or system, which is continuously updated. Digital twins can help generate synthetic data that are closer to real-world data, compared to the traditional 3GPP statistical simulation methodology.
Besides generating synthetic data, real data is valuable for the study of AI/ML based algorithms for positing accuracy enhancements. It is beneficial to identify existing sets of real data as part of the evaluation work for the study of AI/ML based algorithms for positing accuracy enhancements. In addition, companies are encouraged to contribute real data to evaluate AI/ML based algorithms for positioning accuracy enhancements.
3	KPIs
The study item description lists many dimensions for KPIs, including performance, inference latency, computational complexity, overhead, power consumption, memory storage, hardware requirements, and generalization capability. 
Though it is beneficial to have a full characterization of the performance of AI/ML based algorithms for NR air interface, it is important to focus on a few most important KPIs in the initial phase to understand the gains of AI/ML based algorithms. 
From positioning accuracy enhancement perspective, the key requirement is to improve positioning accuracy. Positioning accuracy can be measured by 
· Horizontal accuracy, which is the difference between the calculated horizontal position and the actual horizontal position of a UE. 
· Vertical accuracy, which is the difference between the calculated vertical position and the actual vertical position of a UE.
With the collected positioning error distribution, a set of percentiles of positioning error can be analysed, such as 50%, 67%, 80%, 90%, and 95%.
Also, many of the KPIs such as inference latency depend on the used computing platform (such as the GPU model). Therefore, it is important to report the KPIs together with the used computing platform (such as the GPU model).
It was discussed that complexity should be evaluated as a KPI, where complexity include model complexity and computational complexity. For evaluation of AI/ML based positioning, the computational complexity can be reported via the metric of floating point operations (FLOPs). 
It is however important to keep in mind that increasing hardware performance can support successively more complex models. For example, Figure 1 shows how single GPU performance has scaled up to meet the demands of deep learning. GPU inference performance has improved by 317x, more than doubling each year. Figure 2 shows single GPU FP64 performance increased by 20x over the decade from 2010 to 2020, an annual growth rate of 35%. In addition to scaling up the performance of individual GPUs, GPUs are also being scaled out to larger clusters for deep learning and high performance computing applications.
Observation 1: Increasing hardware performance can support successively more complex AI/ML models. For example, GPU inference performance has improved by 317x in 8 years (2012-2020), more than doubling each year.
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Figure 1: GPU inference performance is more than doubling every year. (Source: Ref. [4])
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Figure 2: Single GPU performance scaling. (Source: Ref. [4])
4	Evaluation results
In this section, we provide initial evaluation results on positioning accuracy improvement using AI/ML based algorithms. 
The system-level simulation assumption and scenarios are built on the basis of the RAN1 agreements. Specifically, we evaluate the positioning accuracy for heavy NLOS case in the InF-DH scenario. The scenario layout is illustrated in Figure 3.
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Figure 3: Scenario layout.
4.1	Direct AI/ML positioning: RF fingerprinting  
The direct AI/ML positioning utilizes a convolutional neural network (CNN). The input to the CNN is a fingerprint consisting of multiple channel impulse responses (CIRs). The output of the CNN is the predicted position of UE. As a benchmark, we use a time-of-arrival (TOA) based positioning.
Table 1 summarizes the computational and model complexity values.
Table 1: Model complexity and computational complexity
	Number of model parameters
	1.8 M

	Number of FLOPs
	90.9 M



Figure 4 shows the CDF of the horizontal positioning accuracy of both AI/ML based positioning and TOA based positioning. It can be seen that the AI/ML based positioning significantly outperforms the TOA based positioning.
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Figure 4: Positioning accuracy improvement of using an AI/ML based method.
Table 2 summarizes the CDF percentiles (50%, 67%, 80%, 90%,) of horizontal positioning accuracy of both AI/ML based positioning and TOA based positioning.
Table 2: Summary of CDF percentiles of horizontal positioning accuracy
	CDF percentile
	50%
	67%
	80%
	90%

	ToA
	12.1 m
	17.2 m
	24.1 m
	34.9 m

	AI/ML
	1.1 m
	1.5 m
	1.8 m
	2.3 m



Observation 2: AI/ML-based algorithms for direct AI/ML positioning can significantly improve positioning estimation accuracy when compared to classical approaches.
4.2	Direct AI/ML positioning: RF fingerprinting with different drops 
To investigate the model generalization capability, we consider different drops, i.e., training dataset from drops {A0, A1, …, AN-1}, test dataset from unseen drop(s) (i.e., different drop(s) than any in {A0, A1, …, AN-1}), where N>=1.
Specifically, we generate two datasets referred to as Drop 1 and Drop 2 in the InF-DH scenario with the same clutter settings. Since the two drops were produced with different random seed values, UEs in the two drops experienced different channel realizations. These two drops may be thought of as two different indoor factories that have the same clutter settings.
Figure 5 shows the CDF of the horizontal positioning accuracy of the AI/ML based method under the two drops. For comparison, we also show the CDF of the horizontal positioning accuracy of the AI/ML based method under the same drop.
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Figure 5: Positioning accuracy of AI/ML based method under different drops.
Table 3 summarizes the CDF percentiles (50%, 67%, 80%, 90%,) of horizontal positioning accuracy of AI/ML based method under the two drops.
Table 3: Summary of CDF percentiles of horizontal positioning accuracy under different drops.
	Training
	Testing
	50%
	67%
	80%
	90%

	Drop 1
	Drop 1
	1.1 m
	1.5 m
	1.8 m
	2.3 m

	Drop 1
	Drop 2
	7.1 m
	9.3 m
	11.6 m
	14.5 m



From the above results, we can see that RF fingerprinting performs well when training and testing are performed on the same drop, but the positioning accuracy of RF fingerprinting degrades considerably when training and testing are performed on different drops. 
The above observation is not surprising, because RF fingerprinting is site specific, i.e., the AI/ML model learns the mapping between channel realizations and the corresponding UE’s positions. When training and testing are performed on different drops, the AI/ML model learned the mapping between channel realizations and the corresponding UE’s positions in a first site and is applied to a second site which has a different mapping between channel realizations and the corresponding UE’s positions. As a result, one should not expect the AI/ML model to perform well under different drops.
Observation 3: RF fingerprinting is site specific, i.e., the AI/ML model learns the mapping between channel realizations and the corresponding UE’s positions.
Observation 4: The AI/ML model for RF fingerprinting trained on Drop 1 does not generalize well to a different Drop 2.
Proposal 1: If the AI/ML model for RF fingerprinting trained on Drop 1 is directly applied to a different Drop 2, it should not be expected that the model can generalize well. 
4.3	Direct AI/ML positioning: RF fingerprinting with finetuning for different drops
In the previous section, we have observed that the positioning accuracy of AI/ML based RF fingerprinting degrades considerably when training and testing are performed on different drops. In general, AI/ML model performance degrades when there is a mismatch between training data and test data, such as training the AI/ML model in a first scenario and applying it to a second scenario.
One solution to the problem is to use AI/ML model finetuning. Specifically, the AI/ML model is trained in a first scenario. When the AI/ML model is transferred to a second scenario, the AI/ML model is finetuned/retrained with new data from the second scenario. With transfer learning, the amount of data required for finetuning/retraining the AI/ML model is expected to be much less than the amount of training data needed for training the AI/ML model from scratch. 
Next, we evaluate the performance of model finetuning for AI/ML based RF fingerprinting. Specifically, we generate two datasets referred to as Drop 1 and Drop 2 in the InF-DH scenario with the same clutter settings. Since the two drops were produced with different random seed values, UEs in the two drops experienced different channel realizations. These two drops may be thought of as two different indoor factories that have the same clutter settings. The AI/ML model is first trained using the dataset of Drop 1, consisting of 16k samples. Then we finetune the AI/ML model with 1k and 2k samples from the dataset of Drop 2. 
Figure 6 shows the CDF of the horizontal positioning accuracy of the AI/ML based method with fine-tuning. For comparison, we also show the CDF of the horizontal positioning accuracy of the AI/ML based method under the same drop (performance upper bound) and the CDF of the horizontal positioning accuracy of the AI/ML based method without finetuning (performance lower bound).
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[bookmark: _Hlk121386920]Figure 6: Positioning accuracy of AI/ML based method under different drops.
[bookmark: _Hlk121464301]Table 4 summarizes the CDF percentiles (50%, 67%, 80%, 90%,) of horizontal positioning accuracy of AI/ML based method with model finetuning.
Table 4: Summary of CDF percentiles of horizontal positioning accuracy with model finetuning.
	Training
	Testing
	Finetuning
	50%
	67%
	80%
	90%

	Drop 1
	Drop 1
	N/A
	1.1 m
	1.5 m
	1.8 m
	2.3 m

	Drop 1
	Drop 2
	No finetuning
	7.1 m
	9.3 m
	11.6 m
	14.5 m

	Drop 1
	Drop 2
	Finetuning with 1k samples
	2.5 m
	3.3 m
	4.2 m
	5.3 m

	Drop 1
	Drop 2
	Finetuning with 2k samples
	2.1 m
	2.7 m
	3.5 m
	4.3 m

	Note: The original model was trained with 16k samples. Thus, 1k (resp. 2k) finetuning samples corresponds to 6.25% (resp. 12.5%) of the total 16k samples.



From the above results, we can see that finetuning the model with only 1k samples achieves a horizontal positioning accuracy of 5.3 m at 90% (vs. 14.5 m at 90% without model finetuning), demonstrating the clear benefit of model finetuning. Note that 1k finetuning samples is only 6.25% of the total 16k samples used in the original training from scratch.
Observation 5: When the AI/ML model for RF fingerprinting trained on Drop 1 is finetuned with a small number of samples from Drop 2, the positioning accuracy of the finetuned AI/ML model is much improved compared to the performance of the AI/ML model without finetuning.
Proposal 2: When an AI/ML model for RF fingerprinting trained in a first scenario is transferred to a second scenario, the AI/ML model should be finetuned/retrained with new data from the second scenario.
4.4	Direct AI/ML positioning: RF fingerprinting with different clutter parameter sets
To investigate the model generalization capability, we consider different clutter parameter sets, i.e., training dataset from clutter parameter set(s) {A0, A1, …, AN-1}, test dataset from unseen clutter parameter set(s) (i.e., different clutter parameter set(s) than any in {A0, A1, …, AN-1}), where N>=1.
Specifically, we generate two datasets referred to as clutter parameter set 1 and clutter parameter set 2 in the InF-DH scenario. Figure 7 shows the CDF of the horizontal positioning accuracy of the AI/ML based method under the two clutter parameter sets. For comparison, we also show the CDF of the horizontal positioning accuracy of the AI/ML based method under the same clutter parameter set.
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Figure 7: Positioning accuracy of AI/ML based method under different clutter parameter sets.
Table 5 summarizes the CDF percentiles (50%, 67%, 80%, 90%,) of horizontal positioning accuracy of AI/ML based method under the two drops.
Table 5: Summary of CDF percentiles of horizontal positioning accuracy under different drops.
	Training
	Testing
	50%
	67%
	80%
	90%

	Clutter parameter set 1
	Clutter parameter set 1
	1.1 m
	1.5 m
	1.8 m
	2.3 m

	Clutter parameter set 1
	Clutter parameter set 2
	8.7 m
	11.4 m
	13.9 m
	17.9 m



From the above results, we can see that RF fingerprinting performs well when training and testing are performed on the same clutter parameter set, but the positioning accuracy of RF fingerprinting degrades considerably when training and testing are performed on different clutter parameter sets. 
The above observation is not surprising, because RF fingerprinting is site specific, i.e., the AI/ML model learns the mapping between channel realizations and the corresponding UE’s positions. When training and testing are performed on different clutter parameter sets, the AI/ML model learned the mapping between channel realizations and the corresponding UE’s positions in a first site and is applied to a second site which has a different mapping between channel realizations and the corresponding UE’s positions. As a result, one should not expect the AI/ML model to perform well under different clutter parameter sets.
Observation 6: The AI/ML model for RF fingerprinting trained on clutter parameter set 1 does not generalize well to a different clutter parameter set 2.
Proposal 3: If the AI/ML model for RF fingerprinting trained on clutter parameter set 1 is directly applied to a different clutter parameter set 2, it should not be expected that the model can generalize well. 
4.5	Direct AI/ML positioning: RF fingerprinting with finetuning for different clutter parameter sets
In the previous section, we have observed that the positioning accuracy of AI/ML based RF fingerprinting degrades considerably when training and testing are performed on different clutter parameter sets.
Next, we evaluate the performance of model finetuning for AI/ML based RF fingerprinting. The AI/ML model is first trained using the dataset of clutter parameter set 1, consisting of 16k samples. Then we finetune the AI/ML model with 1k, 2k, and 4k samples from the dataset of clutter parameter set 2. 
Figure 8 shows the CDF of the horizontal positioning accuracy of the AI/ML based method with fine-tuning. For comparison, we also show the CDF of the horizontal positioning accuracy of the AI/ML based method under the same clutter parameter set (performance upper bound) and the CDF of the horizontal positioning accuracy of the AI/ML based method without finetuning (performance lower bound).
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Figure 8: Positioning accuracy of AI/ML based method under different drops.
Table 6 summarizes the CDF percentiles (50%, 67%, 80%, 90%,) of horizontal positioning accuracy of AI/ML based method with model finetuning.
Table 6: Summary of CDF percentiles of horizontal positioning accuracy with model finetuning.
	Training
	Testing
	Finetuning
	50%
	67%
	80%
	90%

	Clutter 1
	Clutter 1
	N/A
	1.1 m
	1.5 m
	1.8 m
	2.3 m

	Clutter 1
	Clutter 2
	No finetuning
	8.7 m
	11.4 m
	13.9 m
	17.9 m

	Clutter 1
	Clutter 2
	Finetuning with 1k samples
	4.4 m
	5.7 m
	7.2 m
	9.0 m

	Clutter 1
	Clutter 2
	Finetuning with 2k samples
	3.8 m
	4.9 m
	6.2 m
	7.9 m

	Clutter 1
	Clutter 2
	Finetuning with 4k samples
	3.2 m
	4.1 m
	5.2 m
	6.5 m

	Note: The original model was trained with 16k samples. Thus, 1k (resp. 2k and 4k) finetuning samples corresponds to 6.25% (resp. 12.5% and 25%) of the total 16k samples.



From the above results, we can see that finetuning the model with only 1k samples achieves a horizontal positioning accuracy of 9.0 m at 90% (vs. 17.9 m at 90% without model finetuning), demonstrating the clear benefit of model finetuning. Note that 1k finetuning samples is only 6.25% of the total 16k samples used in the original training from scratch.
Nonetheless, compared to finetuning for different drops, finetuning for different clutter parameter sets provides less positioning accuracy improvement with the same finetuning samples. This is because different clutter parameter sets lead to more dramatic changes in the mapping between channel realizations and the corresponding UE’s positions than different drops with the same clutter parameter set.
Observation 7: When the AI/ML model for RF fingerprinting trained on clutter parameter set 1 is finetuned with a small number of samples from clutter parameter set 2, the positioning accuracy of the finetuned AI/ML model is much improved compared to the performance of the AI/ML model without finetuning.
Observation 8: Compared to finetuning for different drops, finetuning for different clutter parameter sets provides less positioning accuracy improvement with the same finetuning samples. This shows that finetuning is more effective when the first scenario (for which the AI/ML model is originally trained) and the second scenario (that finetuning targets) are more similar.
4.6	Direct AI/ML positioning: RF fingerprinting with different user densities
It was agreed at RAN1#111 to study how AI/ML positioning accuracy is affected by user densities. Intuitively, one could expect that the higher the user density, the better the AI/ML positioning accuracy. Nonetheless, it is of importance to quantitatively characterize the improvement of the AI/ML positioning accuracy versus the user density. This is a practically relevant aspect as the study can shed light on the requirements on data collection overhead and help determine the data collection strategies.
In the previous sections, the results are based on a training dataset of 16,000 samples distributed over an area of 120 m x 60 m. The corresponding user density is about 2.2 UEs/m2. We study the impact of user density on the AI/ML positioning performance by increasing the user density by 4 times, 16 times, and 64 times, respectively. 
Figure 9 presents positioning accuracy results of AI/ML based method under different user densities. It can be seen that increasing user density significantly improves the AI/ML positioning accuracy. With 64x user density, the 90th percentile of the positioning error reduces to 74 cm. 
Nonetheless, it should be noted that the improvement of positioning accuracy in this case comes at the cost of higher requirement on the training dataset for supervised training. It is not always possible to obtain a dataset with high user density in real deployments. One promising solution is to utilize a digital twin network – a digital replica of a corresponding physical network – to generate synthetic data, which is annotated information that a simulation running in a digital twin network generates as an alternative to real-world data [5]. Put another way, synthetic data is created in a cyber sibling of the physical world rather than being measured or collected from the real world. It may be artificial, but synthetic data reflects real-world data in a statistical sense. Digital twin networks capture the precise geometry and material properties of objects in the environment to produce datasets for training AI/ML models used for high-accuracy positioning.
[image: Chart

Description automatically generated]
Figure 9: Positioning accuracy of AI/ML based method under different user densities.
Table 7 summarizes the CDF percentiles (50%, 67%, 80%, 90%,) of horizontal positioning accuracy of AI/ML based method with model finetuning.
Table 7: Summary of CDF percentiles of horizontal positioning accuracy of AI/ML based method under different user densities.
	User density
	50%
	67%
	80%
	90%

	1 x 2.2 UEs/m2
	1.1 m
	1.5 m
	1.8 m
	2.3 m

	4 x 2.2 UEs/m2
	0.75 m
	0.97 m
	1.2 m
	1.5 m

	16 x 2.2 UEs/m2
	0.56 m
	0.74 m
	0.90 m
	1.1 m

	64 x 2.2 UEs/m2
	0.39 m
	0.50 m
	0.60 m
	0.74 m



Observation 9: Increasing user density can improve the positioning accuracy of the AI/ML model for RF fingerprinting. For example, increasing the user density by 64x can reduce the 90th percentile of the positioning error from 2.3 m to 74 cm.
Observation 10: Increasing user density to improve the positioning accuracy of the AI/ML model for RF fingerprinting comes at the cost of higher requirement on the training dataset for supervised training.
Proposal 4: Study data collection methods (e.g., utilizing digital twin technology) for obtaining training data set with high user density.
4.7	Direct AI/ML positioning: RF fingerprinting with labelling errors
It was agreed at RAN1#112 to study the impact of labelling error on positioning accuracy. Intuitively, one could expect that the larger the labelling error, the worse the AI/ML positioning accuracy. Nonetheless, it is of importance to quantitatively characterize the impact of labelling error on the AI/ML positioning accuracy. This is a practically relevant aspect as real network data inevitably has labelling errors, though the degrees of labelling errors may differ. The study on the impact of labelling error on positioning accuracy can shed light on the requirements on data collection precision and help determine the data collection strategies.
To study the impact of labelling error on positioning accuracy, we model the ground truth label error in each dimension of x-axis and y-axis as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. Note that the labelling errors are introduced in the training data set, while the test data set does not (and should not) have labelling errors for testing the positioning accuracy.
Figure 10 presents positioning accuracy results of AI/ML based method under different degrees of label errors, by varying L from 0.5 m to 8 m. For comparison, we also show the CDF of the horizontal positioning accuracy of the AI/ML based method without labelling error (performance upper bound), i.e., L = 0 m.
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[bookmark: _Ref129181961]Figure 10: Positioning accuracy of AI/ML based method under different degrees of label errors.
Table 8 summarizes the CDF percentiles (50%, 67%, 80%, 90%,) of horizontal positioning accuracy of AI/ML based method under different degrees of label errors.
Table 8: Summary of CDF percentiles of horizontal positioning accuracy of AI/ML based method under different label errors.
	Standard deviation of labelling error
	50%
	67%
	80%
	90%

	L = 0 m
	1.1 m
	1.5 m
	1.8 m
	2.3 m

	L = 0.5 m
	1.3 m
	1.7 m
	2.0 m
	2.5 m

	L = 1 m
	1.5 m
	1.9 m
	2.3 m
	2.9 m

	L = 2 m
	2.6 m
	3.3 m
	4.1 m
	5.0 m

	L = 4 m
	3.3 m
	4.2 m
	5.1 m
	6.2 m

	L = 8 m
	6.4 m
	8.1 m
	9.8 m
	11.6 m



From the above results, we can see that increasing label error degrades the AI/ML positioning accuracy.
· When L increases from 0 m to 1 m, the impact of labelling error on positioning accuracy is minor. Specifically, when L = 1 m, the horizontal positioning accuracy is 2.9 m at 90% (vs. 2.3 m at 90% in the case of no labelling error).
· When L increases beyond 1 m, the impact of labelling error on positioning accuracy becomes more noticeable. For example, when L = 4 m, the horizontal positioning accuracy is 6.2 m at 90% (vs. 2.3 m at 90% in the case of no labelling error).
Observation 11: Increased labelling error degrades the positioning accuracy of the AI/ML model for RF fingerprinting. When L is not larger than 1 m, the impact of labelling error on positioning accuracy is minor.
4.8	AI/ML assisted positioning: LOS/NLOS classification
The AI/ML assisted positioning utilizes a convolutional neural network (CNN). The input to the CNN is a fingerprint consisting of a CIR. The output of the CNN is the LOS/NLOS probability. 
Table 9 provides the confusion matrix of the true test labels and the predicted labels. In the shaded region of the table, the rows and the columns correspond to the predicted class and the true class, respectively, and the number of observations for each case is shown in the corresponding cell.
The non-shaded rightmost column provides the precision values, each denoting the percentage of all the samples predicted to belong to each class that are correctly classified. It can be seen that the precision values exceed 99%.
The non-shaded row at the bottom provides the recall values, each denoting the percentage of all the samples belonging to each class that are correctly classified. It can be seen that the recall value for target class NLOS is as high as 99.99%, and the recall value for target class LOS exceeds 97%.
[bookmark: _Ref129181918]Table 9: Confusion matrix of LOS/NLOS classification
	
	Target class: NLOS
	Target class: LOS
	Precision

	Output class: NLOS
	70120
	45
	99.94%

	Output class: LOS
	9
	1539
	99.42%

	Recall
	99.99%
	97.16%
	Overall accuracy: 99.92%



Observation 12: AI/ML assisted positioning can provide high-fidelity intermediate estimates such as LOS/NLOS classification, which in turn can be used to derive final position estimate.
4.9	Summary of evaluation results
The following table summarizes the evaluation results for RF fingerprinting with same drop.
Table 10: Evaluation results for AI/ML model deployed on network-side, RF fingerprinting with same drop, CNN.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Position
	0%
	Drop 1, {60%, 6m, 2m}
	Drop 1, {60%, 6m, 2m}
	16k
	4k
	1.8 M
	90.9 M
	2.3 m



The following table summarizes the evaluation results for RF fingerprinting with different drops/clutter parameter sets and without finetuning for the purpose of generalization study.
Table 11: Evaluation results for AI/ML model deployed on network-side: RF fingerprinting with different drops/clutter parameter sets and without finetuning, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Position
	0%
	Drop 1, {60%, 6m, 2m}
	Drop 2, {60%, 6m, 2m}
	16k
	4k
	1.8 M
	90.9 M
	14.5 m

	CIR
	Position
	0%
	Clutter 1, {60%, 6m, 2m}
	Clutter 2, {40%, 2m, 2m}
	16k
	4k
	1.8 M
	90.9 M
	17.9 m



The following table summarizes the evaluation results for RF fingerprinting with different drops and with finetuning to investigate the benefit of model finetuning.
Table 12: Evaluation results for AI/ML model deployed on network-side: RF fingerprinting with different drops and with finetuning, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Position
	0%
	Drop 1, {60%, 6m, 2m}
	Drop 2, {60%, 6m, 2m}
	Drop 2, {60%, 6m, 2m}
	16k
	1k
	4k
	1.8 M
	90.9 M
	5.3 m

	CIR
	Position
	0%
	Drop 1, {60%, 6m, 2m}
	Drop 2, {60%, 6m, 2m}
	Drop 2, {60%, 6m, 2m}
	16k
	2k
	4k
	1.8 M
	90.9 M
	4.3 m



The following table summarizes the evaluation results for RF fingerprinting with different clutter parameter sets and with finetuning to investigate the benefit of model finetuning.
Table 13: Evaluation results for AI/ML model deployed on network-side: RF fingerprinting with different clutter settings and with finetuning, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Position
	0%
	Clutter 1, {60%, 6m, 2m}
	Clutter 2, {40%, 2m, 2m}
	Clutter 2, {40%, 2m, 2m}
	16k
	1k
	4k
	1.8 M
	90.9 M
	9.0 m

	CIR
	Position
	0%
	Clutter 1, {60%, 6m, 2m}
	Clutter 2, {40%, 2m, 2m}
	Clutter 2, {40%, 2m, 2m}
	16k
	2k
	4k
	1.8 M
	90.9 M
	7.9 m

	CIR
	Position
	0%
	Clutter 1, {60%, 6m, 2m}
	Clutter 2, {40%, 2m, 2m}
	Clutter 2, {40%, 2m, 2m}
	16k
	4k
	4k
	1.8 M
	90.9 M
	6.5 m



The following table summarizes the evaluation results for RF fingerprinting with different user densities.
Table 14: Evaluation results for AI/ML model deployed on network-side, RF fingerprinting with different user densities, CNN.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	User density
(UEs/m2)
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Position
	0%
	Drop 1, {60%, 6m, 2m}
	Drop 1, {60%, 6m, 2m}
	2.2
	2.2 
	1.8 M
	90.9 M
	2.3 m

	CIR
	Position
	0%
	Drop 1, {60%, 6m, 2m}
	Drop 1, {60%, 6m, 2m}
	4 x 2.2
	4 x 2.2
	1.8 M
	90.9 M
	1.5 m

	CIR
	Position
	0%
	Drop 1, {60%, 6m, 2m}
	Drop 1, {60%, 6m, 2m}
	16 x 2.2
	16 x 2.2 
	1.8 M
	90.9 M
	1.1 m

	CIR
	Position
	0%
	Drop 1, {60%, 6m, 2m}
	Drop 1, {60%, 6m, 2m}
	64 x 2.2
	64 x 2.2 
	1.8 M
	90.9 M
	0.75 m



The following table summarizes the evaluation results for RF fingerprinting with different labelling errors.
Table 15: Evaluation results for AI/ML model deployed on network-side, RF fingerprinting with different levels of label errors, CNN.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Position
	0%
	L=0 m
	L=0 m
	16k
	4k
	1.8 M
	90.9 M
	2.3 m

	CIR
	Position
	0%
	L=0.5 m
	L=0 m
	16k
	4k
	1.8 M
	90.9 M
	2.5 m

	CIR
	Position
	0%
	L=1 m
	L=0 m
	16k
	4k
	1.8 M
	90.9 M
	2.9 m

	CIR
	Position
	0%
	L=2 m
	L=0 m
	16k
	4k
	1.8 M
	90.9 M
	5.0 m

	CIR
	Position
	0%
	L=4 m
	L=0 m
	16k
	4k
	1.8 M
	90.9 M
	6.2 m

	CIR
	Position
	0%
	L=8 m
	L=0 m
	16k
	4k
	1.8 M
	90.9 M
	11.6 m



Conclusion
In the previous sections, we discuss general aspects of AI/ML framework for NR air interface and make the following observations:
Observation 1: Increasing hardware performance can support successively more complex AI/ML models. For example, GPU inference performance has improved by 317x in 8 years (2012-2020), more than doubling each year.
Observation 2: AI/ML-based algorithms for direct AI/ML positioning can significantly improve positioning estimation accuracy when compared to classical approaches.
Observation 3: RF fingerprinting is site specific, i.e., the AI/ML model learns the mapping between channel realizations and the corresponding UE’s positions.
Observation 4: The AI/ML model for RF fingerprinting trained on Drop 1 does not generalize well to a different Drop 2.
Observation 5: When the AI/ML model for RF fingerprinting trained on Drop 1 is finetuned with a small number of samples from Drop 2, the positioning accuracy of the finetuned AI/ML model is much improved compared to the performance of the AI/ML model without finetuning.
Observation 6: The AI/ML model for RF fingerprinting trained on clutter parameter set 1 does not generalize well to a different clutter parameter set 2.
Observation 7: When the AI/ML model for RF fingerprinting trained on clutter parameter set 1 is finetuned with a small number of samples from clutter parameter set 2, the positioning accuracy of the finetuned AI/ML model is much improved compared to the performance of the AI/ML model without finetuning.
Observation 8: Compared to finetuning for different drops, finetuning for different clutter parameter sets provides less positioning accuracy improvement with the same finetuning samples. This shows that finetuning is more effective when the first scenario (for which the AI/ML model is originally trained) and the second scenario (that finetuning targets) are more similar.
Observation 9: Increasing user density can improve the positioning accuracy of the AI/ML model for RF fingerprinting. For example, increasing the user density by 64x can reduce the 90th percentile of the positioning error from 2.3 m to 75 cm.
Observation 10: Increasing user density to improve the positioning accuracy of the AI/ML model for RF fingerprinting comes at the cost of higher requirement on the training dataset for supervised training.
Observation 11: Increased labelling error degrades the positioning accuracy of the AI/ML model for RF fingerprinting. When L is not larger than 1 m, the impact of labelling error on positioning accuracy is minor.
Observation 12: AI/ML assisted positioning can provide high-fidelity intermediate estimates such as LOS/NLOS classification, which in turn can be used to derive final position estimate.
Based on the discussion in the previous sections we propose the following:
Proposal 1: If the AI/ML model for RF fingerprinting trained on Drop 1 is directly applied to a different Drop 2, it should not be expected that the model can generalize well. 
Proposal 2: When an AI/ML model for RF fingerprinting trained in a first scenario is transferred to a second scenario, the AI/ML model should be finetuned/retrained with new data from the second scenario.
Proposal 3: If the AI/ML model for RF fingerprinting trained on clutter parameter set 1 is directly applied to a different clutter parameter set 2, it should not be expected that the model can generalize well. 
Proposal 4: Study data collection methods (e.g., utilizing digital twin technology) for obtaining training data set with high user density.
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